Теплоизоляционные материалы

Рассмотрение основных свойств теплоизоляционных материалов. Характеристика особенностей стекловатных материалов. Ознакомление с технологией производства арболита. Исследование главных преимуществ неорганической группы теплоизоляционных материалов.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 28.01.2015
Размер файла 31,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Способы производства стеклянной ваты

Стеклянная вата является разновидностью искусственного минерального волокна. Для изготовления ваты используют стеклянный бой или те же сырьевые материалы, что и для оконного стекла: кварцевый песок, известняк или мел, соду или сульфат натрия. Тонкое стеклянное волокно для текстильных материалов получают вытягиванием из расплав-ленной стекломассы (фильерный и штабиковый способы). Более грубое волокно, применяемое для тепловой изоляции, изготовляют дутьевым или центробежным способами. Такое волокно обычно называют стеклянной ватой.

Объемная масса стеклянной ваты обычно не превышает 125 кг/м3, i теплопроводность -- 0,052 Вт/ (м-К). Промышленность выпускает также супертонкое стекловолокно с объемной массой до 25 кг/м3 и теплопроводностью около 0,03 Вт/(м-К).

Стеклянная вата практически не дает усадки в конструкциях, волокна ее не разрушаются при длительных сотрясениях и вибрации. Она плохо проводит и хорошо поглощает звук, малогигроскопична, морозостойка. Слой стеклянной ваты толщиной 5 см соответствует по термическому сопротивлению кирпичной стене толщиной в 1 м.

Стекловатные маты длиной до 300 см, шириной до 100 см и толщиной 2--6 см и полужесткие и жесткие плиты размером 100 X (50--150) X (3--5 см), а также фасонные изделия на связующих из синтетических смол применяют в качестве теплоизоляционного и акустического материала при температуре не выше 200 оС, а прошивные маты и полосы -- при температуре до 450 °С.

2. Сырье для производства минеральной ваты

Минеральная вата и изделия из нее по объему производства занимает первое место среди всех теплоизоляционных материалов. Этому способствует наличие неограниченных сырьевых ресурсов для их получения в виде горных пород (доломита, известняка, мергелей и др.) и шлаков, простота технологического процесса и небольшие капиталовложения при организации производства.

Минеральная вата состоит из искусственных минеральных волокон.

Производство минеральной ваты включает две основные технологические операции -- получение расплава и превращение его в тончайшие волокна. Для получения расплава применяют, как правило, шахтные плавильные печи -- вагранки или ванные печи. Превращение расплава в минеральное волокно производят дутьевым или центробежным способами.

При дутьевом способе выходящий из печи расплав разбивается на мелкие капельки струей пара или воздуха, которые вдуваются в специальную камеру и в полете сильно вытягиваются, превращаясь в тонкие волокна диаметром от 2 до 20 мкм.

При центробежном способе струя жидкого расплава поступает на быстровращающийся диск центрифуги и под действием большой окружной скорости сбрасывается с него и вытягивается в волокна. Объемная масса минеральной ваты -- 75--150 кг/м3, теплопроводность 0,042--0,046 Вт/ (м-К). Вата не горит, не гниет, ее не портят грызуны, она малогигроскопична, морозостойка и температуростойка. Минеральную вату применяют для теплоизоляции как холодных (до --200 °С), так и горячих (до +600 °С) поверхностей, чаще в виде изделий: войлока, матов, полужестких и жестких плит, скорлуп, сегментов. Иногда вату используют в качестве теплоизо-ляционной засыпки пустотелых стен и перекрытий, для чего ее гранулируют, т. е. превращают в рыхлые комочки во вращающемся дырчатом барабане.

Минеральный войлок выпускают в виде листов и рулонов из минеральной ваты, слегка пропитанной дисперсиями синтетических смол и спрессованной. Объемная масса войлока -- 100--150 кг/м3, теплопроводность -- 0,046--0,052 Вт/ (м-К). Листы и полотнища минерального войлока длиной 100--300 см, шириной 275_125 см, толщиной 3--6 см применяют для утепления стен перекрытий в кирпичных, бетонных и деревянных домах.

Минераловатные маты представляют собой минераловатный ковер, заключенный между битуминизированной бумагой, стеклотканью или металлической сеткой, прошитый прочными нитями или тонкой проволокой. Длина матов-- от 60--120 но 500 см, ширина -- от 30--100 до 150 см, толщина -- от 3 до 10 см. Объемная масса матов-- 100--200 кг/м3, теплопроводность -- от 0,046 до 0,058 Вт/(м-К).

Маты применяют для теплоизоляции ограждающих конструкций жилых и общественных зданий, их используют также для утепления свежеуложенных бетонов и растворов при строительстве в холодное время года.

Минераловатные полужесткие плиты изготовляют из минерального волокна путем нанесения на него распылением связующего (синтетических смол или битума) с последующим прессованием и термообработкой для сушки или полимеризации. Объемная масса плит в зависимости от вида связующего и уплотнения -- 75--300 кг/м3, теплопроводность -- 0,046--0,069 Вт/(м-К).

Полужесткие изделия применяют для теплоизоляции ограждающих конструкций зданий и горячих поверхностей оборудования при температуре до 200--300 °С, если изделия изготовлены на синтетическом связующем, и до 60 °С-- на бутумном связующем.

Минераловатные жесткие изделия получают смешиванием минеральной ваты с битумной эмульсией или синтетическими смолами с последующим формованием, прессованием и прогреванием отформованных изделий для их сушки или полимеризации. Минераловатные жесткие плиты изготовляют длиной 1 м, шириной 0,5 и толщиной 4, 5, 6 см. Жесткие плиты делят на марки от 150 до 400 кг/м3. Теплопроводность плит находится в пределах 0,051--0,087 Вт/ (м-К).

Минераловатные жесткие плиты применяют для утепления стен, покрытий и перекрытий жилых и промышленных зданий и. холодильников. Жесткие плиты и фасонные изделия -- сегменты, скорлупы на синтетическом и бентонитоколлоидном связующих применяют для теплоизоляции горячих поверхностей.

Промышленность выпускает также Минераловатные плиты повышенной жесткости и твердые плиты на синтетических связующих, которые характеризуются более высокой прочностью и большими размерами, чем обычные жесткие плиты. Такие плиты размером 180x120 см, а при определенных параметрах уплотнения до 360 X 120 см экономически целесообразно применять для утепления стен, перекрытий и покрытий зданий.

3. Свойства теплоизоляционных материалов подвергшихся увлажнению

Гигроскопичностью называется свойство материалов поглощать (сорбировать) водяной пар, а водопоглощением - поглощать капельно-жидкую воду. Этими свойствами различные материалы обладают в разной степени, но в результате их проявления влажность материалов возрастает. Влажность материала характеризуется содержанием в нем химически не связанной воды. Численное значение влажности зависит от выбора количественной единицы измерения.

Различают массовую и объемную влажность материала. Массовая влажность материала может быть отнесена к массе сухого или к массе влажного материала.

Экспериментально влажность определяют высушиванием навески материала массой не менее 5 г в сушильном шкафу при температуре 105-110 °С. При достижении образцом постоянной массы его высушивание прекращают. Если массу образца влажного материала до сушки обозначить gм.в, а массу образца после высушивания - gм. c , то масса влаги gв, содержащейся в материале, определится так: gв = gм.в gм.с. Массовая влажность, отнесенная к массе сухого материала,

х = gв/ gм.с = (gм.в - gм.с)/ gм.с, (1)

а массовая влажность, отнесенная к массе влажного материала,

о = gв/ gм.в = (gм.в - gм.с)/ gм.в. (2)

Для пересчета из одного вида задания влажности в другое выражение (1) можно представить в виде х = gв /( gм.в - gв) и разделить числитель и знаменатель дроби на gм.в. Тогда

х = о /(1 - о) и о =х/( 1 + х).

Из выражения (2) следует, что о, может изменяться в пределах от 0 до 1, а х, как это следует из формулы пересчета, ограничен пределами 0 и ?. Для сопоставления приведены значения влажности, отнесенной к массе сухого материала, соответствующие некоторым значениям влажности, отнесенной к массе влажного материала:

о, %.

0

25

50

75

100

х, %.

0

33

100

300

?

Объемной влажностью материала называется отношение объема влаги, содержащейся в образце материала, к объему самого образца. В этом определении вся влага независимо от того, в каком агрегатном состоянии она находится в материале, считается по объему капельной воды. Кроме того, предполагается, что при поглощении воды объем материала не изменяется.

Объем, м3, занимаемый влагой в материале, Vв = gвв = gв /1000, а объем, занимаемый образцом материала, Vм = gм.с/ соб.м.с.

Тогда объемная влажность

щ= Vв / Vм = gв соб.м.с /(1000 gм.с) = х соб.м.с /1000. (3)

Из выражения (3) следует, что численное значение объемной влажности щ для материалов с объемной массой до 1000 кг/м3 всегда меньше численного значения массовой влажности х и разница между этими величинами тем больше, чем легче материал.

Поглощение влаги материалом ведет, прежде всего, к увеличению теплопроводности материала. Объясняется это тем, что вода может занимать в материале часть объема ячеек и пор, вытесняя из них газ. Так как теплопроводность воды л =0,58 Вт/(м•К) примерно в 25 раз больше теплопроводности неподвижного воздуха, то наличие воды в материале вызывает существенное повышение теплопроводности теплоизоляционного материала. При низких температурах вода в порах материала может замерзнуть, что приведет к еще большему возрастанию теплопроводности материала, так как теплопроводность льда л = 2,2 Вт/(м•К) почти в 100 раз больше теплопроводности неподвижного воздуха.

Зависимость теплопроводности материала от объемной влажности может быть выражена эмпирической формулой

л = л0 + Длщ,

где л0 - теплопроводность материала в воздушно-сухом состоянии; Дл - приращение теплопроводности на каждый процент увеличения объемной влажности; щ - объемная влажность, %.

Приращение Дл для органических материалов при положительных температурах принимают равным 3,5•10-3, а при отрицательных температурах - 4•10-3 Вт/(м•К); для неорганических материалов - соответственно 2,3•10-3 и 3,5•10-3 Вт/(м•К).

Содержащий влагу изоляционный материал может подвергаться гниению, в нем могут образовываться грибки и плесени, что приводит к разрушению материала и сокращению срока его службы.

4. Основные свойства теплоизоляционных материалов

Как и любые строительные материалы, теплоизоляционные материалы обладают определенными свойствами, знание которых необходимо для рационального выбора утеплителя определенной марки при проектировании конструкции и проведения теплотехнических расчетов. Ведь в итоге надежность и долговечность конструкции в значительной степени будут зависеть от комплекса показателей основных свойств утеплителя. Только определив необходимый для рассматриваемой конструкции набор конструктивных, технологических и эксплуатационных свойств утеплителя, уместно сравнивать значения величин выбранных показателей у разных утеплителей.

Выбор утеплителя производится исходя из условий его «работы» в конструкции. Эти условия будут зависеть от геометрических параметров конструкции, от внешних механических и климатических воздействий на утеплитель, от технологических операций, выполняемых при устройстве теплоизоляции. Учитывая все эти условия, на стадии проектирования определяется наличие у того или иного утеплителя необходимых свойств для обеспечения заданного качества конструкции. Определим основные свойства.

1. Формостабильность, то есть сохранность с течением времени геометрических параметров материала, - это основной фактор, определяющий качество утепления. И вот почему. По итогам ряда независимых лабораторных испытаний было доказано, что потери тепла через щели между теплоизоляционными плитами либо матами могут составлять до 40%. В то же время испытания на долговечность теплоизоляционных материалов в реальной конструкции показали, что материал с течением времени не изменял своего коэффициента теплопроводности. На основании этого было сделано заключение, что к критериям качества теплоизоляции, определяющим долговечность материала в конструкции, в первую очередь следует относить именно сохранение геометрических размеров материала. Именно стабильность формы и размеров материала обеспечивает надежную теплоизоляцию сооружения на заданном уровне в течение заданного времени.

2. Теплопроводность. Одно из главных свойств современных утеплителей. Известно, что различные материалы проводят теплоту по-разному: одни - лучше, например, металлы, другие - хуже, как теплоизоляционные материалы. Теплопроводность зависит от средней плотности и химического состава материала, его структуры, пористости, влажности и средней температуры материала. Общая толщина слоя утеплителя, а, следовательно, и количество приобретаемого утеплителя, зависит от его коэффициента теплопроводности (?), значение которого обязательно указывается на этикетке. Однако известно, что с повышением влажности теплоизоляционных материалов теплопроводность повышается. Поэтому одним из важных свойств при определении качества теплоизоляции, является

3. Cорбционная влажность, поскольку она влияет на коэффициент теплопроводности материала. К слову, теплоизоляция - это не только защита от холода, но и защита от перегрева. Известно, что затраты на выработку единицы холода в 2 раза выше, чем на выработку единицы тепла.

4. Морозостойкость. Способность материала выдерживать многократное попеременное замораживание и оттаивание без существенного повышения коэффициента теплопроводности и признаков потери прочности. Показателя морозостойкости для теплоизоляционных материалов пока не существует, хотя, очевидно, что он необходим, особенно для жителей Севера.

5. Возвратимость. Свойство утеплителя восстанавливать первоначальные форму и толщину после снятия нагрузки называется возвратимостью. Оно обусловлено упругими свойствами структуры теплоизоляционного материала и измеряется в процентах. Например, показатель возвратимости 98%, характерный для большинства изделий из войлока, показывает, что после снятия внешней нагрузки конечная толщина изделия будет составлять 98% (от первоначальной).

6. Акустические свойства. Значение этих свойств теплоизоляционных материалов понятно всем. Лучшими звукопоглощающими свойствами обладают изделия из войлока, а конструкции, содержащие эти изделия, обладают наилучшими показателями по звукоизоляции.

7. Гибкость. Еще одно важное свойство теплоизоляционных материалов - способность утеплителя огибать криволинейную поверхность. Гибкие утеплители способны огибать поверхности любого радиуса без разрывов слоя, тогда как жесткие утеплители ломаются при утеплении криволинейных поверхностей даже большого радиуса.

5. Теплоизоляционные материалы. Строение

Теплоизоляционными материалами принято называть строительные материалы, обладающие малой теплопроводностью вследствие их высокой пористости.

Высокая пористость -- основная и общая особенность строения всех теплоизоляционных материалов, определяющая их основные свойства. По характеру макроструктуры (строение и форма пор) пористые теплоизоляционные материалы в зависимости от способа их производства могут быть ячеистыми, зернистыми, волокнистыми, пластинчатыми или смешанными.

Ячеистое строение характерно для ячеистых бетонов, пеностекла, пенокерамики, газонаполненных пластмасс и некоторых других материалов. Конфигурация пор большинства ячеистых материалов сферическая с большей степенью замкнутости, чем у других теплоизоляционных материалов.

Зернистое строение имеют сыпучие материалы. Пористость таких материалов зависит от однородности их гранулометрического состава: чем однороднее гранулометрический состав, тем выше пористость. Однако практически межзерновую пористость более 46% получить не удается.

Волокнистое строение имеют материалы, получаемые на основе минерального или органического волокна. Для материалов с волокнистым строением характерна очень высокая степень пористости и отсутствие замкнутых пор.

Пластинчатое строение имеет вспученный вермикулит, что является его отличительной особенностью по сравнению с другими пористыми материалами.

Теплоизоляционные материалы со смешанным строением макроструктуры, как правило, отличаются лучшими физико-техническими свойствами по сравнению с материалами, имеющими однородную структуру. К таким материалам относятся пеноперлитокерамика, вермикулитокерамика, ячеистая керамика, армированная тугоплавким волокном и др.

Строительные теплоизоляционные материалы характеризуются наличием в них макро -- и микропор. Деление пор по их размерам на макро - и микро- условно. Макропорами принято считать относительно крупные поры, видимые невооруженным глазом, микропорами -- мелкие, видимые только под микроскопом.

Свойства теплоизоляционных материалов в основном зависят от их макропористости, поэтому применительно к ним термин «пористость» характеризует макропористое строение. Пористость теплоизоляционных материалов, а следовательно, и их основные свойства можно регулировать в определенных пределах, изменяя некоторые технологические факторы.

При производстве теплоизоляционных материалов с высокой пористостью применяют следующие способы образования пористой структуры:

1) газообразования;

2) пенообразования;

3) высокого водозатворения;

4) создания волокнистого каркаса;

5) вспучивания минерального и органического сырья;

6) введения выгорающих добавок;

7) механической диспергации.

6. Классификация теплоизоляционных материалов и изделий

Теплоизоляционные материалы и изделия можно систематизировать по основным признакам:

По виду исходного сырья: неорганические (минеральная и стеклянная вата, ячеистые бетоны, материалы на основе асбеста, керамические и др.) и органические (древесно-волокнистые плиты, пенно- и поропласты, торфяные плиты и пр.). Также изготавливаются комбинированные материалы, с использование органических и неорганических компонентов.

По структуре: волокнистые (минеральная , стеклянная вата, шерсть и пр.), ячеистые (ячеистые бетоны и полимеры, пенно- и газокерамика и пр .) и зернистые или сыпучи (керамический и шлаковый гравий, пемзовый и шлаковый песок и пр.

По форме: рыхлые (вата, перлит и др.), плоские (плиты, маты, войлок и др.), фасонные (цилиндры, полуцелиндры, сегменты и др.), шнуровые (шнуры из неорганических волокон: асбестовые, минерального и стеклянного волокна).

По возгораемости (горючести): несгораемые (керамзит, ячеистые бетоны и др.), трудносгораемые (цементно-стружечные, ксилолит) и сгораемые (ячеистые пластмассы, торфоплиты, камышит и пр.)

По содержанию связующего вещества: содержащие связующее вещество (ячеистые бетоны, фибролит и пр.) и не содержащие связующее вещество (стекловата, минеральное волокно).

7. Органическая группа теплоизоляционных материалов. При какой температуре рекомендуется использование органических теплоизоляционных материалов

Органические теплоизоляционные материалы в зависимости от природы исходного сырья можно условно разделить на два вида: материалы на основе природного органического сырья (древесина, отходы деревообработки, торф, однолетние растения, шерсть животных и т. д.), материалы на основе синтетических смол, так называемые теплоизоляционные пластмассы.

Теплоизоляционные материалы из органического сырья могут быть жесткими и гибкими. К жестким относят древесносткужечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные, к гибким - строительный войлок и гофрированный картон. Эти теплоизоляционные материалы отличаются низкой водо - и биостойкостью.

Древесноволокнистые теплоизоляционные плиты получают из отходов древесины, а также из различных сельскохозяйственных отходов (солома, камыш, костра, стебли кукурузы и др.). Процесс изготовления плит состоит из следующих основных операций: дробление и размол древесного сырья, пропитка волокнистой массы связующим, формование, сушка и обрезка плит.

Древесноволокнистые плиты выпускают длиной 1200-2700, шириной 1200-1700 и толщиной 8-25 мм. По плотности их делят на изоляционные (150-250 кг/м3) и изоляционно-отделочные (250-350 кг/м3). Теплопроводность изоляционных плит 0,047-0,07, а изоля-ционно-отделочных-0,07-0,08 Вт/(м-°С). Предел прочности плит при изгибе составляет 0,4-2 МПа. Древесноволокнистые плиты обладают высокими звукоизоляционными свойствами.

Изоляционные и изоляционно - отделочные плиты применяют для тепло- и звукоизоляции стен, потолков, полов, перегородок и перекрытий зданий, акустической изоляции концертных залов и театров (подвесные потолки и облицовка стен).

Арболит изготовляют из смеси цемента, органических заполнителей, химических добавок и воды. В качестве органических заполнителей используют дробленые отходы древесных пород, сечку камыша, костру конопли или льна и т. п. Технология изготовления изделий из арболита проста и включает операции по подготовке органических заполнителей, например дробление отходов древесных пород, смешивание заполнителя с цементным раствором, укладку полученной смеси в формы и ее уплотнение, отвердение отформованных изделий.

Теплоизоляционные материалы из пластмасс. В последние годы создана довольно большая группа новых теплоизоляционных материалов из пластмасс. Сырьём для их изготовления служат термопластичные (полистирольные; поливинилхлоридные, полиуретановые) и термореактивные (мочевино - формальдегидные) смолы, газообразующие и вспенивающие вещества, наполнители, пластификачоры, красители и др. В строительстве наибольшее распространение в качестве тепло- и звукоизоляционных материалов получили пластмассы пористо-ячеистой структуры. Образование в пластмассах ячеек или полостей, заполненных газами или воздухом, вызвано химическими, физическими или механическими процессами или их сочетанием.

В зависимости от структуры теплоизоляционные пластмассы могут быть разделены на две группы: пенопласты и поропласты.

Пенопластами называют ячеистые пластмассы с малой плотностью и наличием несообщающихся между собой полостей или ячеек, заполненных газами или воздухом. Поропласты-пористые пластмассы, структура которых характеризуется сообщающимися между собой полостями. Наибольший интерес для современного индустриального строительства представляют пенополистпрол, пенополивинилхлорид, пенополиуретан и мипора.

Пенополистирол - материал в виде белой твердой пены с равномерной замкнутопористой структурой. Пенополистирол выпускают марки ПСБС в виде плит размером 1000х500х100 мм и плотностью 25-40 кг/м3. Этот материал имеет теплопроводность 0,05 Вт/(м-°С), максимальная температура его применения 70 °С. Плиты из пенополистирола применяют для утепления стыков крупнопанельных зданий, изоляции промышленных холодильников, а также в качестве звукоизолирующих прокладок.

Сотопласты - теплоизоляционные материалы с ячейками, напоминающими форму пчелиных сот. Стенки ячеек могут быть выполнены из различных листовых материалов (крафт - бумаги, хлопчатобумажной ткани, стекло - ткани и др.), пропитанных синтетическими полимерами. Сотопласты изготовляют в виде плит длиной 1-1,5м, шириной 550 - 650 и толщиной 300 - 350 мм. Их плотность 30-100 кг/м3, теплопроводность 0,046-0,058 Вт/(м-°С). прочность при сжатии 0,3-4 МПа. Применяют сотопласты как заполнитель трехслойных панелей. Теплоизоляционные свойства сотопастов повышаются в результата заполнения сот крошкой мипоры.

8. Неорганическая группа теплоизоляционных материалов

К неорганическим теплоизоляционным материалам относят минеральную вату, стеклянное волокно, пенс стекло, вспученные перлит и вермикулит, асбестосодер жащие теплоизоляционные изделия, ячеистые бетоны и др.

Минеральная вата и изделия из нее. Минеральная вата волокнистый теплоизоляционный материал, получаемый из силикатных расплавов. Сырьем для ее производства служат горные породы (известняки, мергели, диориты и др.), отходы металлургической промышленности (доменные и топливные шлаки) и промышленности строительных материалов (бой глиняного и силикатного кирпича). Производство минеральной ваты состоит из двух основных технологических процессов: получение силикатного расплава и превращение этого расплава в тончайшие волокна. Силикатный расплав образуется в вагранка шахтных плавильных печах, в которые загружают минеральное сырье и топливо (кокс). Расплав с температурой 1300-1400°С непрерывно выпускают из нижней части печи.

Существует два способа превращения расплава в минеральное волокно: дутьевой и центробежный. Сущность дутьевого способа заключается в том, что на струю жидкого расплава, вытекающего из летки вагранки, воздействует струя водяного пара или сжатого газа. Центробежный способ основан на использовании центробежной силы для превращения струи расплава в тончайшие минеральные волокна толщиной 2-7 мкм и длиной 2-40 мм. Полученные волокна осаждаются в камере волокна осаждения на движущуюся ленту транспортера. Минеральная вата это рыхлый материал, состоящий из тончайших переплетенных минеральных волокон и небольшого количества стекловидных включений (шариков, цилиндриков и др.), так называемых корольков.

Чем меньше в вате корольков, тем выше ее качество.

В зависимости от плотности минеральная вата подразделяется на марки 75, 100, 125 и 150. Она огнестойка, не гниет, малогигроскопична и имеет низкую теплопроводность 0,04 - 0,05 Вт (м.°С).

Минеральная вата хрупка, и при ее укладке образуется много пыли, поэтому вату гранулируют т.е. о превращают в рыхлые комочки - гранулы. Их используют в качестве теплоизоляционной засыпки пустотелых стен и перекрытий. Сама минеральная вата является как бы полуфабрикатом, из которого выполняют разнообразные теплоизоляционные минераловатные изделия: войлок, маты, полужесткие и жесткие плиты, скорлупы, сегменты и др.

Стеклянная вата и изделия из нее. Стеклянная вата материал, состоящий из беспорядочно расположенных стеклянных волокон, полученных из расплавленного сырья. Сырьем для производства стекловаты служит сырьевая шахта для варки стекла (кварцевый песок, кальцинированная сода и сульфат натрия) или стекольный бой. Производство стеклянной ваты и изделий из нее состоит из следующих технологических процессов: варка стекломассы в ванных печах при 1300-1400 °С, изготовление стекловолокна и формование изделий.

Стекловолокно из расплавленной массы получают способами вытягивания или дутьевым. Стекловолокно вытягивают штабиковым (подогревом стеклянных палочек до расплавления с последующим их вытягиванием в стекловолокно, наматываемое на вращающиеся барабаны) и фильерным (вытягиванием волокон из расплавленной стекломассы через небольшие отверстия-фильтры с последующей намоткой волокон на вращающиеся барабаны) способами. При дутьевом способе расплавленная стекломасса распыляется под действием струи сжатого воздуха или пара.

В зависимости от назначения вырабатывают текстильное и теплоизоляционное (штапельное) стекловолокно. Средний диаметр текстильного волокна 3-7 мкм, а теплоизоляционного 10-30 мкм.

Стеклянное волокно значительно большей длины, чем волокна минеральной ваты и отличается большими химической стойкостью и прочностью. Плотность стеклянной ваты 75-125 кг/м3, теплопроводность 0,04-0,052 Вт/(м/°С), предельная температура применения стеклянной ваты 450 °С. Из стекловолокна выполняют маты, плиты, полосы и другие изделия, в том числе тканые.

Пеностекло - теплоизоляционный материал ячеистой структуры. Сырьем для производства изделий из пеностекла (плит, блоков) служит смесь тонкоизмельченного стеклянного боя с газообразоватслем (молотым известняком). Сырьевую смесь засыпают в формы и нагревают в печах до 900 "С, при этом происходит плавление частиц и разложение газообразователя. Выделяющиеся газы вспучивают стекломассу, которая при охлаждении превращается в прочный материал ячеистой структуры

Пеностекло обладает рядом ценных свойств, выгодно отличающих его от многих других теплоизоляционных материалов: пористость пеностекла 80-95 %, размер пор 0,1-3 мм, плотность 200-600 кг/м3, теплопроводность 0,09-0,14 Вт/м, предел прочности при сжатии пеностекла 2-6 МПа. Кроме того, пеностекло характеризуется водостойкостью, морозостойкостью, несгораемостью, хорошим звукопоглощением, его легко обрабатывать режущим инструментом. Пеностекло в виде плит длиной 500, шириной 400 и толщиной 70-140 мм используют в строительстве для утепления стен, перекрытий, кровель и других частей зданий, а в виде полуцилиндров, скорлуп и сегментов - для изоляции тепловых агрегатов и теплосетей, где температура не превышает 300 °С. Кроме того, пеностекло служит звукопоглощающим и одновременно отделочным ма-териалом для аудиторий, кинотеатров и концертных залов.

Асбестосодержащие материалы и изделия. К материалам и изделиям из асбестового волокна без добавок или с добавкой связующих веществ относят асбестовые бумагу, шнур, ткань, плиты и др. Асбест может быть также частью композиций, из которых изготовляют разнообразные теплоизоляционные материалы (совелит и др). В рассматриваемых материалах и изделиях использованы ценные свойства асбеста: температуростойкость, высокая прочность, волокнистость и др.

Алюминиевая фольга (альфоль) - новый теплоизоляционный материал, представляющий собой ленту гофрированной бумаги с наклеенной на гребне гофров алюминиевой фольгой. Данный вид теплоизоляционного материала в отличие от любого пористого материала сочетает низкую теплопроводность воздуха, заключенного между листами алюминиевой фольги, с высокой отражательной способностью самой поверхности алюминиевой фольги. Алюминиевую фольгу для целей теплоизоляции выпускают в рулонах шириной до 100, толщиной 0,005- 0,03 мм.

Практика использования алюминиевой фольги в теплоизоляции показала, что оптимальная толщина воздушной прослойки между слоями фольги должна быть 8- 10 мм, а количество слоев должно быть не менее трех. Плотность такой слоевой конструкции из алюминиевой (фольги 6-9 кг/м3, теплопроводность - 0,03 - 0,08 Вт/(м* С). Алюминиевую фольгу употребляют в качестве отражательной изоляции в теплоизоляционных слоистых конструкциях зданий и сооружений, а также для теплоизоляции поверхностей промышленного оборудования и трубопроводов при температуре 300 °С.

9. Основные свойства пигментов

Плотность пигмента определяет возможность смешивания его с другими пигментами при получении промежуточных колеров. Пигменты с сильно различающимися показателями плотности (тяжелые и легкие) смешиваются плохо, и окрасочные составы, в которые они входят, легко расслаиваются; при этом нарушается однородность краски, что влечет за собой ее ухудшение или порчу. Плотность пигментов различна: например, у наиболее легкого -- сажи -- 1,75…2,25 г/см3, а у самого тяжелого -- свинцового сурика -- 8.32…9,16 г/см3.

Антикоррозионная (пассивирующая) стойкость -- свойство пигмента в сочетании со связующим образовывать покрытия, надежно защищающие металлические поверхности от окисления (ржавления). Этим свойством пигментов пользуются при окрашивании стальных кровель, несущих конструкций (колонн, балок), а также труб, отопительных радиаторов, вентиляционных коробов. Пленка окраски должна быть непроницаемой для влаги, эластичной, надежно сцепляться с основанием и не содержать веществ, вызывающих коррозию черных металлов.

Некоторые пигменты тормозят процесс коррозии даже при попадании воды через пленку окраски. Такими высоко антикоррозионными пигментами являются: свинцовые белила, медянка, цинковые и свинцовые крона, железный сурик, алюминиевая пудра и цинковая пыль, создающие анодную защиту железа. Другие пигменты, наоборот, ускоряют процесс коррозии, например малярная сажа, содержащая свободный углерод, образует с железом гальваническую пару, при этом железо разрушается вследствие электрохимической коррозии. Пигменты, содержащие сернистые и сернокислые соединения, например литопон и синтетическая мумия, могут химически взаимодействовать с железом и разрушать его. Поэтому при применении окрасочных составов необходимо учитывать антикоррозионные свойства данного пигмента. теплоизоляционный стекловатный арболит

Огнестойкость. Органические пигменты не огнестойки -- они теряют свой цвет и разрушаются за короткое время при действии невысоких температур. Неорганические пигменты значительно более огнестойки, но по-разному реагируют на действие высокой температуры. Например, ультрамарин и хромовая зелень почти не изменяют свой цвет и не разрушаются, а лазурь быстро разрушается. Огнестойкость пигментов учитывают при окрашивании тепловых установок и отопительных устройств.

Токсичность (ядовитость). Многие пигменты безвредны, но некоторые ядовиты, поражают дыхательные пути и при неумелом обращении могут вызвать отравление. Ядовитыми являются пигменты, содержащие соединения свинца, меди, мышьяка и некоторые соединения цинка. Применение ядовитых красок при работе кистью не вызывает никакой опасности для рабочего при соблюдении правил личной гигиены и охраны труда. Отравляющее действие пигментов проявляется при нанесении окраски распыляющими аппаратами -- распылителем или краскопультом. В этих случаях, чтобы ядовитая пыль не попала в организм человека, работать необходимо в защитной маске или респираторе.

Размещено на Allbest.ru

...

Подобные документы

  • Организационно-правовая форма предприятия "Сибтехмонтаж", структура управления. Производство теплоизоляционных материалов из пенополиуретана. Характеристика и свойства изделий. Ознакомление с технологическим процессом теплогидроизоляции трубопроводов.

    отчет по практике [449,8 K], добавлен 22.07.2010

  • Классификация и основные свойства теплоизоляционных материалов и изделий. Характеристика их отдельных видов, созданных на основе синтетического сырья. Сопротивление теплопередаче наружных стен зданий. Методы получения высокопористой структуры материалов.

    реферат [27,6 K], добавлен 01.05.2017

  • Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.

    презентация [5,0 M], добавлен 23.04.2016

  • Строительные материалы и изделия, предназначенные для тепловой изоляции конструкций зданий и сооружений. Номенклатура выпускаемой продукции. Характеристика сырьевых материалов. Описание технологического процесса и физико-химических основ производства.

    курсовая работа [85,9 K], добавлен 10.03.2011

  • История развития ООО "УРСА Серпухов". Общая характеристика предприятия как одного из самых известных брендов строительных материалов. Ассортимент продукции, технологическая схема производства. Требования, предъявляемые к сырью, контроль качества.

    отчет по практике [579,7 K], добавлен 09.08.2015

  • Современное состояние и особенности производства теплоизоляционных материалов, его организация на основе местного сырья. Расчет производительности технологической линии. Производство теплоизоляционных плит на минеральном волокне (базальтовом волокне).

    дипломная работа [337,3 K], добавлен 01.08.2015

  • Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат [17,6 K], добавлен 26.04.2011

  • Анализ существующих видов теплоизоляционных материалов. Анализ теплоизоляционной краски: история создания, состав, сфера применения. Влияние теплоизоляционной краски на теплотехнические характеристики материалов, определение коэффициента теплопроводности.

    дипломная работа [2,3 M], добавлен 10.07.2017

  • Изучение ассортимента, требований, свойств, назначения нетканых полотен типа тканей. Рассмотрение скрепляющих материалов: текстурированных, армированных и прозрачных швейных ниток; клеевые скрепляющие материалы. Определение групп материалов по артикулам.

    контрольная работа [85,2 K], добавлен 06.07.2015

  • Анализ методов оценки упругопластических свойств материалов для верха обуви при растяжении. Обоснование выбора методов испытаний и исследуемых материалов. Разработка автоматизированного комплекса для оценки свойств при одноосном и двухосном растяжении.

    дипломная работа [4,8 M], добавлен 26.10.2011

  • Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.

    курсовая работа [43,7 K], добавлен 03.04.2010

  • Создание виртуальной лабораторной работы. Классификация и характеристика магнитомягких материалов, исследование их свойств. Анализ стандартного метода измерения начальной магнитной проницаемости и тангенса угла магнитных потерь магнитомягких материалов.

    дипломная работа [728,6 K], добавлен 19.11.2013

  • Порядок выбора основных и вспомогательных материалов для мужских мокасин, ботинок с настрочными берцами, полуботинок с боковыми резинками, женских повседневных туфель, детских ботинок. Сравнительная характеристика основных свойств материалов для обуви.

    лабораторная работа [328,6 K], добавлен 17.04.2015

  • Анализ видов изгиба материалов и машинных швов. Разработка методики оценки формоустойчивости текстильных материалов в статических условиях деформирования. Характеристика костюмных тканей и швейных ниток. Рекомендации по рациональному конфекционированию.

    отчет по практике [1,3 M], добавлен 02.03.2014

  • Понятия и классификация нанотехнологий, виды наноструктур. Характеристика способов наноконстуирования. Исследование свойств материалов, применение и ограничения в использовании наноматериалов. Модифицирование сплавов с нанокристаллической решеткой.

    курсовая работа [9,1 M], добавлен 14.07.2012

  • Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.

    реферат [480,5 K], добавлен 16.10.2008

  • Исследование процесса изготовления пигментированных лакокрасочных материалов. Основные характеристики, конструкция и принцип работы используемого оборудования. Краткая характеристика основных видов материалов, используемых в лакокрасочной промышленности.

    реферат [426,6 K], добавлен 25.01.2010

  • Общая характеристика модели "сафари". Ассортимент материалов, применяемых для предлагаемой модели, требования к ним. Исследование ассортимента рекомендуемых материалов, их структуры и свойств. Обоснование выбора пакета материалов для изготовления платья.

    курсовая работа [747,3 K], добавлен 02.05.2014

  • Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.

    доклад [277,6 K], добавлен 26.09.2009

  • Характеристика печей с электрическим нагревом для расплавления металлов и сплавов. Тепловой баланс плавильных агрегатов. Классификация тепловой работы печей. Физико-химические и эксплуатационные свойства огнеупорных и теплоизоляционных материалов.

    реферат [16,6 K], добавлен 01.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.