Анализ технологических особенностей добычи и производства битумов

Битумы как смесь углеводородов и их азотистых, кислородистых, сернистых, металлосодержащих компонентов. Анализ основных способов шахтной разработки нефтяных месторождений. Характеристика ключевых факторов, которые влияют на процесс окисления гудрона.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 20.01.2015
Размер файла 22,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Введение

Битумы (от лат. bitumen -- горная смола, нефть) -- представляет собой смесь углеводородов и их азотистых, кислородистых, сернистых и металлосодержащих компонентов. Битумом человек начал пользоваться в глубокой древности. Найдены сооружения в Египте, в междуречье Тигра и Евфрата, которые возводились с применением битумов за 3000 лет до н. э. Битумами покрывали хранилища для зерна, соединяли плиты стен и полов зданий. В начале 1го тысячелетия до н.э. по рекой Евфрат был построен тоннель, где для гидроизоляции стен использовали битум.

Битумы нерастворимы в воде, полностью или частично растворимы в бензоле, хлороформе, сероуглероде и др. органических растворителях.

Природные битумы -- полезные ископаемые органического происхождения с первичной углеводородной основой. К ним относятся естественные производные нефти, образующиеся при нарушении консервации её залежей в результате химического и биохимического окисления. По составу, зависящему от состава исходных нефтей и условий их преобразования, условно подразделяются на несколько классов: мальты, асфальты, асфальтиты, кериты и антраксолиты. Добычу проводят главным образом карьерным или шахтным способом (Битуминозные пески).

Битуминозные пески - горючее полезное ископаемое, органическая часть которого представляет собой природный битум. По содержанию битума делятся на богатые, или интенсивные (более 10% по массе битума), средние (5-10%) и тощие (до 5%). Битумы битуминозных песков подразделяют на несколько типов: мальты (вязкие жидкости, плотностью 0,86-1,03 г/см3, динамическая вязкость 10 Па*с); асфальты (твердые легкоплавкие вещества, плотностью 1,03-1,10 г/см3, температурой плавления <100°С); асфальтиты (твердые вещества, плотностью 1,05-1,20 г/см3, температурой плавления 100-300°С); кериты (твердые неплавкие вещества, плотностью 1,7-2,0 г/см3). Содержание смолисто-асфальтеновых веществ в битумах этих типов составляет (%) соотв. 35-60, 60-75, 75-90 и более 90. В битумах битуминозных песков обнаружено свыше 25 хим. элементов.

Искусственные (технические) битумы -- это остаточные продукты переработки нефти, каменного угля и сланцев. По составу сходны с природными битумами.

1. Добыча битума

Добыча и переработка природных битумов производится в следующей последовательности: 1. добыча битумосодержащей породы. 2. разделение битумосодержащей породы на органическую и минеральные части. 3. транспортировка и переработка битума.

В зависимости от условий залегания и физических свойств сырья разработка месторождений природных битумов классифицируется следующим образом:

· Карьерным и шахтным очистным. При данном способе породу извлекают на поверхность, где из нее экстрагируют битум органическим растворителем или горячей водой с добавкой эмульгирующих составов. Данным способами разрабатываются месторождения с содержанием в породе битума не менее 10% и глубиной залегания 60 -- 90 метров. Коэффициент извлечения битума при этом достигает 85 -- 90%. Примером такого способа добычи является Ярегское нефтяное месторождение в Республике Коми.

· Шахтным, дренажным. При данном способе битумы добываются в шахте самотеком через дренажные скважины, пробуренные из горных выработок.

· Скважинным, внутрипластовым -- битумы добываются путем термического или иного физического воздействия на породу насыщенную битумом через скважины, пробуренные с поверхности. Скважинными способами разрабатываются месторождения глубиной залегания жидких природных битумов (битуминозная нефть) более 100 метров. При скважинных способах коэффициент нефтеотдачи достигает в среднем 30%. В Татарстане битуминозную сверхвязкую нефть добывают на Ашальчинском месторождении. Здесь пробурено несколько пар дугообразных скважин с выходом на поверхность. Скважины расположены параллельно друг от друга на расстоянии несколько метров. В одну скважину подается пар, прогревающего пласт, а из другой происходит откачки нефти, ставшей менее вязкой под воздействием прогрева.

Шахтная разработка может вестись в двух модификациях: очистная шахтная - с подъемом углеводородонасыщенной породы на поверхность и шахтно-скважинная - с проводкой горных выработок в надпластовых породах и бурением из них кустов вертикальных и наклонных скважин на продуктивный пласт для сбора нефти уже в горных выработках.

Hефтяная шахта включает в себя объекты: надшахтный комплекс зданий и сооружений (надшахтные здания подземного и вентиляционных стволов, подъёмные установки, административно-бытовой комбинат, компрессорную, котельную, ремонтно-механическую мастерскую, вентиляционную и др.); подъёмный и вентиляционные стволы; околоствольный двор c камерами центрального водоотлива, центр. подземной подстанции, склада взрывчатых материалов, центральной нефтеловушки c ёмкостями для сбора добываемой жидкости и насосной станции; электровозное депо c камерой противопожарного поезда, камеру чистки вагонеток, грузовую и порожняковую выработку, комплекс горн. выработок c насосными камерами для подачи напорной воды на буровые станки, сбора, транспорта нефти и бурения скважин; инженерные сети электроснабжения, связи и сигнализации, теплоснабжения, паро- и водоснабжения, канализации, снабжения сжатым воздухом; автомобильные дороги и подъезды.

Шахтная разработка нефтяных месторождений осуществляется c помощью очистных, дренажных или комбинированных (включающих очистные и дренажные) систем разработки. При очистной системе нефте-насыщенная порода отбивается (разрушается), как правило, при помощи буровзрывных работ, грузится в забое погрузочными машинами на средства подземного транспорта и через шахтный ствол выдаётся на поверхность, где перерабатывается на спец. установках c выделением нефтяных фракций. При этом возможно комплексное использование сырья, т.к. вмещающие породы продуктивного пласта после выделения нефтяных фракций могут быть использованы как строительный материал, сырьё для хим. промышленности и т.п.

При дренажной системе нефть извлекается посредством буровых скважин, пробуренных из предварительно пройденных горн. выработок. Применяется в тех случаях, когда природное углеводородное сырьё находится либо в подвижном (текучем) состоянии, либо может быть приведено в такое состояние искусственно - термическим воздействием на продуктивный пласт. Поэтому различают системы природной шахтной (природно-шахтной) разработки, когда дренажная разработка осуществляется при использовании естественной энергии пласта, и термической шахтной (термо-шахтной) разработки, когда разработка проводится воздействием на пласт паром, горячим газом (воздухом), горячей водой и др. теплоносителями.

Двухгоризонтная термо-шахтная разработка.

При наиболее распространённой двухгоризонтной термошахтной разработке c надпластового горизонта через вертикальные и наклонные нагнетательные скважины закачивают в продуктивный пласт теплоноситель (напр., пар), a отбор нефти осуществляют из добывающих скважин, пробуренных из расположенной в пласте добывающей галереи.

Cбор нефти производится в горных выработках, откуда она насосами подаётся на поверхность.

Oпыт разработки Ярегского месторождения высоковязкой нефти показывает высокую эффективность применения технологии термошахтной добычи нефти. Kонечная нефтеотдача повышается до 50-60% против 4%, достигнутых при природношахтной разработке, и 2% - при разработке скважинами c поверхности Земли, которые работают в естественном режиме.

Kроме того, непосредственный доступ к продуктивному пласту позволяет свести к минимуму потери теплоносителей до внесения их в пласт, осуществить более полное его вскрытие и использование запасов нефти, независимое от погодных условий выполнение всех работ, a также возможность вести разработку залежей нефти под населёнными пунктами, водоёмами, на сильно заболоченной местности.

2. Производство битума

Различают три основных способа производства нефтяных битумов.

Концентрирование нефтяных остатков путем перегонки их в вакууме в присутствии водяного пара или инертного газа (при переработке сверхтяжелых асфальтосмолистых нефтей остаточные битумы могут быть получены атмосферной перегонкой). В некоторых странах к остаточным битумам относят и асфальт процесса деасфальтизации гудрона. В других странах его выделяют в отдельный способ - получение осажденных битумов.

Окисление кислородом воздуха различных нефтяных остатков (мазутов, гудронов, полугудронов, асфальтов деасфальтизации, экстрактов селективной очистки масел, крекинг остатков или их смесей) при температуре 180 - 300°С.

Компаундирование (смешение) различных нефтяных остатков с дистиллятами и с окисленными или остаточными битумами и др.

Кроме того, возможны и сочетания указанных выше способов.

Для производства нефтяных битумов используют процессы вакуумной перегонки, окисления и деасфальтизации. Сырьем вакуумной перегонки обычно является мазут; для окисления и деасфальтизации применяют гудрон. Товарные битумы получают как непосредственный продукт того или иного процесса либо компаундированием продуктов разных процессов, либо одного и того же процесса. Качество готовых битумов зависит в первую очередь от качества сырья, а для окисленных битумов еще и от температуры, продолжительности окисления и расхода воздуха.

Наилучшим сырьем для производства битума служат остаточные продукты переработки тяжелых смолисто-асфальтеновых нефтей: гудроны, крекинг - остатки, асфальты и экстракты очистки масел. Чем больше содержание смолистоасфальтеновых компонентов в нефти, чем выше отношение асфальтены: смолы и чем меньше содержание твердых парафинов, тем выше качество получаемых битумов и проще технология их производства. Высокое содержание парафина в нефтях отрицательно сказывается на важнейших эксплуатационных показателях битумов: прочность и прилипаемости к минеральным покрытиям. Нефти, из которых получают битумы, должны быть хорошо обессолены.

Остаточные битумы наиболее широкое использование находят в зарубежной практике. Так, во Франции 85% производимых битумов составляют остаточные. Характерными признаками остаточных битумов в отличие от окисленных являются: относительно высокая плотность, высокие твердость и сопротивление разрыву, чувствительность к изменению температуры. Погодостойкие остаточные битумы получают из высокосмолистых (асфальтеновых) нефтей.

Для получения остаточных битумов пригодны лишь определенные сорта нефтей - нафтенового и нафтеноароматического основания, т.е. тяжелые с малым содержанием парафинов.

Производство остаточных битумов основывается на атмосферно - вакуумной перегонке отборных нефтей. Битум отводится как товарный продукт снизу вакуумной колонны АВТ. В ряде случаев на АВТ имеется дополнительная вакуумная колонна специально для получения битума, в которой поддерживается остаточное давление от 3 до 10 мм. рт. ст. Основные параметры перегонки: температура, глубина вакуума и расход водяного пара. Обычно поддерживается температура 400 - 420°С, остаточное давление 30 - 70 мм. рт. ст. (параметры процесса определяет природа сырья). Сырье парафинового основания перегоняют при остаточном давлении ниже 10 мм. рт. ст., но при этом битум обедняется маслами. Регулируя режим процесса отбора можно получать остаточные битумы с различной пенетрацией.

Острый дефицит нефтебитумов в народном хозяйстве обуславливает целесообразность освоения и использования тяжелых высокосмолистых нефтей для производства битумов.

Осажденные битумы (асфальты) получают в процессе деасфальтизации гудрона. За рубежом, например в США, Финляндии, эксплуатируются установки по деасфальтизации сырья, специализированные на производстве битумов или сырья для получения окисленных битумов. Режим деасфальтизации (температурный градиент в экстракционной колонне, соотношение пропан/сырье) регулируют в зависимости от требуемого качества битума. В таком процессе деасфальтизат (сырье для каталитического крекинга, гидрокрекинга) является уже побочным продуктом. Обычно для процесса используют нефти парафинового или смешанного основания, непригодные для непосредственного производства битумов. Процесс позволяет расширить сырьевые ресурсы битумного производства.

Битумы из асфальта деасфальтизации содержат меньше парафинонафтеновых соединений и больше смол и асфальтенов, что обуславливает их меньшие пенетрацию, интервал пластичности и большие растяжимость, температуру хрупкости и когезию по сравнению с битумами той же температуры размягчения, полученными окислением гудрона той же нефти.

На территории бывшего СССР нет ни одной установки деасфальтизации, работающей целенаправленно на производство битумов. Действующие установки пропановой деасфальтизации предназначены для производства остаточных масел. При этом качество асфальта не регламентируется и не контролируется.

Асфальты деасфальтизации могут быть переработаны в битумы: окислением; компаундированием с прямогонным гудроном; окислением в смеси с прямогонным гудроном; окислением асфальта до температуры размягчения порядка 100°С с последующим разжижением его гудроном или экстрактом селективной очистки масел.

Несмотря на то, что за рубежом используют специальные сорта тяжелой нефти, глубокая вакуумная перегонка часто не обеспечивает необходимых качественных показателей битума. Для повышения вязкости или температурной чувствительности вакуумных остатков используют процесс окисления, позволяющий получать продукт требуемого качества из сырья широкого ассортимента. Окисленные битумы по сравнению с остаточными имеют при одинаковой пенетрации более высокие температуры размягчения и вязкость.

Широкое развитие вторичных процессов и использование их остатков в качестве сырья для производства битумов является предпосылкой для развития процессов окисления в промышленном производстве битумов.

Процесс окисления сырья при получении битумов протекает по радикально-цепному механизму. Кислород при взаимодействии с органическим соединением отщепляет водород или внедряется в молекулу, или то и другое одновременно. При этом происходит образование свободных радикалов и гидроперекисей в качестве промежуточных продуктов. Возникает цепная реакция. Обрыв цепей происходит в результате рекомбинации радикалов.

Одновременно протекает множество реакций: окислительное дегидрирование, деалкилирование, окислительная полимеризация, поликонденсация, крекинг с последующим уплотнением его продуктов.

Образование в процессе окисления смол и асфальтенов в значительной мере определяет свойства полученного битума. В зависимости от природы и консистенции сырья меняется качество окисленного битума.

Окисленные битумы лучших сортов получают из остатков высокосмолистых малопарафинистых нефтей, главным образом из гудрона.

Основными факторами, влияющими на процесс окисления гудрона являются: природа сырья - нефти, исходная температура размягчения гудрона, содержание в нем масел, парафиновых и нафтеновых соединений, асфальтенов, температура, расход воздуха, продолжительность окисления, а также давление и уровень жидкости в реакторе.

Температура процесса. Чем выше температура окисления, тем быстрее протекает процесс. Но при слишком высокой температуре ускоряются реакции образования карбенов и карбоидов. Остатки, пол ученные из высокосмолистых асфальтовых и смешанных нефтей, окисляют при 250 - 280°С, остатки парафинистых нефтей - при 270 - 290°С. В зависимости от природы сырья и требуемых свойств битумов следует подбирать соответствующую температуру окисления; для большинства видов сырья с учетом экономической целесообразности она близка к 250°С.

Давление. Повышение давления в зоне реакции способствует интенсификации процесса окисления и улучшению качества окисленных битумов. Дорожные битумы в реакторе колонного типа нецелесообразно получать при давлении выше 0,4 МПа вследствие резкого понижения растяжимости битумов. Окисление под давлением позволяет использовать сырье с малым содержанием масел и получать при этом битумы, обладающие достаточно высокими растяжимостью, пенетрацией и интервалом пластичности.

Расход воздуха. Расход воздуха, степень его диспергирования и распределения по сечению окислительной колонны существенно влияют на интенсивность процесса и свойства битумов. С повышением расхода воздуха на 1т сырья до определенного значения (1,4 м3/мин) эффективность процесса повышается, затем при дальнейшем увеличении ухудшается степень использования кислорода воздуха и снижается эффективность; теплостойкость окисленных битумов при этом повышается.

Процесс окисления остаточных фракций нефти воздухом в промышленной практике осуществляется в аппаратах разного типа: кубах периодического действия, трубчатых змеевиковых реакторах и пустотелых колоннах непрерывного действия.

Окисление в кубе - пустотелом цилиндрическом аппарате с небольшой величиной отношения высоты рабочей зоны к диаметру (обычно около 1,5) - осуществляют на старых установках или при производстве малотоннажных сортов битума. Этот метод используется и за рубежом.

Окисление в трубчатом реакторе - реакторе с вертикальным расположением труб - происходит в турбулентном потоке воздуха. Движение воздуха и окисляемого сырья - прямоточное. Прореагировавшая газожидкостная смесь поступает из реактора в испаритель, где разделяется на газы и жидкость. Газы уходят с верха испарителя на обезвреживание, а жидкая фаза - битум - из нижней части испарителя откачивается в парк.

Окисление в колонных аппаратах. В последние годы широко применяются полые окислительные колонны в качестве реакторов непрерывнодействующих битумных установок. Непрерывнодействующая окислительная колонна характеризуется высокой производительностью, простым конструктивным оформлением, она легко управляема в процессе эксплуатации. Наличие на установке нескольких одинаковых колонн обеспечивает гибкость в работе, что весьма важно при широком ассортименте вырабатываемых битумов и сезонных его колебаниях. Достоинствами процесса окисления в аппаратах колонного ти-па являются также возможность стабилизации теплового режима окисления за счет изменения температуры сырья, поступающего в колонны, применение компрессоров низкого давления и возможность широкой степени автоматизации.

В колонне поддерживают определенный уровень окисляемого жидкофазного материала. Воздух на окисление подают в нижнюю часть колонны через маточник. Обычно сырье подают под уровень раздела фаз, а битум откачивают снизу колонны, при этом твердые осадки в колонне не накапливаются. Однако колонна обладает рядом существенных недостатков и основной из них - невысокая степень использования кислорода воздуха при получении строительных и высокоплавких битумов. Это происходит по причине того, что она работает в режиме близком к идеальному перемешиванию. Окислению при этом подвергается не только и не столько свежее сырье, но и уже окисленные компоненты. Кроме того, к недостаткам пустотелых колонн следует отнести:

Сложность управления, вследствие многофакторности процесса; достаточно высокие затраты топливно-энергетических ресурсов; значительные колебания в качестве получаемой продукции, из-за нестабильности состава сырья и условий его окисления в различных точках колонны; отсутствие в колонне устройств для дополнительного диспергирования смеси нефтяного остатка и пузырьков воздуха и т.д.

Кроме того, противоточные движения в аппарате нагревающегося сырья (сверху вниз) и горячего окисляемого продукта (снизу вверх) создают сложное и временами меняющееся распределение температур по продольному и поперечному сечениям внутри колонны. Это в свою очередь препятствует оптимизации температурного режима окисления и способствует оттеснению пузырьков воздуха к середине колонны.

Грудников И.Б. и Фрязинов В.В. предложили проводить окисление в колонне с квенчинг - секцией, в которой возможно поддержание оптимально высоких температур в зоне реакции колонны, обеспечивающих высокую степень использования кислорода воздуха, и оптимально низких температур в зоне сепарации, при которых не происходит закоксовывания стенок этой зоны. Сущность предложения заключается в конструктивном разделении зон реакции и сепарации, а также в охлаждении сырьем реакционной газожидкостной смеси, выходящей из зоны реакции в зону сепарации; при этом сырье попадает вначале в зону сепарации, только оттуда вместе с рециркулятом направляется в зону реакции.

Колонна с квенчинг секцией может быть может быть построена на установке как новая, а может быть получена путем модернизации имеющихся пустотелых колонн.

Несмотря на значительно большую эффективность работы, по сравнению с пустотелыми колоннами окисления нефтяных остатков, колонны с квенчинг секцией все же имеют, правда, менее выраженные, но те же недостатки, что и первые. В связи с этим, продолжаются попытки создания соответствующего оборудования, позволяющего уйти от режима взаимного перемешивания сырья и продуктов к режиму окисления близком к более эффективному идеальному вытеснению. Это возможно осуществить путем установки внутреннего стакана в окислительной колонне. Кроме того, интенсивность окисления существенно увеличивается при использовании в колонне мешалок и тарелок Опыт работы ряда зарубежных НПЗ свидетельствует о недостаточно надежной работе окислительных колонн с мешалками при получении битумов. Единственная реализованная в настоящее время такая технология принадлежит фирме Пернер (Австрия).

Только окислением, а также глубокой вакуумной перегонкой нефтяных остатков не всегда удается получать битумы, удовлетворяющие всем требованиям существующих стандартов. В таких случаях прибегают к компаундированию на битумной смесительной установке или на месте использования битума. Снижение интереса к процессам окисления за рубежом связано с широким использованием компаундирования, в результате которого достигается требуемое качество битума. Компаундирование широко применяют при производстве строительных битумов. Дорожные битумы хорошего качества с высокими пенетрацией, растяжимостью при 0°С и низкой температурой хрупкости получают компаундированием переокисленного компонента и разжижителей.

Рассмотрим варианты получения компаундированных битумов.

1. Производство битумов по методу переокисление - разбавления. Для повышения пластичности битумов, получаемых из сырья с большим содержанием отходов масляного производства, на Новокуйбышевском НПЗ используется один из вариантов метода переокисления - разбавления . Получение так называемой переокисленной основы - фактически строительного битума БН - осуществляют в нетеплоизолированной колонне, в которую подают гудрон с температурой 240°С и воздух. Температура окисления составляет 260°С. Для уменьшения взрывоопасности в верхнюю часть колонны подают водяной пар. Битум из колонны откачивают через теплообменник, в котором температура продукта снижается до 200°С, частично в емкости готовой продукции, частично - в кубы.

В кубы закачивают также асфальт и экстракт. После перемешивания воздухом компаунд отгружают в качестве дорожного битума. Определенное неудобство при работе по такой схеме представляет периодичность процесса смешения компонентов дорожного битума.

2. Производство битумов переокислением - разбавлением - перегонкой. В настоящее время высокопарафинистые нефти не используют для получения дорожных битумов на НПЗ топливного профиля. Потенциальным сырьем битумного производства на таких заводах могут быть только гудроны, из которых при окислении получаются битумы с неудовлетворительной дуктильностью.

Основной причиной неудовлетворительной дуктильности битумов является относительно низкое содержание ароматических углеводородов в конечном продукте. Невысокое содержание ароматических углеводородов в битумах, получаемых из высокопарафинистых нефтей, объясняется, прежде всего, недостаточным содержанием этих углеводородов в исходном сырье. Кроме того, при переработке сырья происходит дальнейшее снижение содержания соединений с ароматической структурой. В связи с этим, предложено проводить предварительное окисление части легкого высокопарафинистого сырья с тем, чтобы в какой-то степени перевести ароматические углеводороды в более высококипящие соединения, которые при последующей перегонке не выкипали бы, а оставались в остатке, что позволило бы увеличить дуктильность битумов.

Схема производства битумов по этому методу заключается в следующем. Часть сырья, легкий гудрон или мазут, переокисляется до температуры размягчения 70 - 100°С по КиШ и смешивается с неокисленной частью. Эта смесь подвергается вакуумной перегонке с получением в остатке перегонки битума с дуктильностью, соответствующей требованиям стандарта.

Для выбора наиболее предпочтительного способа получения компаундированных дорожных битумов с улучшенными свойствами необходимы специальные исследования по разработке рецептур и технологии их производства с учетом природы перерабатываемого сырья и специфических условий конкретного нефтеперерабатывающего завода.

Самыми массовыми потребителями нефтяных битумов в Республике Беларусь и России являются предприятия дорожного строительства. На их долю приходится свыше 65% от общего объема выпускаемых битумов. Битумы, используемые при строительстве отечественных дорог, в странах СНГ производятся по технологии окисления нефтяных остатков кислородом воздуха при повышенной температуре.

В то же время в течение последних двух-трех десятилетий в северных странах Финляндии, Швеции, Канаде и других, наиболее близких по климату к Беларуси и центральному и северо-западному районам России. Дорожное строительство ведут с применением неокисленных битумов, производимых из тяжелых высокосмолистых нефтей типа венесуэльской, тяжелой арабской и т.п. В связи с этим представляет интерес сопоставление некоторых качественных и эксплуатационных показателей тех и других видов дорожных битумов

Рассмотрение приведенных в них групповых составов позволяет судить о повышенном содержании парафинонафтеновых и пониженном содержании тяжелых ароматических угле водородов в составе окисленного битума. За счет этого окисленные битумы обладают лучшими, в сравнении с неокисленными, низкотемпературными свойствами, но худшими значениями растяжимости и адгезии.

Неокисленные и компаундированные битумы имеют высокое содержание тяжелой ароматики, смол и характеризуются хорошими адгезионными характеристиками, высокой растяжимостью, но более высокой температурой хрупкости.

Исследования авторов последнего периода по анализу качества асфальтобетонов в реальных дорожных условиях показывают, что трещиностойкость асфальтобетонных покрытий, созданных с применением неокисленных и компаундированных битумов, существенно выше, чем у композиций того же состава, но содержащих окисленный битум.

Еще одно доказательство преимущества неокисленных битумов перед окисленными дают результаты исследования их коллоидной структуры с использованием методов малоуглового рассеяния рентгеновских лучей. Авторами работы делается вывод, что неокисленные битумы содержат 85-86% мелких коллоидных образований с размерами частиц 0,9-1,0 нм и 12-13% крупных коллоидных частиц с размером 40,5-41,5 нм. Окисленный же битум дает другое распределение, а именно: 30-31% частиц с размером до 1,6 нм и 69-70% крупных коллоидных частиц с размером до 44,0 нм. Следовательно, неокисленные битумы являются мелкодисперсными коллоидными системами, относящимися к типу золь. Окисленный битум, представленный в большей степени грубодисперсными частицами, можно отнести к типу золь-гель.

Битумные системы типа золь более пластичны и, наряду с хорошими адгезионными характеристиками, это их качество способствует обеспечению повышенной гидрофобности асфальтобетонов, а гидрофобность уже напрямую связана с водостойкостью. В свою очередь, повышенная водостойкость увеличивает долговечность дорожного покрытия.

Сравнение значений показателей однозначно свидетельствует о более высокой термической стабильности компаундированных и неокисленных битумов. битум металлосодержащий шахтный нефтяной

Немаловажным свойством любых битумов является стабильность их качества во времени как при обычных, так и при повышенных температурах. Вопрос стабильности следует оценивать с двух позиций. Первая - это устойчивость к процессам окисления под воздействием повышенных температур и вторая - коллоидная стабильность. Что касается коллоидной стабильности, не подлежит сомнению положение о более высокой устойчивости во времени систем типа золь. При оценке термической стабильности битумы подвергали нагреву до 163°С в течение 5 часов в тонкой пленке толщиной 2-3 мм.

Окисленные битумы, подвергшиеся термообработке, в большей степени теряют пластичность. У них ухудшаются также адгезионные свойства.

Неокисленные и компаундированные битумы после термообработки характеризуются высокими значениями остаточной пенетрации, растяжимости и адгезии, то есть эксплуатационные свойства битумов сохраняются на высоком уровне, а разница в соотношении показателей между окисленными и неокисленными битумами еще больше увеличивается.

По оценкам специалистов зарубежных фирм, ведущих в СНГ дорожное строительство (фирмы Виртгем ФРГ, Нинас битумен Швеция, Несте и Леммикяйнен Финляндия), окисленные битумы, вырабатываемые по ГОСТ 22245-90. Имеют недостаточную деформативность, адгезию и устойчивость к процессам окислительного старения и, несмотря на лучшую морозостойкость таких битумов, применение компаундированных и остаточных битумов намного более предпочтительно.

Подводя итог вышеизложенному, можно сформулировать следующее:

- наиболее перспективной технологией производства окисленных битумов является их получение в непрерывно действующих аппаратах колонного типа;

- несмотря на большое количество конструкционных решений по колонне окисления, работы в этом направлении продолжаются;

- на основании проведенных аналитических исследований показано, что неокисленные битумы как компаундированные, так и остаточные характеризуются высокими значениями растяжимости, хорошей адгезией и высокой устойчивостью к процессам старения, по сравнению с окисленными.

Заключение

Ни один асфальтобетонный завод не обходится в своём производстве без использования дорожного битума, щебня, песка и минерального порошка. Это важнейшие исходные компоненты для производства асфальта. Многократно возросшие объемы дорожного строительства, в последние годы, - существенно увеличили спрос на дорожный битум бнд и бн минеральный порошок и спецтехнику, предназначенную для перевозки битума, минерального порошка и цемента - полуприцепы цистерны: битумовозы (автобитумовозы) и цементовозы (автоцементовозы). Асфальтобетонные заводы вот уже, который год работают в авральном режиме, производя асфальт и товарный бетон с постоянным дефицитом сырья и т.д. К сожалению, новых асфальтовых заводов мало, а старые, как правило, построенные ещё в советские годы, - сильно изношены и работают на пределе своих возможностей.

БНД - битум нефтяной дорожный применяется при ремонте и создании новых покрытий автодорог, а так же, на асфальтовых заводах для производства асфальтобетона. Основная роль - связывание составных компонентов: щебня, минерального порошка и песка в единое целое, с сохранением нужной пластичности и прочности, одновременно. Что особенно важно при устройстве дорожных асфальтовых покрытий.

Размещено на Allbest.ru

...

Подобные документы

  • Тяжелые нефтяные остатки и их химический состав. Закономерности переработки нефтяных шламов с получением модифицированных битумов. Установка переработки нефтяных шламов с получением модифицированных битумов и связующих для бытового твёрдого топлива.

    диссертация [1,6 M], добавлен 20.09.2014

  • Статическая обработка данных исследования кернов и схематизация круговой залежи. Гидродинамические расчеты показателей разработки нефтяных месторождений на жестко-водонапорном режиме. Процесс обводнения по методике БашНИПИнефть при неоднородности пластов.

    контрольная работа [140,9 K], добавлен 12.03.2015

  • Характеристика оборудования для добычи и замера дебита нефти, газа, воды и капитального ремонта скважин. Конструкции установок штангового глубинного насоса. Схема и принцип работы автоматических групповых замерных установок. Дожимная насосная станция.

    реферат [852,0 K], добавлен 11.11.2015

  • Знакомство с ключевыми вопросами разработки нового месторождения согласно основным направлениям развития горнорудной отрасли промышленности. Общая характеристика основных особенностей разработки месторождений в условиях шахты "Северная" ОАО "ГБРУ".

    курсовая работа [1,3 M], добавлен 20.12.2014

  • Урбоэкологический и ландшафтный анализ основных факторов, которые влияют на проектирование. Проектные предложения реконструкции территории загородной усадьбы в г. Севастополь, благоустройству территории и насаждений, их экономическое обоснование.

    курсовая работа [61,2 K], добавлен 05.12.2013

  • Производство оборудования на предприятии ОАО "Волгограднефтемаш" для добычи и переработки продуктов газовых, нефтяных месторождений. Изготовление организацией реакторной, колонной, теплообменной, сепарационной продукции. Технология электрошлаковой сварки.

    отчет по практике [1,1 M], добавлен 17.09.2014

  • Общая характеристика шахтной восстановительной плавки. Шлак как многокомпонентный расплав. Штейн свинцового производства. Конструктивные особенности шахтной печи. Применение печей сложного профиля с двумя рядами фурм. Замена кокса природным газом.

    реферат [283,3 K], добавлен 17.06.2012

  • Химический состав сплава АК9. Анализ возможных способов получения отливки. Описание технологических литейных указаний. Разработка конструкции модельно-литниковой оснастки и технологических этапов производства отливки. Материал деталей пресс-формы.

    курсовая работа [1,1 M], добавлен 08.01.2014

  • Изучение технологии производства пластмасс. Рассмотрение методов оценки качества. Количественная характеристика показателей качества пластмассы. Определение факторов, которые влияют на снижение качества продукции; выработка мероприятий по его повышению.

    дипломная работа [425,6 K], добавлен 15.08.2014

  • Изучение способов модернизации автоматизированной системы регулирования горелками дожигания шахтной печи №1 ЭСПЦ ЧерМК ОАО "Северсталь", которая позволит уменьшить концентрацию диоксинов и других вредных химических элементов в отходящих газах шахтной.

    курсовая работа [2,5 M], добавлен 16.04.2012

  • Знакомство с этапами расчета механизмов и узлов, а также устойчивости автопогрузчика. Общая характеристика современных поточных технологических и автоматизированных линий. Рассмотрение ключевых способов определения основных параметров трансмиссии.

    курсовая работа [249,1 K], добавлен 25.05.2014

  • Описание основных способов добычи нефти. Характеристика оборудования для эксплуатации нефтяных скважин фонтанным способом: арматура, запорные и регулирующие устройства, фланцевые соединения. Особенности и принцип действия газлифтной эксплуатации скважин.

    реферат [8,7 M], добавлен 17.05.2012

  • Понятие о нефтяной залежи. Источники пластовой энергии. Приток жидкости к перфорированной скважине. Режимы разработки нефтяных месторождений. Конструкция оборудования забоев скважин. Кислотные обработки терригенных коллекторов. Техника перфорации скважин.

    презентация [5,1 M], добавлен 24.10.2013

  • Российский комплекс гидравлического разрыва нефтяных и газовых пластов. Предназначение комплекса ГРП для вовлечения в разработку трудноизвлекаемых запасов углеводородов и повышения эффективности их добычи. Технические характеристики и состав комплекса.

    презентация [8,0 M], добавлен 12.10.2015

  • Изучение особенностей процесса наполнения, сжатия, сгорания и расширения, которые непосредственно влияют на рабочий процесс двигателя внутреннего сгорания. Анализ индикаторных и эффективных показателей. Построение индикаторных диаграмм рабочего процесса.

    курсовая работа [177,2 K], добавлен 30.10.2013

  • Назначение и конструкция детали, анализ и оценка ее технологичности. Определение типа организации производства. Выбор способов обработки поверхностей и назначение технологических баз. Выбор режимов обработки, расчет сил резания и потребной мощности.

    курсовая работа [66,4 K], добавлен 22.12.2011

  • Карьерный и шахтный способы разработки месторождений высоковязких нефтей. Технологии снижения вязкости. Стоимость добычи и рыночная стоимость "тяжелой" нефти. Циклическая паростимуляция и гравитационное дренирование с паровым воздействием (SAGD).

    презентация [2,5 M], добавлен 29.05.2019

  • Периоды разработки газовых месторождений. Системы размещения скважин по площади газоносности месторождений природных газов. Разработка газоконденсатных, газогидратных и многопластовых газовых месторождений. Коэффициенты конденсатоотдачи, компонентоотдачи.

    реферат [55,4 K], добавлен 17.01.2011

  • Составление материального баланса установок вторичной перегонки бензина, получения битумов и гидроочистки дизельного топлива. Расчет количества гудрона для замедленного коксования топлива. Определение общего количества бутан-бутиленовой фракции.

    контрольная работа [237,7 K], добавлен 16.01.2012

  • Описание процесса изомеризации. Гидрирование олефиновых углеводородов. Разрыв колец у нафтеновых углеводородов и их изомеризация. Гидрокрекинг парафиновых углеводородов. Яды, которые вызывают отравление катализатора. Тепловые эффекты химический реакций.

    дипломная работа [266,4 K], добавлен 25.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.