Классификация исполнительных элементов
Особенности классификации исполнительных элементов систем автоматического управления приводом. Параметрические исполнительные элементы: электромагнитные реле, контакторы, тиристорные и транзисторные реле. Характеристики элементов с механическим выходом.
Рубрика | Производство и технологии |
Вид | доклад |
Язык | русский |
Дата добавления | 01.01.2015 |
Размер файла | 308,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Классификация исполнительных элементов
Исполнительные механизмы предназначаются для привода:
- элементов, регулирующих потоки энергии, жидкости, газа, сыпучих и перемещаемых твердых тел (реостатов, клапанов, задвижек и заслонок, направляющих аппаратов турбин и насосов, шлагбаумов и других устройств);
- элементов следящих систем (копировальных станков, манипуляторов, автокомпенсационных, регулирующих и других устройств);
- рулевых устройств транспортных объектов;
- особых элементов систем управления (противовесов в грузоподъемных сооружениях, зажимных автоматических устройств и т.п.).
По-другому можно сказать, что исполнительные элементы систем автоматики предназначены для создания управляющего воздействия на регулирующий орган объекта управления. При этом изменяется положение или состояние регулирующего органа, что приводит в конечном итоге к изменению положения или состояния объекта управления в соответствии с алгоритмом управления.
Один из вариантов классификации исполнительных элементов системы автоматического управления представлен на рис. 1.
Рис. 1. Классификация исполнительных элементов системы автоматического управления.
В зависимости от управляющего воздействия на выходе исполнительные элементы делятся на два вида: силовые и параметрические. Изменение пространственного положения регулирующего органа возможно в том случае, если исполнительные элементы создают управляющее воздействие в виде силы или момента. Такие исполнительные элементы получили название силовых. К ним относятся электромагниты, электромеханические муфты, различные виды двигателей.
Устройство, содержащее двигатель, редуктор и элементы управления двигателем (усилитель, реле, контактор, золотниковый распределитель и т.п.), называют силовым приводом, или просто приводом. В зависимости от вида энергии, подводимой к двигателю, различают электро-, пневмо- и гидроприводы. Находят применение и комбинированные приводы: электрогидравлический и пневмогидравлический.
Еще одним вариантом исполнительного элемента является следящий привод, который воспроизводит на выходе заданное на входе перемещение, но с большим механическим усилием, т.е. момент или сила на выходе его существенно больше, чем на входе. Следящий привод широко применяется в автоматических манипуляторах (роботах), станках с числовым программным управлением (ЧПУ), для управления прокатными станами и т. д.
Следящий привод является частным случаем следящих систем, формально этот привод относится не к элементам автоматики, а к устройствам, так как в нем объединяются несколько элементов. Но в сложных (комплексных) системах автоматического управления привод может рассматриваться как один функциональный элемент - исполнительный.
Изменение состояния регулирующего органа связано с изменением его параметров (сопротивления, магнитного потока, температуры, скорости и т.п.) или параметров энергии, подводимой к нему (напряжения, тока, частоты, фазы - в электрических устройствах; давления рабочей среды - в пневматических и гидравлических устройствах).
Исполнительные элементы, изменяющие состояние регулирующего органа, называются параметрическими. Например, в автоматическом управляющем устройстве термостата исполнительным элементом является усилитель, нагрузкой которого служит нагревательный элемент регулирующего органа термостата. При отклонении температуры от заданного значения изменяется входное напряжение усилителя; при этом изменяется и выходное напряжение, а следовательно, и ток в нагревательном элементе и температура в термостате. В этом устройстве усилитель совмещает в себе функции и усилителя, и исполнительного элемента. Он создает управляющее воздействие (напряжение, ток), изменяющее температуру нагревательного элемента, например регулирующего органа. Такое использование усилителей довольно часто встречается в устройствах автоматики. Усилители одновременно являются основным видом параметрических исполнительных элементов.
Особенно часто в качестве параметрических исполнительных элементов используются электромагнитные реле, контакторы, тиристорные и транзисторные реле.
Силовые исполнительные элементы в зависимости от характера движения их выходного вала можно разделить на три вида: с линейным, поворотным (угол поворота меньше 360°) и вращательным (угол поворота больше 360°) движениями. Статистическая характеристика исполнительных элементов может быть линейной, нелинейной, реверсивной, нереверсивной и т.д.
К силовым исполнительным элементам предъявляется ряд требований, которые обусловлены конструкцией и алгоритмом работы объекта управления, условиями эксплуатации и т.п.
Таким образом, исполнительный элемент (исполнительное устройство) - функциональный элемент системы автоматического управления, осуществляющий воздействие на объект управления путем изменения потока энергии и потока материалов, поступающих на объект.
Согласно другой классификации исполнительные элементы можно разделить на два типа:
- с механическим двигателем (в частности, сервомотор, серводвигатель или сервопривод), в этом случае исполнительный элемент производит механическое перемещение регулирующего органа;
- с электрическим выходом, в этом случае воздействие, непосредственно прикладываемое к объекту регулирования, имеет электрическую природу.
Например, в регуляторе напряжения генератора постоянного тока регулирующим воздействием является напряжение возбуждения, получаемое от усилителя. исполнительный элемент автоматический управление
В зависимости от характера объекта и вида вспомогательной энергии, применяемой в системе автоматического управления, роль исполнительных элементов выполняют самые разные конструктивные элементы: электронные, электромашинные, магнитные или полупроводниковые усилители, реле, пневматические или гидравлические сервомоторы и др.
Динамические характеристики исполнительных элементов с механическим выходом отличаются значительно большей инерционностью, чем элементы с электрическим выходом. Часто исполнительные элементы второго типа служат приводом исполнительных элементов первого типа.
Сервоэлектродвигатели, применяемые в качестве исполнительных элементов с механическим выходом, отличаются специальным исполнением, обеспечивающим пониженную инерционность (удлиненным ротором малого диаметра, полым ротором). Значительно меньшую инерционность при той же мощности имеют гидравлические и пневматические серводвигатели.
Исполнительный механизм (сервопривод) - исполнительный элемент с механическим выходом. Исполнительные механизмы классифицируются по назначению и типу управляемых элементов, виду осуществляемых перемещений, роду применяемой энергии.
Исполнительный механизм электрический - исполнительный механизм, в котором перемещение регулирующего органа производится за счет электрической энергии. Электрические исполнительные механизмы бывают двух основных типов:
- с приводом от электродвигателя (наиболее широко распространены в схемах общепромышленной автоматики);
- с приводом от электромагнита (обычно соленоида).
В электрических исполнительных механизмах применяются асинхронные двигатели. Для исполнительных устройств малой мощности - двухфазные с короткозамкнутым или полым ротором, для более мощных - трехфазные с короткозамкнутым или массивным ротором. Для уменьшения выбега двигателя и улучшения качества регулирования используется электрическое торможение или электромагнитные тормоза, которые накладываются при снятии с двигателя напряжения питания.
Управление электрическим исполнительным механизмом с помощью соответствующих обратных связей можно построить так, чтобы перемещение регулирующего органа или скорость его движения изменялись пропорционально сигналу управления.
Конструктивно электродвигательные исполнительные механизмы выполняются, как правило, с вращательным движением выходного вала и реже с поступательным перемещением выходного штока. В системах общепромышленной автоматики для привода заслонок, кранов, шиберов и других устройств наиболее часто применяются однооборотные электрические исполнительные механизмы, в которых поворот выходного вала составляет 120... 170°. С помощью многооборотных электрических исполнительных механизмов обычно перемещаются такие регулирующие органы, как запорные вентили и задвижки.
Размещено на Allbest.ru
...Подобные документы
Классификация исполнительных механизмов. Устройство и принцип работы пневматических, гидравлических, многопоршневых, шестеренчатых исполнительных механизмов. Электрические исполнительные механизмы с постоянной и регулируемой скоростью, их особенности.
реферат [1002,5 K], добавлен 05.12.2012Принцип действия тепловых реле, влияние перегрузок и температуры окружающей среды на их долговечность. Время-токовые характеристики и выбор тепловых реле. Конструктивные особенности тепловых реле, применение во всех сферах промышленности и в быту.
контрольная работа [1,2 M], добавлен 26.06.2011Классификация исполнительных механизмов автоматических систем по виду энергии, создающей усилие (момент) перемещения регулирующего органа. Основные конструкции электрических, гидравлических и пневматических исполнительных механизмов, методы управления.
дипломная работа [6,6 M], добавлен 20.11.2010Описание автоматического цикла сверлильного станка. Подбор необходимых элементов электрической принципиальной схемы для управления технологическим процессом: с использованием алгебры логики и без ее применения. Логические функции исполнительных устройств.
курсовая работа [909,4 K], добавлен 15.01.2014Роль в системах автоматического управления технологического оборудования датчиков, контролирующих ход и конечное положение узла. Приборы контроля давления рабочих сред, времени, скорости вращения – реле. Промежуточные звенья схемы электроавтоматики.
курсовая работа [4,8 M], добавлен 22.10.2009Назначение и основные технические характеристики блока дифференциальных реле, сферы и методы его употребления. Устройство и элементы блока, порядок и принцип его действия. Правила проведения текущего ремонта БРД-356, неисправности и их устранение.
контрольная работа [1,2 M], добавлен 04.11.2009Устройство и принцип работы исполнительных механизмов. Пневматические исполнительные механизмы (поршневые и мембранные пневмоприводы). Принцип работы позиционера. Ремонт исполнительных устройств и испытание. Техника безопасности при работе с приборами.
курсовая работа [736,0 K], добавлен 18.03.2010Составление функциональной и технологической схем системы автоматического управления. Разработка структурных формул и принципиальных электрических схем для исполнительных элементов. Выбор технических средств автоматизации, составление спецификации.
курсовая работа [130,5 K], добавлен 14.02.2016Машина как объект производства: основные понятия, элементы, функции. Точность изготовления машины. Функционально-сборочная единица машины. Основные (или исполнительные) элементы. Классификация элементов машины, форм неделимых элементов, поверхностей.
контрольная работа [21,1 K], добавлен 05.11.2008Запаздывающее звено системы автоматического управления. Автоматический потенциометр: понятие, структура и элементы, функциональные особенности, сферы практического применения. Магнитные усилители специального назначения. Электротермические реле.
контрольная работа [1,4 M], добавлен 08.12.2013Выбор системы электрической централизации и функциональная схема размещения блоков. Схемы автоматических кнопочных реле и управляющих стрелочных реле. Работа наборной группы при задании маршрута приема на 2-й путь. Схемы маршрутных и замыкающих реле.
дипломная работа [1,6 M], добавлен 08.02.2023Составление принципиальной электрической схемы цифровой системы управления приводом робота. Пример реализации системы управления структурным путем с использованием электронных логических элементов. Схема и элементы программирования контроллера LOGO.
курсовая работа [1,3 M], добавлен 04.01.2016Определение устойчивости системы по критериям Найквиста, Гурвица, Михайлова и Вышнеградского. Классификация систем автоматического управления технологических процессов. Основные элементы автоматики: датчики, усилители и корректирующие механизмы.
курсовая работа [919,4 K], добавлен 14.08.2011Принцип действия реле-регулятора температуры и устройства встроенной температурной защиты. Автоматический и ручной режим работы водонагревателя. Расчет допустимого тока работы котла при полной мощности. Выбор безопасных проводов и способ их прокладки.
курсовая работа [325,3 K], добавлен 06.01.2016Сравнительный анализ технических характеристик типовых конструкций градирен. Элементы систем водоснабжения и их классификация. Математическая модель процесса оборотного водоснабжения, выбор и описание средств автоматизации и элементов управления.
дипломная работа [1,3 M], добавлен 04.09.2013Проектирование исполнительного двигателя системы газового рулевого привода. Анализ применения пневматических и газовых исполнительных устройств. Построение принципиальной схемы рулевого тракта. Обзор функциональных элементов систем рулевого привода.
курсовая работа [1,1 M], добавлен 20.06.2012Понятие и общая характеристика фрезерного станка модели 6Ф410, его функциональные особенности и возможности, описание сборочных единиц, работа схемы электроавтоматики. Расчет и выбор двигателя, автоматического выключателя, предохранителя и реле.
дипломная работа [961,5 K], добавлен 04.10.2013Общие характеристики электродвигателя. Расчеты по выбору элементов системы автоматического управления. Выбор тахогенератора, трансформатора, вентилей и тиристора. Определение индуктивности якорной цепи. Расчет статических показателей и динамики системы.
курсовая работа [245,3 K], добавлен 24.12.2014Обобщение основных элементов непрерывной техники универсальной системы элементов промышленной пневмоавтоматики, к которым относятся дроссели, делители давления, повторители, усилители и элементы сравнения. Анализ принципиальных схем усилителей мощности.
реферат [398,6 K], добавлен 17.01.2012Метод магнитной дефектоскопии, его достоинства, недостатки и область применения. Влияние легирующих элементов на свойство сталей при отпуске. Обоснование выбора марок сплавов для коленчатого вала, лопатки паровой турбины и пружинного контакта в реле.
контрольная работа [661,1 K], добавлен 28.01.2014