Производство керамзита

Изучение сырьевой базы, используемой для производства керамзитового гравия. Обоснование технологии производства рассматриваемого пористого материала ячеистого строения, получаемого при обжиге легкоплавки глинистых пород. Критерии качества керамзита.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 22.01.2015
Размер файла 72,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПРОИЗВОДСТВО КЕРАМЗИТА

Введение

Керамзит представляет собой легкий пористый материал ячеистого строения в виде гравия, реже в виде щебня, получаемый при обжиге легкоплавких глинистых пород, способных всучиваться при быстром нагревании их до температуры 1050-1300С в течение 25-45 мин. Качество керамзитового гравия характеризуется размером его зерен, объемным весом и прочностью. В зависимости от размера зерен керамзитовый гравий делят на следующие фракции: 5-10, 10-20 и 20-40 мм., зерна менее 5 мм. относят к керамзитовому песку. В зависимости от объемного насыпного веса (в кг/м. куб.) гравий делят на марки от 150 до 800.

Водопоглощение керамзитового гравия 8-20%, морозостойкость должна быть не менее 25 циклов. Керамзит применяют в качестве пористого заполнителя для легких бетонов, а также в качестве теплоизоляционного материала в виде засыпок.

Керамзитовый гравий - частицы округлой формы с оплавленной поверхностью и порами внутри. Керамзит получают главным образом в виде керамзитового гравия. Зерна его имеют округлую форму.

Структура пористая, ячеистая. На поверхности его часто имеется более плотная корочка. Цвет керамзитового гравия обычно темно-бурый, в изломе - почти черный. Его получают вспучиванием при обжиге легкоплавких глин во вращающих печах.

Такой гравий с размерами зерен 5-40 мм. морозоустойчив, огнестоек, не впитывает воду и не содержит вредных для цемента примесей. Керамзитовый гравий используют в качестве заполнителя при изготовлении легкобетонных конструкций.

Керамзитовый щебень - заполнитель для легких бетонов произвольной формы, преимущественно угловатой с размерами зерен от 5 до 40 мм., получаемый путем дробления крупных кусков вспученной массы керамзита. Некоторые глины при обжиге вспучиваются.

Например, при производстве глиняного кирпича один из видов брака - пережог - иногда сопровождается вспучиванием.

Это явление использовано для получения из глин пористого материала - керамзита.

Вспучивание глины при обжиге связано с двумя процессами: газовыделением и переходом глины в пиропластическое состояние.

Источниками газовыделения являются реакции восстановления окислов железа при их взаимодействии с органическими примесями, окисления этих примесей, дегидратации гидрослюд и других водосодержащих глинистых минералов, диссоциации карбонатов и т. д.

В пиропластическое состояние глины переходят, когда при высокой температуре в них образуется жидкая фаза (расплав), в результате чего глина размягчается, приобретает способность к пластической деформации, в то же время становится газонепроницаемой и вспучивается выделяющимися газами. Для изготовления керамзитобетонных изделий нужен не только керамзитовый гравий, но и мелкий пористый заполнитель.

Керамзитовый песок - заполнитель для легких бетонов и растворов с размером частиц от 0,14 до 5 мм. получают при обжиге глинистой мелочи во вращающих и шахтных печах или же дроблением более крупных кусков керамзита. Производство керамзитового песка по обычной технологии во вращающейся печи неэффективно.

Некоторая примесь песчаной фракции получается при производстве керамзитового гравия за счет разрушения части гранул в процессе термообработки, однако он сравнительно тяжелый, так как мелкие частицы глинистого сырья практически не вспучиваются (резервы газообразования исчерпываются раньше, чем глина переходит в пиропластическое состояние).

Кроме того, в зоне высоких температур мелкие гранулы разогреваются сильнее крупных, при этом, возможно, их оплавление и налипание на зерна гравия. На многих предприятиях керамзитовый песок получают дроблением керамзитового гравия, преимущественно в валковых дробилках.

Себестоимость дробленого керамзитового песка высока не только в связи с дополнительными затратами на дробление, но главным образом потому, что выход песка всегда меньше объема дробимого гравия. Коэффициент выхода песка составляет 0,4-0,7, т. е., в среднем из 1 м. куб. гравия получают только около 0,5 м. куб. дробленого керамзитого песка. При этом почти вдвое возрастает его насыпная плотность.

В настоящее время при получении керамзитового песка лучшей считают технологию его обжига в кипящем слое. В вертикальную печь загружается глиняная крошка крупностью до 3 или 5 мм., получаемая дроблением подсушенной глины или специально приготовленных по пластическому способу и затем высушенных гранул. Через решетчатый (пористый) под печи снизу под давлением подают воздух и газообразное топливо (или же горячие газы из выносной топки).

При определенной скорости подачи газов слой глиняной крошки разрыхляется, приходит в псевдоожиженное состояние, а при ее увеличении как бы кипит. Газообразное топливо сгорает непосредственно в кипящем слое. Благодаря интенсификации теплообмена в кипящем слое происходит быстрый и равномерный нагрев материала.

Частицы глины обжигаются и вспучиваются примерно за 1,5 мин. Перед подачей в печь обжига глиняная крошка подогревается в кипящем слое реактора термоподготовки примерно до 300°С, а готовый песок после обжига охлаждается в кипящем слое холодильного устройства.

Насыпная плотность получаемого керамзитового песка- 500-700 кг/м. куб. К зерновому составу керамзитового песка предъявляются требования, аналогичные требованиям к природному песку, но крупных фракций в нем должно быть больше. Проблему получения керамзитового песка, достаточно эффективного по свойствам и себестоимости, нельзя считать полностью решенной. Часто при получении керамзитобетона в качестве мелкого заполнителя применяют вспученный перлит, а также природный песок.

Где:

1. Сырье;

2. Погрузчик;

3. Приемный бункер со шнековым конвейером;

4. Ленточный конвейер;

5. Бункер;

6. Двухвальный смеситель;

7. Гранулятор роликовый;

8. Ленточный конвейер;

9. Сортировщик-просеиватель;

10. Наклонный конвейер;

11. Промежуточный бункер;

12. Измерительные весы;

13. Охлаждающая печь;

14. 2-х барабанная печь обжига;

15. Горелка;

16. Охладитель;

17. Ковшевой элеватор;

18. Роторное сито;

19. Склад готовой продукции (опция);

20. Система водоочистки;

21. Водяной насос;

22. Бассейн;

23. Система вентиляции.

1. Характеристика выпускаемых изделий

Согласно ГОСТ 9759-83 предусмотрены следующие фракции керамзитового гравия по крупности зерен: 5. 10, 10.20, и 20.40мм. В каждой фракции допускается до 10% более крупных зерен по сравнению с номинальными размерами. Из-за невысокой эффективности грохочения материала в барабанных грохотах трудно добиться более тщательного разделения керамзита на фракции.

По насыпной плотности керамзитовый гравий подразделяется на 8 марок: М. КВ.50.600, причем к М. КВ.50 относится керамзитовый гравий с насыпной плотностью до 250 кг/м. куб., к МЗОО - до 300 кг/м. куб. и т. д. Насыпную плотность определяют по фракциям в мерных сосудах. Чем крупнее фракция керамзитового гравия, тем, как правило, меньше насыпная плотность, поскольку крупные фракции содержат наиболее вспученные гранулы. Для каждой марки по насыпной плотности стандарт устанавливает требования к прочности керамзитового гравия при сдавливании в цилиндре. По заказам потребителей для приготовления конструкционных легких бетонов стандарт допускает выпуск керамзитного гравия так же М700 и 800 с прочностью при сдавливании в цилиндре соответственно не менее 3,3 и 4,5 МПа. Стандартная методика предусматривает свободную засыпку керамзитового гравия в цилиндр а затем сдавливание его с уменьшением первоначального объема на 20%. Под действием нагрузки прежде всего происходит уплотнение гравия за счет некоторого смещения зерен и их более компактной укладки. Основываясь на опытных данных, можно полагать, что за счет более плотной укладки керамзитового гравия достигается уменьшение объема свободной засыпки в среднем на 7%. Следовательно, остальные 13% уменьшение объема приходятся на смятие зерен. Если первоначальная высота зерна Д, то после смятия она уменьшается на 13%.

Из этих соображений в ГОСТ 9757-83 «Заполнители пористые неорганические для легких бетонов. Общие технические условия» предусмотрена маркировка пористых заполнителей не только по насыпной плотности, но и по прочности, причем для керамзита и подобного ему пористого гравия числа, определяющие марку по прочности, в среднем в 4,5 раза превышают показатели прочности, полученные при испытании сдавливанием в цилиндре.

Маркировка по прочности позволяет сразу наметить область рационального применения того или иного керамзита в бетонах соответствующих марок. Более точнее данные получают при испытании заполнителя в бетоне.

Для быстрого определения прочности отдельных зерен керамзитового гравия в СибЗНИИЭП разработан метод испытания их гидростатическим давлением в жидкости (масле), в НИИкерамзите - аналогичный метод объемного сжатия гидропластмассой.

В зависимости от особенностей сырья и технологии производства действительная прочность керамзита может отличаться от расчетной, но предварительная ориентировочная ее оценка все же дает представление о возможности и целесообразности использования данного керамзита для получения бетона требуемых классов по прочности. Приведенные числовые значения расчетной прочности керамзитового гравия показывают, что этот пористый заполнитель может быть достаточно прочным для высокопрочных легких конструкционных бетонов, несмотря на низкие показатели прочности при стандартном испытании.

Зерна керамзитового гравия могут иметь шарообразную или вытянутую форму, что зависит от формы сырцовых гранул. По стандарту среднее значение коэффициента должно быть не более 1,5, зерна с коэффициентом формы более 2,5 в керамзитовом гравии первой категории качества таких зерен допускается не более 15% по массе.

Содержание расколотых зерен в керамзитовом гравии допускается не более 10.

15% по массе в зависимости от категории качества.

Керамзитовый гравий должен выдерживать не менее 15 циклов попеременного замораживания и оттаивания в насыщенном водой состоянии с потерей массы данной фракции не более 8%.

При испытании кипячением потеря массы не должна превышать 5%. Таким испытанием выявляется наличие опасных известняковых включений - «дутиков». Ограничивается водопоглощение (не более 20-30% по массе за 1 ч. в зависимости от марки), содержание водорастворимых сернистых и сернокислых соединений. Эти и другие требования стандарта обеспечивают стойкость и долговечность керамзита.

По данным исследователей, изучавших качество керамзита на многих предприятиях, керамзит везде неоднороден. Очевидно, это предопределенно самой технологией получения керамзитового гравия, когда каждая гранула вспучивается по-разному при неоднородности сырья и непостоянстве температурных условий в печи. В результате керамзитовый гравий - это совокупность неодинаковых вспученных гранул различной плотности и прочности.

Для получения однородности керамзита есть два пути:

- первый путь состоит в совершенствовании технологии производства, усреднение сырья, более тщательно его переработке и грануляции, стабилизации режимов термоподготовки, обжига и охлаждения, улучшения фракционирования;

- второй путь - разделение готовой продукции на фракции не только по крупности, но и по плотности зерен.

Применительно к керамзитовому гравию термин «обогащение» означает разделение его на классы по плотности зерен. Более легкий будет богаче, хорошо вспученными зернами, более тяжелый - богаче менее вспученными, зато более прочными зернами.

Считается, что керамзитовый гравий и другие пористые заполнители подлежат обогащению только в условиях сухой сепарации, что их нельзя увлажнять, поскольку по ГОСТ 9759-83 влажность поставляемого керамзитового гравия должна быть не более 2%. Однако это ограничение касается поставляемого гравия, а при использовании его можно увлажнять, как того требует технология. В технологии легких бетонов нередко рекомендуется предварительно увлажнять пористые заполнители, чтобы уменьшить поглощение ими воды из бетонной смеси.

2. Описание свойств сырьевых материалов

Сырьем для производства керамзита служат глинистые породы, относящиеся в основном к осадочным горным.

Для производства керамзита наиболее пригодны монтмориллонитовые и гидрослюдистые глины, содержащие не более 30% кварца.

Основной критерий пригодности глинистого сырья для производства керамзита - способность вспучиваться при термической обработке в пределах 1050-1250°С и образовывать при этом материал, имеющий ячеистое строение с плотностью в куске в пределах 200-1350 кг/м. куб.

Различают слабо-, средне- и хорошо вспучивающиеся глинистые породы с коэффициентом вспучивания соответственно до 2,5, 2,5-4,5 и Кв свыше 4,5, чем выше коэффициент вспучивания сырья, тем меньше плотность керамзита, и тем более ценно это сырью для производства керамзита. При отсутствии хорошо и средне вспучивающих глинистых пород для производства керамзита, используемого в конструктивно-теплоизоляционных бетонах, сырьем могут служить слабовспучивающиеся глинистые породы с железистыми, органическими и другими добавками.

Установить ценность керамзитового сырья по какому-либо одному признаку весьма затруднительно, поэтому в большинстве случаев определяют ряд свойств: генезис, внешний вид, минералогический, химический и гранулометрический состав, огнеупорность, интервал вспучивания, содержание свободного керамзита засоренность крупнозернистыми (камневидными и карбонатными) включениями, а также структурно-механические свойства, большинство из которых оказывает прямое и притом весьма существенное влияние на основные критерии керамзитового сырья - плотность и коэффициент вспучивания.

Физико-механические и важнейшие технологические свойства глинистого сырья в основном определяется его вещественным, минералогическим, гранулометрическим и химическим составами.

Вещественный состав. По вещественному составу легкоплавкие глинистые породы делят на следующие группы. К супесям относят мелкообломочные горные породы с содержанием частиц глинистых минералов 3-10%. Супеси занимают промежуточное положение между песками и суглинками. Они непластичны, обладают слабой связующей способностью и при некоторой оптимальной влажности комкаются. Для производства керамзитового гравия они не пригодны.

Суглинки - тонкообломочные глинистые породы различного химико-минералогического состава и генетического происхождения с содержанием частиц глинистых минералов 10-30%.

По ряду основных свойств они занимают промежуточное положение между глинами и суглинками. Суглинки обладают средней пластичностью и слабой связующей способностью.

Лессовидные глины и суглинки - пылевидные глинистые породы с преобладанием частиц размером 0,05-0,001 мм., от которых зависят основные свойства этих пород. Содержание карбоната кальция в лессах обычно превышает 10%. Поэтому из-за возможного оплавления и деформации при обжиге заполнителя они в чистом виде без добавок других пород не пригодны для производства керамзита во вращающихся печах.

Сланцы - обширная группа метаморфических пород разного состава с характерной сланцеватой текстурой, обусловленной параллельным расположением чешуйчатых и таблитчатых минералов.

По минералогическому составу сланцы подразделяют на глинистые, кремнистые, хлоритовые, шунгитовые и др.

Аргиллиты - глины, затвердевшие в результате природного прессования, дегидратации, перекристаллизации и цементации.

Основную массу аргиллитовых пород составляют глинистые минералы - гидрослюда, монтмориллонит, каолинит, хлориты с примесью кварца, полевых шпатов, слюд и т. д.

Они также содержат до 50-80% кремнезема, до 20% и более глинозема и незначительное количество щелочей.

Трепел - высокопористая, слабо сцементированная, рыхлая, осадочная порода.

Основной оксид породы - SiO2 (70-90%).

Диатомиты - легкая, рыхлая, слабосцементированная порода, состоящая преимущественно из микроскопических кремнистых панцирей одноклеточных диатомитовых водорослей.

Опока - осадочная кремнистая горная порода с полураковым изломом, на 90% состоящая из мелкозернистого аморфного водного кремнезема с примесями глинистых веществ, карбонатов, кварца, полевого шпата, вулканического стекла, органических остатков и др.

Минералогический состав. Глинистые горные породы - механическая смесь различных глинообразующих минералов и сопутствующих примесей. Мономинеральные глины в природе встречаются редко. Поэтому минеральный тип глины обычно характеризуют преобладающим в рассматриваемой породе глинообразующим минералом.

С появлением новых методов исследования, главным образом рентгеноструктурного и термографического анализов, было установлено, что основу большинства глинистых пород составляют различные глинистые материалы, находящиеся не в аморфном.

А в кристаллическом состоянии, и что именно эти минералы те или другие основные свойства глинистым породам. Наиболее распространенны минералы монтмориллонита, гидрослюд или иллита, хлорита, каолинита и вермикулита.

Гранулометрический состав. Все минералы, входящие в состав полиминеральных легкоплавких глин, можно подразделить на первичные и вторичные.

К первичным относят минералы, входившие в состав минеральных пород, подвергшихся выветриванию: кварц, полевые шпаты, слюды, роговые обманки, авгиты, граниты, эпидот, турмалин, рутил, циркон, апатит, кальцит, доломит, серпентин, ставролит, титанит, магнетит, бетит, ангидрит, амфиболы и многие др.

К вторичным - минералы, образовавшиеся в процессе выветривания, переотложения и преобразования различных пород, в первую очередь глинообразующие минералы группы монтмориллонита, гидрослюд, гидрохлорида, вермикулита, каолинита, а также водные оксиды алюминия, оксиды и гидроксиды железа, и многие другие.

Первичные материалы в глинах, как правило, более прочны и химически устойчивы, чем вторичные, что проявляется в том, что первичные минералы сосредотачиваются главным образом в более крупных фракциях глинистого сырья размером более 0,001 мм., тогда как вторичные минералы составляют основу самых тонкодисперсных фракций.

Частицы крупнее 0,01 мм. представлены в глинах преимущественно кварцем при незначительном содержании слюды, полевых шпатов и некоторых других первичных минералов.

Химический состав легкоплавких пород обусловлен их минералогическим составом, количеством и составом примесей и так же разнообразен, как и минералогический состав.

В легкоплавких глинистых породах, как показали исследования, состав основных составляющих, определяемых химическим анализом, варьируется в весьма широких пределах: SiO2 48-80%, А12O3 7-27%, Fе2O3 и FeO 0,5-13,5%, CaO 0,5-20%, MgO 0,3-12%, К2О и Na2О 0,5-7,5%.

В ряде случаев природное глинистое сырье может быть улучшено введением добавок. Например коэффициент вспучивания можно повысить, добавив в глину примерно 1% мазута, солярового масла и других органических веществ, железистые добавки, в частности отходы производства серной кислоты из спирта - пиритные огарки.

Если золы и шлаки вводятся в больших дозах, сопоставимых с расходом глинистого сырья, то получаемый керамзит обычно называют глинозольным или глиношлаковым. Чаще всего добавки вводятся в сравнительно небольших дозах, и основным сырьем для производства керамзитового гравия остаются глинистые породы.

Для расширения температурного интервала вспучивания используют такой прием, как опудривание сырцовых глиняных гранул порошком огнеупорной глины, мелким кварцевым песком или иным тугоплавким порошком, что позволяет повысить температуру обжига и при этом избежать оплавление гранул.

Химический, минералогический и гранулометрический составы легкоплавких глинистых пород в решающей степени влияют на их вспучивание и образование ячеистой структуры керамзита.

Химический состав глинистых пород оказывает значительное влияние на процесс вспучивания главным образом потому, что он обуславливает образование пиропластической массы при обжиге с оптимальной для порообразования вязкостью в пределах определенного интервала температур (50-200°). Однако, каким бы благоприятным не было сочетание химических составляющих, создающих необходимые реологические условия для порообразования размягченной массы, этого не достаточно, чтобы произошло само вспучивание.

Химический состав вспучивающихся глинистых пород колеблется в широких пределах. Поэтому важно установить пределы содержания каждого из компонентов и их соотношения для вспучивающегося и не вспучивающегося глинистого сырья, а для сырья, обладающего различной вспучиваемостью.

3. Выбор и обоснование технологии производства

Основное оборудование керамзитовых предприятий оборудование для обжига. В настоящие время наиболее распространен метод обжига керамзитового гравия в одно- и двухбарабанных вращающихся печах, кроме того, осваивается промышленное производство керамзитового гравия и песка в печах кипящего слоя.

Достоинство вращающихся печей как аппаратов для вспучивания глинистых пород - возможность получать заполнителей, зерновой состав, которого в основном соответствует нормативным требованиям.

Другое важное достоинство вращающихся печей состоит в том, что зерна материала в них вспучиваются в свободном объеме, не ограниченном стенками или неподвижной массой таких же зерен. Поэтому процесс может быть очень интенсивным, что позволяет получать 500 кг/м. куб. при коэффициенте выхода 2-3.

К недостаткам вращающихся печей помимо их низкой тепловой экономичности относится трудность обжига в них слабо и средне вспучивающихся глинистых пород с малым интервалом вспучивания.

При обжиге керамзитового гравия во вращающихся печах важнейшим признаком для типизации керамзитового производства служат применяемые способы переработки сырья и приготовление полуфабриката. Опыт показал, что какого-либо универсального метода переработки глин и их грануляции в полуфабрикатах, пригодный для вспучивания, не существует.

Более того способы изготовления полуфабриката, его размеры, форма, влажность и другие параметры могут и должны изменятся в зависимости от свойств употребляемого сырья.

Решающее значение при выборе способов изготовления полуфабриката имеют физические, главным образом структурно-механические свойства глинистых пород: плотность, однородность, влажность, пластичность, структура и т. д.

Выбор способа переработки сырья определяется свойствами исходного сырья, а качество заполнителя зависит от режима термической обработки, при котором создаются оптимальные условия вспучивания подготовленных сырцовых гранул (зерен).

Различают четыре основных технологических схемы подготовки сырцовых гранул, или четыре способа производства керамзита: сухой, пластический, порошково-пластический и мокрый.

В своей курсовой работе я принимаю производство керамзита пластическим способом, потому, что он допускает использование широко встречающегося рыхлого глинистого сырья, корректирующих добавок и позволяет получать керамзит с различной гаммой свойств.

Классификация способов производства и добавок разработаны достаточно детально, однако обобщающей работы по систематизации достигнутых технологических решений пластическим способом пока нет.

Пластический способ подготовки сырья и приготовления полуфабриката применяют при использовании увлажненных пластичных и рыхлых глинистых пород как однородного, так и неоднородного состава.

4. Описание принятой технологии производства

Пластический способ подготовки сырья и приготовления полуфабриката применяют при использовании увлажненных пластичных и рыхлых глинистых пород как однородного, так и неоднородного состава. При пластическом способе производства керамзита в глиняную массу могут вводиться добавки, повышающие склонность к вспучиванию исходного сырья, тогда как при сухом способе, когда полуфабрикат получают непосредственно из природной породы, это исключается.

При переработке по пластическому способу вспучиваются, однородные глинистые породы гранулируются в полуфабрикат определенной формы размером 7-15 мм. в поперечнике. Более тщательной переработки такому сырью не требуется, так как оно уже самой природой гомогенизировано, и химико-минералогические составляющие в нем распределены равномерно. Это обстоятельство значительно упрощает изготовление гранулированного материала из подобного сырья.

Таки образом, технология обработки однородных глин сводится к их грануляции на упрощенных механизмах типа дырчатых и прессующих вальцов. При этом куски материала можно направлять непосредственно во вращающуюся печь на обжиг или сначала сушить в отдельных сушильных установках. Следует, однако, иметь в виду, что однородное керамзитовое сырье встречается весьма редко.

Переработка глинистых пород неоднородного состава по пластическому способу имеет целью разрушение природной структуры сырья, его гомогенизацию и изготовление полуфабриката с размером зерен в пределах примерно 7-15 мм. в поперечнике, пригодного для обжига со вспучиванием во вращающихся печах.

Механизм и оборудование для переработки и грануляции сырья выбирают в зависимости от склонности к вспучиванию и физико-механических свойств исходного сырья: влажности, плотности, вязкости, пластичности, однородности состава и т. д.

При этом необходимо учитывать, что основная задача переработки неоднородного глинистого сырья по пластическому способу - тщательная его гомогенизация в целях разрушения природной структуры, равномерного распределения по всей массе химических и минералогических составляющих, влаги, а также твердых и жидких добавок, применяемых для интенсификации процессов образования керамзита и улучшения его качества. Степень переработки глинистого сырья оказывает исключительно большое влияние на качественные показатели заполнителя - его плотность, прочность, водопоглощение, морозостойкость и т. д.

Чем однороднее глинистая масса и равномернее распределены в не составляющие, влага и добавки, тем интенсивнее протекают физико-химические процессы при обжиге, равномернее поризация материала, мельче образующие поры, ниже плотность и выше прочность керамзита, меньше разброс качественных показателей готового продукта. Опыт показывает, что улучшением переработки глинистого сырья можно достигнуть снижение плотности керамзита, получаемого из рада неоднородных по составу, особенно трудно перерабатываемых, уплотненных, плохо размокаемых глин, в 1,5-2 раза и настолько же повысить его относительную прочность.

Переработка глинистого сырья - мероприятие комплексное. Оно начинается еще на карьере при добыче и кончается при формировании гранулированного сырца.

Глина подается автосамосвалами непосредственно из карьера в пластичный ящичный подаватель. Над решеткой бункера ящичного подавателя установлена рыхлительная машина. Ящичным подавателем и ленточным конвейером глина подается в камневыделительные вальцы типа СМ-416А (производительность 35,5 м. куб/ч).

После камневыделительных вальцов второй ленточный конвейер транспортирует глину в подготовительное отделение, где она обрабатывается на установленных друг за другом глиномешалке и дырчатых вальцах. Двухвальная глиномешалка с пароувлажнением перемешивает глину и подогревает и оттаивает ее в зимний период. В случае применения средневспучивающихся глинистых пород в глиномешалку подают жидкие органические добавки, а при необходимости доувлажнения (например, в летнее время) - воду. Производительность мешалки 8-22 м. куб. /ч. Гранулы формуются в дырчатых вальцах типа СМ-369А производительностью 40 м/ч. Сырьевые гранулы из дырчатых вальцов опудривают порошком огнеупорной глины, затем они поступают в загрузочную камеру сушильного барабана, который установлен на нулевой отметке параллельно вращающейся печи. Подсушенные гранулы транспортируются ленточным конвейером в промежуточную емкость. Равномерная подача сухих гранул во вращающуюся печь из бункера промежуточной емкости осуществляется тарельчатым питателем диаметром 1700 мм. Гранулы обжигают во вращающейся печи длиной 40 и диаметром 2,5 м. Обожженные гранулы керамзита охлаждаются в холодильнике шахтного типа, из которого керамзит подается пневмотранспортом в силосный склад.

Для получения фракционированного продукта керамзит рассевают на четыре фракции с размером зерен до 5, 5-10, 10-20, 20-40 мм. распределяют по силосам двумя ленточными конвейерами. Склад керамзита состоит из девяти силосов по 200 т. каждый. Из силосов керамзит выдают в автомашины или железнодорожные вагоны.

5. Организация контроля технологического процесса и качества готовой продукции

Производство керамзита связано с одновременным уменьшением удельного расхода топливно-энергетических ресурсов на его производство. Основные пути для решения этой задачи следующие: совершенствование структуры производства, рост производительности труда, на 24-26% для получения за этот счет примерно 90% общего прироста продукции, более эффективное использование сырья, топлива, электрической энергии, а также производственных мощностей и основных фондов, повышение рентабельности работы предприятия.

Для этого необходимо создавать и внедрять принципиально новые орудия труда и технологические процессы, превосходящие по своим технико-экономическим показателям лучшие отечественные и мировые достижения. Общественная производительность труда определяется затратами как живого труда на данном предприятии, так и овеществленного в материалах, машинах, зданиях и сооружениях, используемых при производстве той или иной продукции. Обобщающим показателем общественной производительности труда является себестоимость продукции. На лучших предприятиях годовая выработка на одного рабочего достигает 3000 т. при затратах труда менее 1 чел. ч/т. По этому показателю передовые заводы стоят на уровне лучших достижений мировой техники. Такой большой подъем производительности труда, общей эффективности производства и качества цемента достигается комплексом организационно- технических мероприятий, направленных на модернизацию оборудования и перевооружение предприятий новой высокопроизводительной техникой. При этом основное внимание уделяется увеличению выпуска цемента за счет реконструкции и расширения действующих заводов. Сооружение новых предприятий предусматривается преимущественно в районах, где нет аналогичных заводов. Это должно способствовать ликвидации перевозок керамзита на большие расстояния. Новые предприятия строятся с годовой мощностью 2,4-3,6 млн. т. и более.

Такая концентрация производства способствует большому повышению эффективности производства. При этом является обязательным определение оптимальной мощности нового предприятия на основе технико-экономических расчетов с учетом конкретных условий производства и потребления керамзита в намеченном месте строительства завода.

В первую очередь это может быть достигнуто за счет резкого сокращения расхода топлива, в частности благодаря широкому внедрению сухого способа производства цемента, а также более полного использования теплоты отходящих газов печей. Значительные возможности снижения себестоимости имеются в дальнейшей рационализации использования основных и вспомогательных материалов. Здесь целесообразно и широкое применение вместо природного сырья различных дешевых промышленных отходов (шлаков, зол, нефелинового шлама и т. п.), и внедрение мельниц самоизмельчения, сокращающих расход электроэнергии и мелющих тел. Особое внимание должно быть уделено мероприятиям по резкому сокращению потерь исходного сырья и готового материала на всех стадиях производства. Требуется дальнейшее совершенствование методов и устройства для пылеулавливания и оснащение последними всех пыле выделяющих установок. Необходимость внедрения высокоэффективных установок для очистки промышленных выбросов диктуется причинами социального и экономического порядка. Она непосредственно связана со здоровьем людей и охраной окружающей среды от пылегазовых выбросов в атмосферу. Экономическую сторону проблемы хорошо иллюстрируют следующие данные А.Я. Овчаренко.

Ущерб, обусловленный безвозвратным уносом сырья и готового продукта с отходящими газами и аспирационным воздухом, а также отсутствием утилизации уловленной пыли, оценивается примерно в 17-18 млн. руб. в год. Ущерб, вызываемый отрицательным действием пылевого фактора на основные фонды предприятия (сверхнормативная замена оборудования вследствие его ускоренного износа, дополнительный его ремонт, потери производства вследствие более частого выхода оборудования из работы и др.), оценивается приблизительно в 1,5 раза больше. Потери вследствие неудовлетворительных условий труда и загрязнения воздушной среды на предприятиях (повышенная заболеваемость, снижение производительности труда и эффективности использования оборудования, текучесть кадров и др.) оценивается приблизительно в 2 раза больше.

В целом это составляет около 100 млн. руб. в год (или 6-7% общих издержек на изготовление). Но загрязнение атмосферы наносит ущерб в размере примерно 2 руб. на 1 т. и сопряженным отраслям, а не только производствам. Приведенные данные в полной мере подчеркивают важность проблемы организации на предприятиях тщательной очистки всех пылегазовых выбросов в атмосферу.

Можно также отметить, что фондоотдача обеспыливающих аппаратов приблизительно в два раза выше соответствующего показателя основных фондов производства. Эффективность труда рабочих основного производства цемента значительно снижается в связи с наличием большого числа обслуживающего персонала, связанного с выполнением погрузочно-разгрузочных и ремонтных работ, а также с контролем производства. Уменьшению этих диспропорций служит комплексная механизация и автоматизация производственных процессов и их контроля. Большому увеличению производительности труда и улучшению качества продукции способствует организация на предприятиях автоматических систем управления (АСУ) с применением ЭВМ. Последние обеспечивают получение, переработку и хранение больших объемов информации о производственной деятельности предприятия, выработку оптимальных управляющих воздействий и передачу их в виде рекомендаций соответствующим операторам. На предприятиях находят также применение автоматизированные системы управления технологическими процессами (АСУТП) и производством (АСУП). Работы по автоматизации предприятий промышленности строительных материалов выполняет Всесоюзное научно-производственное объединение Союзавтоматстром, которое включает следующие подсистемы: оперативного управления участком приготовления сырьевой смеси оптимального состава по технологическому или экономическому критерию, контроля и управления процессом обжига с расчетом оптимальных затрат тепла, управления подачей топлива в печь, а также тягой и подачей сырья в печь, контроля и управления помолом, управления отделениями помола и отгрузки материала с выдачей оптимальных решений по отгрузке, автоматизации обработки нарядов на выдачу продукции и документов текущего планирования сбыта, потребности в железнодорожных вагонах, учета отгруженного материала.

Производительность труда на предприятиях решающим образом зависит от правильного сочетания моральных и материальных стимулов труда, научной его организации (НОТ), а также от организации социалистического соревнования за экономное расходование материалов, топлива, энергии, за безупречное обслуживание механизмов и высокое качество продукции. В организации этой важной стороны деятельности предприятий, в разработке рациональных мероприятий по планированию производства и экономическому стимулированию трудящихся большую роль должен выполнять инженерно-технический персонал. В последние годы на предприятиях широко распространяется практика организации комплексных систем управления Качеством продукции, а также составления планов технико-экономического и социального развития коллективов. В них ставятся на разрешение к заданным срокам проблемы дальнейшего значительного повышения эффективности общественного производства, качества продукции, культурного и материального уровня жизни рабочих и служащих и улучшения их бытовых условий.

Планы технико-экономического и социального развития составляются руководством и общественными организациями предприятий с самым широким привлечением всех членов коллектива. В планах предусматривается повышение технического и общеобразовательного уровня рабочих, инженерно-технического персонала и служащих, что непосредственно благоприятно отражается на производительности их труда. В планах уделяется большое внимание задачам НОТ, комплексной механизации и автоматизации производственных процессов, мероприятиям по охране труда и улучшению условий труда, промышленной санитарии и эстетики. В планы включаются мероприятия, связанные с улучшением жилищных и бытовых условий трудящихся (строительство жилых домов, яслей, клубов, физкультурных и санитарно-курортных комплексов и т. п.). Важно подчеркнуть, что мероприятия по планам технико-экономического и социального развития коллективов предприятий осуществляются преимущественно за счет фондов, образуемых в соответствии с системой планирования и экономического стимулирования.

В повышение эффективности производства и применения керамзита в строительстве призвана внести свой большой вклад наука. В частности, должны быть продолжены исследования таких важнейших проблем, как разработка составов и технологии, обеспечивающих интенсивное твердение бетонов и достижение ими требуемой прочности при обычных температурах в течение 8-24 ч. и возможность извлечения изделий из форм через 3-4 ч. Современное производство керамзита характеризуется большой капиталоемкостью, необходимостью возведения больших зданий и сооружений, а также высокими металло- и энергоемкостью и малой интенсивностью тепловых процессов в установках для обжига. Так, капиталовложения при организации современных предприятий достигают примерно 60 руб. на 1 т. готовой мощности.

На 1 т. получаемого по мокрому способу во вращающихся печах материала в течение 1 ч. приходится 42-45 т. массы печи. Приведенные показатели свидетельствуют о необходимости приложения больших усилий для резкого уменьшения затрат на эти составляющие общественного труда в себестоимости керамзита. Поэтому неотложной задачей является:

1. Развитие производства с применением двухбарабанных вращающихся печей;

2. Обжиг сырьевых смесей в топках циклонного типа, радиационно-химическим способом и т. п.;

3. Снижения расхода топлива с помощью внедрения новых технологий производства;

4. Осуществление технического перевооружения действующих предприятий;

5. Уменьшение средней насыпной плотности керамзитового гравия до 400 кг/м. куб.; гравий обжиг керамзит

6. Улучшение использования основных производственных фондов и увеличение их отдачи в 1,5-2 раза;

7. Повышение уровня концентрации производства путем строительства новых предприятий с использованием автоматизированных технологических процессов мощностью 200 м. куб. в год и более;

8. Создание принципиально новых технологий и высокопроизводительных малогабаритных установок по обжигу и помолу сырья с резкой интенсификацией процессов измельчения.

Список литературы

1. Ицкович С.М. «Заполнители для бетона», Минск, изд.«Вышэйшая школа», 1983.

2. Ицкович С.М., Чумаков Л.Д., Баженов Ю.М. «Технология заполнителей для бетонов».

3. Справочное пособие: «Искусственные пористые заполнители и легкие бетоны на их основе», М.: Стройиздат, 1987.

4. Горчаков Г.И., «Строительные материалы», М., изд. «Высшая школа», 1982. - 352 с., ил.

5. Журналы «Строительные материалы», 2003.

6. Борщевский А.А., Ильин А.С, «Механическое оборудование для производства строительных материалов и изделий». М.: Высш. шк.» 1987.

7. Волженский А.В. «Минеральные вяжущие вещества», М.: Стройиздат, 1979.

8. Перегудов В.В., Роговой М.Н., «Тепловые процессы и установки в технологии строительных изделий и материалов», Стройиздат, 1982.

9. Глинка Н.Л. «Общая химия» Изд. 17-е, испр. - Л.: «Химия», 1975. - 728 с.: ил.

10. Кузнецов В.В., Усть-Качкинцов В.Ф. «Физическая и коллоидная химия. Учеб. пособие для вузов» - М.: Высш. школа, 1976. - 277 с.: ил.

11. Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых бетонов (к СНиП 2.03.01-84), часть 1, М.: Центральный институт типового проектирования, 1988.

12. ГОСТ 21.101-79 - 21.108-78. Стандарты СПДС.

13. ГОСТ 2.301-68 -2.317-68. Стандарты ЕСКД.

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение особенностей проектирования технологической линии производства керамзитового гравия, цеха производства керамзита по пластическому способу. Исследование состава сырьевой смеси. Определение режима работы и производительности предприятия.

    курсовая работа [1,4 M], добавлен 22.04.2019

  • Сырьевые материалы для производства керамзитового гравия; процессы, происходящие при сушке и обжиге. Расчет теплового баланса и устройство вращающейся печи, сырье для производства керамзитового гравия. Неисправности в работе печи и способы их устранения.

    курсовая работа [125,5 K], добавлен 18.08.2010

  • Основные положения по контролю качества керамзита. Нормативные документы по стандартизации. Стандартная методика определения прочности керамзитового гравия. Показатель объемного водопоглощения и морозостойкость. Рекомендации по подготовке сырья.

    дипломная работа [515,5 K], добавлен 31.12.2015

  • Номенклатура и характеристика продукции. Требования к прочности керамзитового гравия. Характеристика вспученных и дробленых песков по фракциям. Характеристика используемого сырья. Обоснование принятой технологии производства. Технологические режимы.

    курсовая работа [44,1 K], добавлен 17.03.2014

  • Определение особенностей, влияющих на качество керамзита при его производстве. Способы производства керамзита, особенности сухого, пластического, шликерного производства. Ленточные прессы для формования гранул. Пластический способ подготовки сырья.

    контрольная работа [18,6 K], добавлен 28.08.2011

  • Обоснование и подробное описание применяемого сырья. Расчет химического состава массы и расхода сырья на производственную программу, подбор технологического и теплотехнического оборудования. Технологическая схема производства керамзитового гравия.

    курсовая работа [88,5 K], добавлен 18.08.2013

  • Анализ существующих технологий производства изделия, номенклатура, характеристика, состав сырьевой смеси. Выбор и обоснование технологического способа производства. Контроль производства и качества выпускаемой продукции. Охрана труда на предприятии.

    курсовая работа [60,7 K], добавлен 30.04.2011

  • Особенности производства портландцемента или гидравлического вяжущего вещества, получаемого путем совместного тонкого измельчения клинкера и необходимого количества гипса. Расчет состава сырьевой шихты, расходных бункеров, варочных котлов, шахтных печей.

    реферат [103,5 K], добавлен 21.03.2015

  • Область применения и условия службы портландцемента. Основные показатели качества сырьевой смеси. Принципиальная технологическая схема производства. Разработка проекта отделения приготовления сырьевой смеси для производства портландцементного клинкера.

    дипломная работа [225,7 K], добавлен 13.06.2014

  • Технологическая схема производства портландцемента - гидравлического вяжущего вещества, получаемого путем измельчения клинкера и гипса. Добыча материала и приготовление сырьевой смеси. Обжиг сырья и получение клинкера. Размол, упаковка и отгрузка цемента.

    курсовая работа [759,2 K], добавлен 09.04.2012

  • Физико-химические основы приготовления сырьевой смеси для производства портландцемента по мокрому способу: измельчение, обжиг сырьевой смеси, получение и измельчение клинкера. Портландцементный клинкер как продукт спекания при обжиге сырьевой шихты.

    курсовая работа [1000,6 K], добавлен 14.07.2012

  • Технологический процесс производства обжигового зольного гравия: номенклатура продукции, исходное сырье; подбор оборудования, расчет режима и производственной программы предприятия; контроль качества. Техника безопасности, охрана труда и окружающей среды.

    курсовая работа [100,9 K], добавлен 28.02.2013

  • Производство ячеистого бетона как одного из наиболее дешевого материала, изучение его теплоизоляционного и конструктивного свойства. Расчет потребности в сырьевых материалах, полуфабрикатах. Технология производства ячеисто бетонных панелей, блоков в цеху.

    дипломная работа [88,4 K], добавлен 03.06.2015

  • Краткая характеристика сырьевой базы Западносибирского металлургического комбината. Коксохимическое и агломерационное производство. Исследование особенностей технологии производства стали в конвертерах с пониженным расходом чугуна. Безопасность проекта.

    дипломная работа [3,9 M], добавлен 15.10.2013

  • Автоклавная тепловлажнастная обработка бетона как наиболее энергоемкий процесс производства. Конструктивный расчет и режим работы автоклава. Массовый баланс воды в технологии, энергетический баланс и эксергетический баланс потоков энергии системы.

    курсовая работа [5,1 M], добавлен 19.01.2012

  • История становления и развития сферы пивоварения на Руси, современные технологии. Характеристика основных типов сырья, используемых в производстве пива, технологические основы производства данного напитка, критерии оценивания и показатели его качества.

    контрольная работа [31,0 K], добавлен 14.03.2010

  • Изучение технологии изготовления керамики - материалов, получаемых из глинистых веществ с минеральными или органическими добавками или без них путем формования и последующего обжига. Этапы производства: формовка изделия, нанесение декора, сушка, обжиг.

    реферат [21,2 K], добавлен 03.02.2011

  • Классификационные признаки и потребительские свойства цемента глиноземистого и высокоглиноземистого, области его применения. Основные стадии его производства. Технологическая схема поточного приготовления сырьевой смеси. Контроль качества продукции.

    реферат [312,2 K], добавлен 21.09.2015

  • Характеристика сырьевых материалов, используемых для производства керамзитового песка, и основные процессы, происходящие при обжиге. Пути связи влаги с материалом. Принцип создания кипящего слоя. Расчет горения природного газа и теплового баланса.

    курсовая работа [220,8 K], добавлен 18.08.2010

  • Анализ основных методов организации производства, особенности и сущность поточной и штучной технологии производства. Экономическое обоснование и выбор метода организации производства громкоговорителя. Техническая организация контроля качества продукции.

    курсовая работа [142,8 K], добавлен 29.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.