История развития промышленного электропривода

Понятие и внутренняя структура электрического привода и его роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации, механизации производственных процессов. История его создания и совершенствования.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 23.01.2015
Размер файла 23,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

История развития промышленного электропривода

Введение

Электрический привод (ЭП) играет большую роль в реализации задач повышения производительности труда в разных отраслях народного хозяйства, автоматизации и комплексной механизации производственных процессов. Около 70% вырабатываемой электроэнергии преобразуется в механическую энергию электродвигателями (ЭД), которые приводят в движение различные станки и механизмы. Электропривод представляет собой электромеханическую систему, состоящую из электродвигательного, преобразовательного, передаточного и управляющего устройств, предназначенную для приведения в движение исполнительных органов рабочей машины и управления этим движением.

Современные автоматизированные электроприводы представляют собой сложные динамические системы, включающие в себя различные линейные и нелинейные элементы (двигатели, генераторы, усилители, полупроводниковых и другие элементы), обеспечивающие в своем взаимодействии разнообразные статические и динамические характеристики. Электропривод по системе Г-Д с тиристорным возбуждением генератора находит широкое применение во многих отраслях промышленности. Достаточно сказать, что большинство мощных электроприводов постоянного тока различного назначения выполнены по системе Г-Д. Это объясняется рядом ее важных преимуществ по сравнению с другими приводами;

- высокая жесткость механических характеристик;

- большой диапазон и плавность регулирования скорости;

- отсутствие пусковых сопротивлений и потерь энергии в них;

- простота реверса двигателя без переключений в цепи якоря;

- простота перевода привода в режимы торможения с рекуперацией энергии в сеть;

- относительная простота схемного решения системы управления приводом, не требующая высокой квалификации обслуживающего персонала. Наряду с перечисленными достоинствами система Г-Д не лишена существенных недостатков, к числу которых относятся:

- недостаточное быстродействие привода;

- неустойчивая работа двигателя в зоне низких скоростей, ограничивающая диапазон регулирования;

- низкий коэффициент полезного действия, не превышающий 75-80%;

- высокая установленная мощность, равная трехкратной мощности

регулируемого двигателя; - большая занимаемая площадь.

1. Понятие электропривода

Электрический привод (сокращённо - электропривод) - это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса.

Согласно ГОСТ Р 50369-92 электрическим приводом называется электромеханическая система, состоящая в общем случае из взаимодействующих преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины

Современный электропривод - это совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60%) и главным источником механической энергии в промышленности.

2. История создания электропривода

электрический производственный привод автоматизация

Появление ЭП обусловлено трудами многих отечественных и зарубежных ученых-электротехников. В этом блистательном ряду имена таких крупных ученых как датчанин Х. Эрстед, показавший возможность взаимодействия магнитного поля и проводника с током (1820 г.), француз А. Ампер, математически оформивший это взаимодействие в том же 1820 г., англичанин М. Фарадей, построивший в 1821 году экспериментальную установку, доказавшую возможность построения электродвигателя. (Рис. 1)

Отечественные ученые-академики Б.С. Якоби и Э.Х. Ленц, которым впервые удалось создать в 1834 году электродвигатель постоянного тока.

Работа Б.С. Якоби по созданию двигателя получила широкую мировую известность, и многие последующие работы в этой области были вариацией или развитием его идей, например, в 1837 году американец Девенпорт построил свой электродвигатель с более простым коммутатором. В 1838 г. Б.С. Якоби усовершенствовал конструкцию ЭД, привнеся в него практически все элементы современной электрической машины. Этот электродвигатель, мощностью в 1 л.с., был использован для привода лодки, которая с 12 пассажирами совершила движение со скоростью до 5 км/ч против течения Невы. Поэтому 1838 год считается годом рождения электропривода.

Уже на этой первой, еще несовершенной модели электропривода обнаружились весьма значительные преимущества его по сравнению с господствовавшим в то время паровыми механизмами - это отсутствие парового котла, запасов топлива и воды, т.е. существенно лучшие массогабаритные показатели.

Однако несовершенство первого ЭД, а главное неэкономичность источника электроэнергии - гальванической батареи, которая была разработана итальянцем Л. Гальвани (1737-1798), явились причиной того что, работы Б.С. Якоби и его последователей сразу не получили практического применения. Требовался простой, надежный и экономичный источник электрической энергии. И выход был найден.

Еще в 1833 году академик Э.Х. Ленц открыл принцип обратимости электрических машин, объединивший впоследствии пути развития двигателей и генераторов. И вот в 1870 г. сотрудник французской фирмы «Альянс» З. Грамм создал промышленный тип электрического генератора постоянного тока, давший новый импульс в развитие электропривода и внедрению его в промышленность. Наш соотечественник электротехник В.Н. Чиколев (1845-1898) создает в 1879 году ЭП для дуговых ламп, электроприводы швейной машины (1882) и вентилятора (1886), отмеченные золотыми медалями на всероссийских выставках. Происходит внедрение ЭП постоянного тока в военно-морском флоте: подъемник боезапасов на броненосце «Сисой Великий» (1890-1894), первый рулевой привод на броненосце «12 Апостолов» (1992). В 1895 году А.В. Шубин разработал систему «инжектор-двигатель» для рулевого управления, установленный в дальнейшем на броненосцах «Князь Суворов», «Слава» и др.

Электропривод проникает в ткацкое производство на подмосковные текстильные фабрики Морозова, Лингардта, Прохоровскую мануфактуру, где уже к 1896 году работало значительное число двигателей постоянного тока.

Отмечаются случаи использования электропривода в городском транспорте - трамвайные линии в городах Киеве, Казани и Нижнем Новгороде (1892) и - несколько позже - в Москве (1903) и Петербурге (1907). Однако отмеченные успехи были незначительными. В 1890 году электропривод составлял всего лишь 5% от общей мощности используемых механизмов.

Появившийся практический опыт требовал анализа, системотизации и разработки теоретической базы для последующего освещения путей развития ЭП. Огромную роль здесь сыграл научный труд нашего соотечественника крупнейшего электротехника Д.А. Лачинова (1842-1903), опубликованный в 1880 году в журнале «Электричество» под названием «Электромеханическая работа», заложившей первые основы науки об электроприводе. Д.А. Лачинов убедительно доказал преимущества электрического распределения механической энергии, впервые дал выражение для механической характеристики двигателя постоянного тока с последовательным возбуждением, дал классификацию электрических машин по способу воз-буждения, рассмотрел условия питания двигателя от генератора. Поэтому 1880 год - год опубликования научного труда «Электромеханическая работа» считается годом рождения науки об электроприводе.

Наряду с электроприводом постоянного тока пробивай себе дорогу в жизнь и электропривод переменного тока. В 1841 году англичанин Ч. Уитсон построил однофазный синхронный электродвигатель. Но он не нашел практического применения из-за трудностей при пуске. В 1876 году П.Н. Яб-лочков (1847-1894) разработал несколько конструкций синхронных генераторов для питания изобретенных им свечей, а также изобрел трансформатор. Следующим шагом на пути к ЭП переменного тока явилось открытие в 1888 году итальянцем Г. Феррарисом и югославом Н. Теслой явление вращающегося магнитного поля, что положило начало конструированию многофазных электродвигателей. Феррарисом и Теслой были разработаны несколько моделей двухфазных двигателей переменного тока. Однако двухфазный ток в Европе не получил широкого распространения. Причиной этого была разработка русским электротехником М.О. Доливо Добровольским (1862-1919) в 1889 году более совершенной трехфазной системы переменного тока. В этом же 1889 году 8 марта он запатентовал асинхронный электродвигатель с короткозамкнутым ротором (АД КЗ), а несколько позднее - и с фазным ротором. Уже в 1891 году на электротехнической выставке во Франкфурте на Майне М.О. Доливо-Добровольский продемонстрировал асинхронные электдвигатели мощностью 0,1 кВт (вентилятор); 1,5 кВт (генератор постоянного тока) и 75 кВт (насос). Доливо-Добровольским также были разработаны 3-х фазный синхронный генератор и 3-х фазный трансформатор, конструкции которых остается практически неизменными и в наше время. Марсель Депре в 1881 году обосновал возможность передачи электроэнергии на расстоянии, и в 1882 была построена первая линия электропередачи протяженностью 57 км и мощность 3 кВт.

В результате вышеперечисленных работ были устранены последние принципиальные технические препятствия к распространению электрической передачи энергии и был создан наиболее надежный, простой и дешевый электрический двигатель, пользующийся в настоящее время исключительным раcпространением. Более 50% всей электроэнергии преобразуется в механическую посредством самого массового электропривода на основе АД КЗ.

Первые в России 3-х фазные ЭП переменного тока были установлены в 1893 году в Шепетовке и на Коломенском заводе, где к 1895 году было установлено 209 электродвигателей общей мощностью 1507 кВт. И все же темпы внедрения электропривода в промышленность оставались низкими из-за отсталости России в области электротехнического производства (2,5% от мировой продукции) и выработки электроэнергии (15 место в мире) даже в пору расцвета царской России (1913).

3. Роль электропривода в народном хозяйстве

После победы Великой Октябрьской революции в 1920 г. был поставлен вопрос о коренной реорганизации всего народного хозяйства. Был разработан план ГОЭЛРО (государственный план электрификации России), предусматривающий в течение 10-15 лет создание 30 тепловых и гидроэлектростанций общей мощностью 1 млн. 750 тыс. кВт (к 1935 году было введено около 4,5 млн. кВт). Работая над планом ГОЭЛРО, В.И. Ленин отметил, что «электрический привод как раз наиболее надежно обеспечивает и любую быстроходность и автоматическую связанность операций на самом обширном поле труда».

Почему уделялось такое большое внимание электроприводу и электрификации? Дело очевидно в том, что ЭП является силовой основой выполнения механической работы и автоматизации производственных процессов с высоким КПД, при этом электропривод создает все условия для высокопроизводительного труда. Вот простой пример. Известно, что в течении рабочего дня один человек может при помощи мускульной энергии выработать около 1 кВт/ч, стоимость производства которой составляет (условно) 1 коп. В высоко электрифицированных отраслях промышленности установленная мощность электродвигателей на одного рабочего составляет 4-5 кВт (этот показатель называется электровооруженность труда). При восьмичасовом рабочем дне получаем потребление 32-40 кВт/ч. Это значит, что рабочий управляет механизмами, работа которых за смену эквивалентна работе 32-40 человек.

Еще большая эффективность ЭП наблюдается в горнодобывающей промышленности. Например, на шагающем экскаваторе типа ЭШ-125/125, имеющим стрелу 125 метров и ковш емкостью 125 кубических метров, мощностью одного асинхронного двигателя составляет 28,2 МВт. На прокатных станах установленная мощность ЭД составляет более 60 МВт, а скорость прокатки - 126 км/ч.

Именно поэтому было так важно обеспечить широкое внедрение электропривода в народное хозяйство. Количественно это характеризуется коэффициентом электрификации, равным отношению мощности электродвигателей к мощности всех установленных двигателей, в том числе и неэлектричеких. Динамику роста коэффициента электрификации в России можно проследить по (табл.)

Значение коэффициента электрификации, %

Год

5

1890

40

1913

51

1928

69

1932

80

1935

около 100

1987

В результате выполнения плана ГОЭЛРО СССР в 1928 году по коэффициенту электрификации обогнал Англию, в 1936 г. перегнал Германию и догнал США, тем самым ликвидировав отсталость России от ведущих мировых держав. В настоящее время ЭП занял господствующее положение в народном хозяйстве и потребляет порядка 2/3 всей производимой электрической энергии в стране (около 1,5 трл. кВт/ч).

Заключение

Научно-технический прогресс, автоматизация и комплексная механизация технологических и производственных процессов определяют постоянное совершенствование и развитие современного ЭП. В первую очередь это относится к все более широкому внедрению автоматизированных ЭП с использованием разнообразных силовых полупроводниковых преобразователей и микропроцессорных средств управления. Постоянно появляются и новые типы электрических машин и аппаратов, датчиков координат переменных и других компонент, применяемых в ЭП.

Расширение и усложнение выполняемых функций ЭП, использование в них новых элементов и устройств, все более широкое включение ЭП в системы автоматизации технологических процессов требуют высокого уровня подготовки специалистов, занимающихся их проектированием, монтажом, наладкой и эксплуатацией.

Используемая литература

1. ГОСТ 50369-92. ЭЛЕКТРОПРИВОДЫ. Термины и определения.

2. Ключев В.И. Теория электропривода : Учебник для вузов. 2-е изд. перераб. и доп. - М. Энергоатомиздат, 2001.704 с.

3. Ключев В.И. Теория электропривода : Учебник для вузов. М.: Энергоатомиздат, 1985. 560

Размещено на Allbest.ru

...

Подобные документы

  • Проблема автоматизации производственных процессов и процессов управления. Средства повышения производительности труда. Понятие и общая характеристика автоматизированного рабочего места (АРМ). Назначение, виды и принципы, используемые при создании АРМ.

    реферат [18,3 K], добавлен 25.11.2011

  • Основные принципы повышения производительности труда на основе совершенствования технологических процессов. Методы их оптимизации функциональными системами программного управления. Системы автоматического регулирования (АСУ) и промышленные роботы.

    контрольная работа [2,4 M], добавлен 15.11.2009

  • Сущность и содержание процесса автоматизации, его принципы и сферы внедрения на сегодня, история развития. Научные основы автоматизации производства, их значение в экономике государства. Особенности проявления автоматизации в различных отраслях.

    контрольная работа [37,3 K], добавлен 14.05.2011

  • Роль и значение механизации и автоматизации производственных процессов в сфере общественного питания. Характеристика основных видов машин пищевой промышленности, их механизмах и принципах работы. Основы охраны труда на предприятиях общественного питания.

    курс лекций [151,8 K], добавлен 15.02.2010

  • Разработка электрического привода для погружного насоса, расчет мощности. Качественный выбор электрического привода на основании предоставленных требований к нему. Построение модели разомкнутой и замкнутой схем в среде программирования MATLAB Simulink.

    курсовая работа [320,0 K], добавлен 01.06.2015

  • Автоматизация производственных процессов как один из решающих факторов повышения производительности труда. Описание базы практики, подбор приборов и средств автоматизации, предназначенных для определения расхода и объема газовой среды в трубопроводе.

    реферат [33,2 K], добавлен 10.04.2010

  • Общая характеристика месторождения. Обоснование схем механизации производственных процессов. Проектирование электропривода и обоснование эффективности его применения, расчет технических параметров. Оценка энергоэффективности карьерных электроустановок.

    дипломная работа [2,6 M], добавлен 17.02.2018

  • Общие подходы к созданию гибких производственных систем. История развития, основные преимущества, структура и составные части гибких производственных систем. Система обеспечения функционирования и управления. Оборудование для изготовления заготовок.

    реферат [465,7 K], добавлен 30.03.2013

  • Разработка функциональной схемы электропривода. Выбор элементов электропривода. Анализ динамических свойств привода, построенных на выбранных элементах. Разработка сборочного чертежа механического узла. Экономический расчет полной себестоимости привода.

    дипломная работа [847,8 K], добавлен 10.02.2011

  • Модернизация привода автоматической линии путем замены привода постоянного тока на асинхронный привод с векторным управлением и определение ее экономической эффективности. Расчет параметров силового канала системы электропривода и мощности его двигателя.

    дипломная работа [4,0 M], добавлен 17.06.2012

  • Эволюция развития техники. История устройств для измерения времени. История решения технического оснащения ткачества. Средства механизации расчетных операций. Транспортные безрельсовые средства с двигателями внутреннего сгорания. "Вечный двигатель".

    контрольная работа [272,4 K], добавлен 01.02.2011

  • Параметры системы для реализации технологического процесса. Расчет поворотного привода, редуктора поворотного привода, наклонного привода. Структура системы управления лазерным комплексом и её разработка. Разработка схемы электрических соединений.

    дипломная работа [1,0 M], добавлен 16.08.2015

  • Особенности режимов работы подъемно-транспортных механизмов. Математическое моделирование нагрузочного асинхронного электрического привода (ЭП) и элементов подъемно-транспортных механизмов. Структура и параметры управления нагрузочным асинхронным ЭП.

    курсовая работа [6,4 M], добавлен 21.03.2010

  • Расчет статических и динамических нагрузок привода. Выбор рабочего давления и жидкости. Габаритные и присоединительные размеры насос-мотора. Расчет параметров гидроаппаратуры и манометров. Тепловой расчет насосной установки, выбор системы электропривода.

    курсовая работа [1,6 M], добавлен 24.03.2013

  • История развития электрического привода. Функции и виды сверлильных станков. Выбор мощности приводного электродвигателя, аппаратуры управления и защиты, питающего кабеля. Разработка схемы электрических соединений. Описание заземления электрооборудования.

    курсовая работа [489,0 K], добавлен 27.03.2014

  • Проект автоматизации регулирования скорости электропривода стана горячей прокатки. Расчёт мощности главного привода; определение параметров системы подчинённого регулирования. Настройка контура тока возбуждения; исследование динамических характеристик.

    курсовая работа [2,0 M], добавлен 19.02.2013

  • Этапы развития автоматизации производства. История создания и усовершенствования средств для измерения и контроля. Понятие и структурная схема систем автоматического контроля, их компоненты. Особенности и области использования микропроцессорных устройств.

    курсовая работа [271,5 K], добавлен 09.01.2013

  • Краткая характеристика предприятия, его организационная структура и история развития. Обзор технологического процесса и выявление недостатков. Описание и анализ существующей системы управления. Анализ технических средств автоматизации, его эффективность.

    отчет по практике [1,4 M], добавлен 02.06.2015

  • История создания информационно-вычислительного центра "Брест". Техническая политика, перспективы развития предприятия и пути реализации комплексных программ по всем направлениям совершенствования. Деятельность отдела электронно-вычислительной техники.

    отчет по практике [20,9 K], добавлен 20.07.2012

  • Технологические особенности дуговой электросталеплавильной печи. Характеристика производственных процессов как объектов автоматизации. Давление газов в рабочем пространстве. Автоматическое регулирование электрического и теплового режимов дуговых печей.

    курсовая работа [1,2 M], добавлен 18.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.