Процесс производства сахара

Функции средств автоматизации, их значение в организации производственных процессов по изготовлению сахара. Особенности хранения и обработки свеклы, сгущение сока выпариванием, его фильтрация и адсорбция. Оценка качества системы контроля и управления.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 08.03.2015
Размер файла 85,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Результатом образования осадков в сиропе при выпаривании является снижение растворимости солей Са, когда они оказываются в пересыщенном состоянии и их избыток выкристаллизовывается.

Одним из эффективных способов торможения реакции образования красящих веществ в ВУ является достижение достаточного полного разложения редуцирующих сахаров в процессе очистки сока и минимального разложения сахарозы при выпаривании. Немаловажное значение имеют также содержание оптимального уровня в кипятильных трубках и равномерное распределение греющего пара в греющих камерах выпарных аппаратов, что предохраняет поверхности нагрева в местах ввода пара от пригорания сахара.

Образование накипи на внутренней поверхности трубок выпарных аппаратов вследствие выделения и осаждения солей минерального происхождения постоянно снижает коэффициент теплопередачи и приводит к понижению производительности станции. Для восстановления нормальной работы выпарной станции применяются механические методы или химические методы очистки поверхности нагрева.

Иногда используют деминерализацию сока перед выпариванием путем пропускания его через ионообменные смолы.

Борьба с накипеобразованием в теплообменной аппаратуре возможна с помощью ультразвуковых колебаний, которые нарушают обычный процесс образования накипи и действуют разрушающе на нее.

2.8 УВАРИВАНИЕ, КРИСТАЛЛИЗАЦИЯ И ЦЕНТРИФУГИРОВАНИЕ УТФЕЛЕЙ

Кристаллизация сахара - завершающий этап в его производстве. Здесь выделяют практически чистую сахарозу из многокомпонентной смеси, которой является сироп.

В сокоочистительном отделении из диффузионного сока удаляется около 1/3 несахаров, остальные несахара вместе с сахарозой поступают в продуктовое отделение, где большая часть сахарозы выкристаллизовывается в виде сахара-песка, а несахара остаются в межкристальном растворе.

Выход сахара на 75% зависит от потерь сахара в мелассе. Потери в продуктовом отделении определяют технико-экономические показатели завода. Качество сахара прямо связано с потерями его в мелассе. Задачей оптимизации технологического процесса является выбор между глубоким истощением мелассы и качеством песка.

Задача получения сахара стандартного качества решается с помощью многоступенчатой кристаллизации, при этом потери будут минимальны.

Наибольшее распространение получили двухступенчатая и трехступенчатая схемы продуктового отделения. Для получения сахара хорошего качества используют гибкие схемы, предусматривающие оперативное перераспределение потоков в соответствии с ситуацией на заводе.

Рациональная технологическая схема продуктового отделения должна иметь столько ступеней кристаллизации, чтобы суммарный эффект кристаллизации составлял 30-33%, а коэффициент завода составлял бы 80% при среднем качестве свеклы.

В достоинство трехпродуктовой схемы можно включить более высокий выход (37%) и высокое качество получаемого товарного продукта. От прочих схем она отличается прямоточностью, существует один рециркуляционный контур - возврат клеровки.

Исходным сырьем для продуктового отделения является сульфитированная смесь сиропа с клеровкой сахаров II кристаллизации и сахара-аффинада III кристаллизации с чистотой не менее 92%.

Из этой смеси в вакуум-аппаратах I продукта уваривают утфель I кристаллизации до массовой доли сухих веществ 92.5%, при этом содержание кристаллов в утфеле составляет 55%.

Уваривание осуществляют в вакуум-аппаратах периодического действия, поэтому после уваривания утфель выгружается в буферную промежуточную емкость приемной мешалки. После выгрузки аппарат пропаривается экстра-паром I корпуса выпарной установки и пропарка направляется в клеровочную мешалку. Если пропарка проводится ретурным паром, то ее можно направлять в приемную мешалку, где при смешивании с утфелем растворяется около 2-3% кристаллов.

Утфель центрифугируют нагорячо (t=70-75оC), при этом рекомендуется использовать центрифуги с фактором разделения 1000. При фуговке отделяем 2 оттека.На первой стадии выделяется "зеленая" патока I, которая направляется в сборник под центрифугой и перекачивается в сборник перед вакуум-аппаратами, для создания запаса зеленой патоки для уваривания утфеля II.

По окончании отделения зеленой патоки в ротор центрифуги подается горячая артезианская вода в количестве 3.0-3,5% по массе сахара, проводится пробелка сахара и выделяется II оттек утфеля I кристаллизации, который направляется в сборник под центрифугами, а затем перекачивается в сборник перед вакуум-аппаратами, где создается запас для уваривания утфеля II.

Разность доброкачественности оттеков должна быть 5-7 единиц.

Выгруженный из центрифуг сахар-песок транспортируют для высушивания, охлаждения, отделения ферромагнитных примесей, комков сахара и пудры. Затем он поступает в бункеры, откуда в склад бестарного хранения или на упаковку.

Уловленную циклонами сахарную пыль, а также комочки сахара с виброконвейера и из сушильного барабана растворяют в очищенном соке и подают в клеровочные мешалки.

Белая и зеленая патоки используются для уваривания утфеля II (промежуточного) продукта. В процессе уваривания в начале в вакуум-аппарат забирается белая патока и в конце зеленая патока. Утфель II продукта уваривают до массовой доли сухих веществ 93-94%, при этом содержание кристаллов в утфеле достигает 45%. Используют вакуум-аппараты периодического действия. После уваривания утфель выгружают в приемную мешалку. Вакуум-аппараты пропаривают экстра-паром I корпуса, пропарку направляют в приемную мешалку, Из приемной мешалки утфель II кристаллизации нагорячо (70-75оС) направляют на центрифугирование. Для этого рекомендуется использовать центрифуги непрерывного действия с коническим ротором, снабженным сегрегатором. Центрифугирование может проводиться с пробеливанием или без него. В любом случае после пробеливания оба отека соединяются в одном сборнике под центрифугами, а затем перекачиваются в сборник перед вакуум-аппаратами, для создания запаса для уваривания утфеля III продукта.

Желтый сахар II шнеком направляют в клеровочную мешалку, где растворяют сульфитированным соком II сатурации или сиропом.

Клеровка с массовой долей сухих веществ 65-72% направляется в сборник сиропа после выпарной установки, где смешивается с сиропом и направляется на сульфитацию, а затем используется для уваривания утфеля I.

Из белой и зеленой патоки II уваривают утфель III кристаллизации в вакуум-аппаратах периодического действия до значения массовой доли СВ=94-96%, при этом содержание кристаллов в утфеле 35-37%. Дальнейшее сгущение и кристаллизация в вакумм-аппаратах невозможна, т.к. вязкость утфеля становится чрезмерно высокой, но межкристальный раствор утфеля в вакуум-аппаратах недостаточно истощен. Чистота раствора составляет 65-67%. Из него еще можно выделить сахарозу. Истощение раствора считается нормальным, когда чистота его уменьшается до 55-58%. т.е. для дальнейшего истощения необходимо провести второй этап кристаллизации утфеля III методом охлаждения - для этого утфель выгружают в приемную мешалку утфеля III.

Вакуум-аппараты пропаривают экстра-паром I корпуса выпарки, пропарка направляется в приемную мешалку и перемешивается с утфелем. Из приемной мешалки утфель направляют в батарею кристаллизаторов с вращающейся поверхностью охлаждения, при движении по кристаллизатору температура утфеля уменьшается с 70оС до 35оС. За счет уменьшения растворимости сахароза выделяется из раствора на поверхности кристаллизатора, за счет этого чистота межкристалльного раствора уменьшается примерно на 10 единиц (от 65 до 55%), а содержание кристаллов в утфеле повышается от 35-37% до 44-48%. Из последнего кристаллизатора утфель непрерывно подается в утфелераспределеитель с вращающейся поверхностью теплообмена. В утфелераспределителе осуществляется подготовка утфеля III продукта к центрифугированию методом подогрева, раскачки при подогреве с 30-35 до 40-45оС, при раскачке температура постоянна.

Разделение утфеля III кристаллизации осуществляется в центрифугах периодического действия с фактором разделения 1500 или центрифугах непрерывного действия с двумя коническими роторами, при этом в первом роторе выделяется меласса, во тором проводится аффинация желтого сахара. При переходе желтого сахара с первого ротора на слой желтого сахара подается аффинирующий раствор: зеленая патока I, разбавленная до массовой доли сухих веществ 75% и подогретая до t=80оC. Со второго ротора отводится аффинационный оттек, который собирается в сборник под центрифугой и перекачивается в сборник перед вакуум-аппаратами. Из сборника перед вакуум-аппаратом отбирается на уваривание утфеля III на последние подкачки.

При использовании центрифуг периодического действия в центрифуге выделяется меласса, желтый сахар выгружается в аффинационную мешалку, куда подается аффинирующий раствор (разбавленная зеленая патока I в количестве 60% по массе желтого сахара). В мешалке желтый сахар 10 минут перемешивается с аффинирующим раствором и насосом подается на центрифугирование. Рекомендуется использовать центрифуги непрерывного действия с коническим ротором. При центрифугировании выделяется один аффинационный оттек. Желтый сахар III выгружается и шнеком подается в клеровочную мешалку, где растворяется с желтым сахаром II сульфитированным соком II сатурации или сиропом.

Меласса - отход производства, взвешивается и направляется в мелассохранилище.

При изменении качества перерабатываемой заводом свеклы необходимо производить соответствующую корректировку трехкристаллизационной схемы:

а) при переработке свеклы с полученным сиропов из ВУ доброкачественностью 91-92% часть первого оттека утфеля I направляют на уваривание утфеля III кристаллизации;

б) при получении сиропа с Дб=90% переходят на работу по двухкристаллизационной схеме.

Целесообразно также применять трехкристаллизационную схему ВНИИСП, которая имеет следующие отличительные особенности:

- утфель III уваривают на кристаллической основе утфеля II из общего оттека утфеля II и аффинационного оттека;

- аффинационный утфель центрифугируют совместно с утфелем II.

При поступлении на уваривание должны выполняться следующие качественные требования к продуктам: сироп в смеси с клеровкой должен содержать не менее 65% массовой доли СВ, быть прозрачным и иметь рН 7.8-8.2, содержание солей Са 0.12-0.5% СаО к массе сиропа, цветность не более 40 усл. ед.

Получаемый сахар-песок должен соответствовать требованиям ГОСТ 21-78. Эффект кристаллизации утфеля I должен составлять 12-13 ед., утфеля II - 5-7 ед., утфеля III - 10-12 ед. яш1. Технологические параметры процесса кристаллизации. При уваривании утфелей происходит:

- увеличение цветности в результате разложения редуцирующих веществ, в основном, меланоидинов. В конце уваривания цветность утфеля III увеличивается в несколько раз, а утфеля I и II - в 1.5-2 раза.

- понижение рН, из-за разложения редуцирующих сахаров образуются органические кислоты, способствующие увеличению инверсии.

2.9 СУШКА, ОХЛАЖДЕНИЕ И ХРАНЕНИЕ САХАРА

Целью сушки является удаление поверхностной влаги и обеспечение длительного хранения кристаллическго сахара. На сушку направляется сахар с t=60оC после центрифугирования и влажностью 0.8-1.2%.

Для обеспечения длительного хранения влажность должна соответствовать относительной влажности хранилища. Влажность и температуру нормируют в зависимости от способа хранения.

Существуют два способа хранения: тарный в мешках 50 кг влажность до 0.14% и температура до 25оС и бестарный - в силосах емкостью 10000-20000 т влажностью не более 0.04% и t до 22оС.

После центрифуг сахар-песок влажностью 0.8-1.8% подают виброконвейером к элеватору. Влажный сахар поднимается элеватором и попадает в сушильную часть установки, где высушивается горячим воздухом (t=105оC). Сушка производится в прямотоке, что позволяет не превышать критическую температуру разложения сахарозы (85оС). Охлаждение сахара осуществляется в противотоке, температура сахара понижается до 20оС.

Высушенный и охлажденный сахар-песок подается на машину рассева, где отделяются конгломераты и мелкие фракции. Для бестарного хранения формируются фракции с коэффициентом однородности до 10%. После рассева сахар направляется в бункера, находящиеся в упаковочном отделении, из которых затаривается в мешки, взвешивается, зашивается и ленточным транспортером направляется в склад.

При бестарном хранении сахар подается в дозреватель для удаления внутренней влаги из объема кристалла за счет диффузии приблизительно на 10 суток, после чего сахар направляется в силос.

2.10 ПОЛУЧЕНИЕ ИЗВЕСТКОВОГО МОЛОКА И САТУРАЦИОННОГО ГАЗА

Из склада хранения известняк конвейером подают на сортировку. Отсортированный известняк конвейером подают в бункер-накопитель топлива. Топливо подают через дозатор. Известняк вместе с ковшом скипового подъемника взвешивают на весах.

После дозировки порции шихты ковш по направляющим поднимается к верху печи. При опрокидывании его шихта высыпается в загрузочную воронку. Герметичность загрузочной воронки обеспечивает клапан.

Полученный в результате обжига известняка сатурационный газ из балки отсоса газа попадает в сухую ловушку, а затем в газопромыватель для окончательной очистки и охлаждении водой. Затем через каплеулавитель газ поступает в компрессор, который подает его в завод. Для поддержания разрежения в газопромывателе и каплеулавливателе удаление воды в них осуществляется через гидрозатвор.

Обожженная известь по направляющему желобу поступает в известегаситель, куда из сборника подают воду. Полученное известковое молоко поступает на вибросито, где отделяются частицы размером более 1.2 мм, затем в мешалку, гидроциклоны - для отделения частиц от 1.2 до 0.3 мм - и в мешалку известкового молока. Из мешалки насосом подают на дефекацию.

3. СПЕЦИАЛЬНОЕ ЗАДАНИЕ

Для процесса регулирования уровня используются следующие средства автоматизации:

1. Ультразвуковой датчик для бесконтактного непрерывного измерения уровня, фирмы Endress + Hauser, модель Prosonic S FDU91, для подключения к преобразователю FMU95

2. Преобразователь для подключения ультразвуковых датчиков FDU90 в корпусе для монтажа на DIN-рейку, фирмы Endress + Hauser, модель Prosonic S FMU95.

Данный преобразователь обеспечивает -

Простое меню с подсказками на 6-строчном дисплее

- Отображение на дисплее кривой эхо-сигнала для быстрой и простой диагностики

- Простое управление, диагностика и документирование измерительной точки через поставляемое ПО "ToF-Tool - FieldTool Package" или "FieldCare".

- Встроенное в датчики измерение температуры для коррекции времени прохождения сигнала.

- Линеаризация (до 32 точек, свободно настраивается)

- Интеграция в систему через PROFIBUS DP - до 20 измеряемых значений

- Автоматическое определение датчиков FDU90

- Подключение датчиков прежней серии FDU8x

- Настройка к индивидуальным требованиям через структуру продукта

Принцип измерения

BD: блокдистанция; D: расстояние от мембраны датчика до поверхности продукта; E: нулевой уровень;

F: диапазон (полная дистанция); L: уровень; V: объем (или масса); Q: расход отражаются от поверхности обратно и принимаются датчиком. Преобразователь Prosonic S измеряет время t между излучением и приемом импульсов. Прибор использует время t (и скорость распространения звука c) для расчета расстояния D между мембраной датчика и поверхностью продукта:

Датчик излучает ультразвуковые импульсы по направлению к поверхности продукта.

D = c · t/2

Относительно D определяется необходимая измеряемая переменная:

- уровень L

- объем V

- расход Q через поперечное сечение водослива или открытого канала

Блокдистанция: Шкала F не может быть увеличена из-за наличия блокдистанции BD. Эхо-сигнал уровня в пределах блокдистанции не может быть обработан из-за переходных процессов в датчике.

Коррекция времени прохождения сигнала: Встроенный в каждый ультразвуковой датчик датчик температуры компенсирует изменение скорости распространения звука в зависимости от изменения температуры.

Подавление помех Функция подавления эхо-помех Prosonic S гарантирует, что случайные эхо-сигналы (напр., от кромок, сварных швов и соединений) не будут распознаваться, как уровень эхо-сигнала.

Линеаризация Запрограммированные кривые линеаризации для специальных типов емкостей

- Горизонтальный, цилиндрический танк

- Сферический танк

- Танк с пирамидальным основанием

- Танк с коническим основанием

- Танк с плоским, наклонным основанием

Запрограммированные кривые линеаризации вычисляются в режиме реального времени.

Таблица линеаризации содержит до 32 точек линеаризации; вводится вручную или полуавтоматически.

Функции регистрации

- Индикация пиков мин./макс. уровней и мин./макс. температур в датчике

- Запись последних 10 аварийных состояний

- Индикация рабочего состояния

- Индикация часов наработки

3. Насос для пищевых продуктов фирмы Seepex, серия BCSO.

Применяются главным образом в пищевой, фармацевтической, косметической и химической промышленности. C обозначает способность насоса к CIP (Cleaning in Place очистка на месте), а S - способность к SIP (Sterilisation In Place - стерилизация на месте).

Насосы CS отвечают высочайшим требованиям в области щадящей транспортировки, гигиены, очистки и стерилизации. Они соответствуют предписаниям Санитарного стандарта 3-A США и директивам EHEDG.

Насос обеспечивает -

- особенно щадящая транспортировка даже продуктов с высокой степенью вязкости со стабильным объемом и давлением транспортировки

- небольшие затраты на очистку: оптимизированный корпус насоса без “мертвых“ зон препятствует отложению продуктов и упрощает полноценную очистку CIP

- удобен в обслуживании вследствие легко монтируемых/демонтируемых шарниров

- испытанные, рассчитанные на соответствующий случай применения, - торцевые уплотнения обеспечивают гигиеничную герметизацию вала

- материал статора и дополнительные уплотнения, имеющие допуск FDA, гарантируют высокую безопасность и качество транспортируемых продуктов

- можно производить SIP горячим паром в тактовом режиме работы насоса

Объем подачи: от 30 л/ч - до130 м3/ч, давление: до 24 бар

4. Преобразователь частоты компании ABB, модель ACS550.

Преобразователь частоты ACS550 от АВВ предназначен для управления работой низковольтных асинхронных электродвигателей мощностью от 0,75 до 355кВ.

Стандартный привод АББ легко приобрести, просто смонтировать, настроить и эксплуатировать, что значительно экономит время. Частотный преобразователь оснащен простым пользовательским интерфейсом и коммуникационным протоколом Modbus, прост в выборе, настройке и пусконаладке. Кроме того, для него используются стандартные запасные части.

С помощью приводов этой серии возможно построение автоматизированных производственных систем. Частотник АББ ACS550 позволяет сократить издержки на электроэнергию при работе двигателя, увеличить срок службы эксплуатируемого оборудования и снизить риск выхода электродвигателя из строя. Частотный преобразователь ABB является универсальным электроприводом, имеющим самую широкую сферу применения.

Частотный привод ACS550 успешно применяется в целлюлозно-бумажной, пищевой, деревообрабатывающей и металлургической отраслях производства. Благодаря простоте настройки и стандартизации различных габаритов преобразователи частоты АББ позволяют максимально быстро настраивать производственные линии, уменьшить сроки изготовления продукции OEM производствам.

5. Шаровые краны высокого давления из нержавеющей стали 400, 401.

Шаровые краны OMAL серий 400, 401 широко применяются на промышленных предприятиях для управления потоками жидкостей и газов.

Серия 401 отличается от серии 400 полированным корпусом и может применяться в химической и пищевой промышленности для более легкой мойки корпуса.

Корпус шаровых кранов выполнен из нержавеющей стали AISI 316. Краны OMAL из нержавеющей стали используются при подаче агрессивных сред под давлением до 160 бар. Частое применение краны из нержавеющей стали находят в пищевой, химической, нефтяной, фармацевтической отраслях.

Шар крана, также как и корпус, выполнен из нержавеющей стали AISI 316, что гарантирует высокий ресурс при работе с агрессивной средой. Уплотнение шара выполнено из материала PTFE, стойкого к многим видам агрессивных сред.

Уплотнение штока крана (шток - соединяет шар с приводом) выполнено двумя кольцевыми манжетами из материала FKM (у большинства аналогичных моделей только одно).

Шаровые краны серий 400, 401 сертифицированы по стандарту ATEX на применение во взрывоопасной среде. Эти серии кранов соответствуют классу A по нормам герметичности EN 12266 - полное отсутствие утечек. Такая высокая герметичность позволяет использовать краны на вакууме глубиной до -0,95 бар (95% вакуума).

На кранах всех размеров (G3/8" ч G4") присутствует монтажная площадка, выполненная по стандарту ISO 5211, для присоединения пневматического или электрического привода.

6. Системы управления

Системы управления разработана специально для управления, регулирования и контроля. Для использования в сфере дозирующего оборудования и для защиты насосов, например от избыточного давления и сухого хода, в наличии имеются стандартные модули. От переливов компонентов, и немедленной реакции при появлении не штатной ситуации. Система реализует пропорциональный метод регулирования подачи компонента.

Управление, регулирование, контроль и блокировки выведены на панель оператора по месту.

Данные элементы АСУ ТП, позволяют производить более качественное управление технологическим процессом, с мониторингом всех необходимых параметров как по месту, так и дистанционно, на автоматизированном рабочем месте. Система имеет высокую степень отказоустойчивости, и требует минимизировать присутствие технологического персонала.

ЗАКЛЮЧЕНИЕ

В курсовом проекте разработана автоматизированная система контроля и управления уровня. Проведён анализ технологического процесса, и подобранны необходимые отказоустойчивые средства автоматизации. Дана оценка показателей качества разработанной системы регулирования.

Современные достижения в автоматике, радиоэлектронике и вычислительной технике позволяют рассматривать комплексную автоматизацию производственных процессов как единую систему автоматизации, охватывающую производство, в целом начиная с проектирования изделий и технологии их изготовления и кончая доставкой изделий потребителю. С расширением применения робототехнических средств, наряду с внедрением оборудования, отличающегося высокой степенью концентрации операций, значительно повысилась гибкость управления производством. Сегодня машиностроение стоит на пороге широкого внедрения комплексно-автоматизированных ГПС, позволяющих предприятиям в нужный момент и за короткое время переходить на выпуск новой или существенно модернизированной продукции при минимальных затратах. ГПС -- это новый этап в автоматизации производства, основанной на широком использовании принципов групповой технологии, станков с числовым программным управлением (в том числе типа «обрабатывающий центр») и гибких автоматизированных производственных модулей, промышленных роботов, роботизированных комплексов, автоматизированного транспортно-складского оборудования и других машин, объединенных автоматизированной системой управления производством. Непременными компонентами ГПС являются системы автоматизированного проектирования и автоматизированные системы управления технологическими процессами. Создание ГПС -- комплексная научно-техническая проблема. Ее решение связано с разработкой точного и надежного многооперационного оборудования и систем управления, введением автоматического контроля точности обработки и состояния инструмента, применением адаптивного управления процессом обработки, развитием диагностических методов и средств автоматического контроля за состоянием оборудования. Не менее важно совершенствовать транспортирование, хранение и учет заготовок, деталей, инструмента, оснастки и материалов. Требуется резко повысить надежность оборудования и систем управления, предназначенных для работы в условиях ГПС. Речь идет о системе производства, при которой материалы и компоненты доставляются в цеха лишь по мере надобности и не накапливаются там. При такой организации производства все должно выполняться в соответствии с заранее установленным графиком при заранее рассчитанной себестоимости. Таким образом, метод «как раз вовремя» сводится прежде всего к системе обеспечения оптимальных запасов, т.е. системе рациональной организации производства и управления, когда ритму сборки изделия подчинены все звенья производственного процесса. При этом достигается существенная экономия за счет сокращения запасов комплектующих изделий и готовой продукции, экономятся производственные площади, оборудование используется на полную мощность. Товарные запасы сокращаются до минимального уровня, при котором еще можно обеспечить производственный процесс.

Внедрение новой системы обеспечивает:

· сокращение расходов на складские помещения и хранение деталей, комплектующих изделий и материалов; при этом автоматизированные склады перестают быть складами- накопителями и становятся складами-распределителями, составным звеном внутризаводского транспорта;

· ускорение процесса производства за счет сокращения сроков хранения и транспортирования материалов;

· повышение качества продукции и создание условий для детальной разработки всего производственного и технологического процесса еще на стадиях его проектирования.

При этом ГПС позволяет достичь состояния, когда каждый участок, цех и предприятие обходятся минимальными запасами сырья и заделов производства, тщательно рассчитанных исходя только из условий выравнивания времени различных технологических циклов. Конечно, это возможно лишь при сквозном внедрении гибких автоматизированных производств на заводе в целом и тщательном соблюдении дисциплины поставок предприятиями-кооператорами и потребителями продукции. Внедрение системы организации производства по принципу «как раз вовремя» тесно связано с решением следующих основных задач:

· повышение уровня автоматизации в управлении народным хозяйством;

· обеспечение рационального управления запасами в целях извлечения большей прибыли, а это значит -- доведение их до оптимального уровня;

· повышение эффективности и снижение себестоимости процессов транспортирования и перемещения материалов;

· обеспечение одновременного изготовления всего набора деталей, составляющих сборочный комплект, обеспечение одновременной доставки сборочных комплектов и единиц, а также других материалов, необходимых для выпуска готовой продукции;

· повышение качества обрабатываемых деталей.

Первая задача потребует полной электронизации управления народным хозяйством, особенно при решении вопросов, связанных с разработкой и взаимодействием планов производственной кооперации и углубления специализации производства. При этом важное значение приобретают планирование, организация различных видов информации, связи, транспорта, обеспечение гарантийного обслуживания, обеспечение взаимодействия поставщиков и потребителей. ^ Вторая задача -- рациональное управление запасами с целью доведения их до оптимального уровня, который должен обеспечить устойчивый непрерывный ход производства, -- прямо зависит от выполнения первой. Главный вопрос при решении этой задачи заключается в минимизации запасов на промежуточных складах, создании автоматизированных складов-распределителей и средств гибкого транспортирования различного технологического назначения (для сырья, покупных изделий и деталей, вспомогательных материалов, готовых изделий, компонентов незавершенного производства) с обеспечением учета их наличия, простоты восполнения, с выделением приоритетных материалов, определяющих нормальный ход производственного процесса. Внедрение системы обеспечения оптимальных запасов наиболее актуально для условий мелкосерийного и среднесерийного производств, характеризующихся в настоящее время наличием значительных буферных запасов, что в свою очередь приводит к существенным потерям в виде незавершенного производства.

Интегрированные системы управления всеми сферами производства в условиях ГПС обеспечивают, наряду с групповым управлением оборудованием, управление ритмом производственного процесса с учетом сменных и суточных заданий для отдельных рабочих мест. В банке данных управляющих систем для ГПС содержатся, наряду с другими, данные о производственных запасах, что открывает возможность в случае производственной необходимости обеспечить оперативное пополнение запасов на производственных участках с помощью автоматизированных транспортно-складских систем. Поэтому применительно к серийному производству решение поставленных задач, возможно, прежде всего, при наличии таких технических средств, которые вместе с новой организацией производства характерны для ГПС, в том числе автоматизированных систем управления производством, автоматизированных систем технологической подготовки производства.

Третья задача -- повышение эффективности транспортирования и перемещения материалов -- по своему содержанию во многом зависит от методов решения второй. Снижение издержек на транспортирование, перемещение и хранение единицы продукции, как известно, прежде всего зависит от сокращения производственного цикла, что чаще всего достигается многоинструментальной обработкой на оборудовании с высокой степенью концентрации операций (типа «обрабатывающий центр») и от уменьшения транспортных потоков и потерь при хранении, что достигается созданием автоматизированных складов и организацией автоматизированных систем подготовки и управления производством.

Четвертая задача -- обеспечение одновременного изготовления деталей, составляющих сборочный комплект,-- решается путем широкого использования обрабатывающих центров и гибких переналаживаемых многооперационных модулей. Обеспечение единовременной доставки всех компонентов производства, необходимых для выпуска готового изделия, тесно связано с диспетчированием производства и оснащением предприятия автоматизированными гибкими транспортно-складскими средствами.

Пятая задача -- повышение качества изделий -- является необходимым условием функционирования любой автоматизированной системы, а также условием обеспечения работы по методу «как раз вовремя». Приемка деталей и изделий от поставщиков должна осуществляться без входного контроля (или с автоматическим выборочным контролем), а качество должно быть гарантировано. Контрольные службы в системе производства должны функционировать таким образом, чтобы обеспечить контроль изделий после каждой операции. Экономическая эффективность и гарантия качества могут быть достигнуты при этом только в условиях полной автоматизации контрольных операций. Таким образом, наиболее полное развитие современных форм организации производства по принципу «как раз вовремя» может быть обеспечено на базе гибких систем, которые, в свою очередь, основываются на широком использовании средств вычислительной техники, автоматики, новых видов обрабатывающего оборудования и средств робототехники. Комплексная автоматизация производства, создание ГПС с широким использованием робототехнических средств открывают перспективы и для внедрения новых современных форм организации производства.

СПИСОК ЛИТЕРАТУРЫ

1. «Автоматизация технологически процессов пищевых производств». Под редакцией профессора Е.Б. Карнина. - М. «Пищевая промышленность» 1997г.

2. Нудлер Г.И., Тульчик И.К, «Основы автоматизации производства». - М «Высшая школа» 1976г.

3. Исаакович Р.Я. «Технологические измерения и приборы». - М: «Недра» 1979г.

4. Капустин, Н.М. Автоматизация производственных процессов в машиностроении: Учеб. для втузов / Под ред. Н.М. Капустина. -- М.: Высшая школа, 2004. -- 415 с.

5. Юревич, Е.И. Основы робототехники. -- 2-е изд., перераб. и доп. -- СПб.: БХВ-Петербург, 2005. -- 416 с.

6. Воройский, Ф.С. Информатика. Энциклопедический систематизированный словарь-справочник. (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах). -- М.: Физматлит, 2007. -- 760 с.

7. Цыпкин Я.З. Основы теории автоматических систем. М., Наука, 1977

Размещено на Allbest.ru

...

Подобные документы

  • Описание основных характеристик сахара, его классификация и разновидности, описание главных показателей качества. Методы и средства контроля качества сахара-песка рафинированного, показатели: органолептические, физико-химические, микробиологические.

    курсовая работа [106,1 K], добавлен 26.01.2015

  • Технологическая схема реконструируемого отделения. Переработка сахара-сырца совместно со свеклой – один из путей повышения эффективности сахарного производства. Расчет количества и состава продуктов. Расчет основного технологического оборудования.

    курсовая работа [224,5 K], добавлен 23.12.2010

  • Общая характеристика предприятия ЗАО "Успенский сахарник". Описание технологической линии производства сахара из свеклы. Рассмотрение комплексов оборудования, стадий технологического процесса. Основы автоматизации клерования, дефекации и сатурации сырья.

    отчет по практике [1,1 M], добавлен 15.06.2015

  • Описание схемы автоматизации, обзор методов, средств и систем управления. Анализ объекта регулирования с точки зрения действующих возмущений. Обоснование выбора точек и параметров контроля технологического процесс. Разработка системы управления.

    курсовая работа [771,2 K], добавлен 22.01.2014

  • Органолептические показатели пшеничной муки, сахара, растительного масла. Стадии приготовления теста. Требования к качеству готовой продукции, вспомогательных, упаковочных материалов и тары. Автоматизация технологических процессов и контроля производства.

    дипломная работа [318,0 K], добавлен 18.02.2012

  • Развитие производственно-технической базы сахарной промышленности. Классификация машин и аппаратов для фильтрации и осветления суспензий на производстве. Характеристика дискового фильтра-сгустителя. Создание современной технологии свекловичного сахара.

    курсовая работа [1,2 M], добавлен 23.11.2015

  • Основные приемы и технологический процесс производства деревянных панелей. Выбор аппаратных средств автоматизации системы управления линии обработки. Структурная схема системы управления технологическим процессом. Разработка системы визуализации.

    дипломная работа [2,2 M], добавлен 17.06.2013

  • Предпосылки появления системы автоматизации технологических процессов. Назначение и функции системы. Иерархическая структура автоматизации, обмен информацией между уровнями. Программируемые логические контролеры. Классификация программного обеспечения.

    учебное пособие [2,7 M], добавлен 13.06.2012

  • Процесс получения сахара-песка, этапы и технологические основы. Устройство и принцип действия линии. Описание конструкции барабанной сушилки. Расчет основного и вспомогательного оборудования, тепловой и конструктивный расчет, экономическое обоснование.

    курсовая работа [118,5 K], добавлен 29.04.2015

  • Виды производственных процессов, организация производственных процессов в пространстве и во времени. Виды и взаимосвязи производственных процессов в организации по ходу производства. Расчет длительности производственного цикла изготовления изделия.

    контрольная работа [44,8 K], добавлен 08.11.2009

  • История виноградарства и происхождения вина. Классификация вин по используемому сырью, по способу производства, по содержанию спирта и сахара. Понятие выдержки, определение ее качества и сроков. Органолептическая оценка вина, пороки и болезни напитка.

    курсовая работа [35,0 K], добавлен 18.03.2011

  • Принцип поляриметрического метода. Состав, химические и физические свойства, токсикологическое воздействие сахара. Характеристика методов анализа вещества: рефрактометрический, антроновый, газохроматографический. Оценивание погрешности измерений.

    курсовая работа [446,4 K], добавлен 29.02.2016

  • Замена сахара интенсивными растительными подсластителями - тенденция развития пищевых технологий. Сладкие свойства листьев стевии. Анализ эффективности замены сахара на сироп стевии при проектировании рецептуры мороженого на основе растительных сливок.

    статья [61,9 K], добавлен 22.08.2013

  • Анализ газоизмерительной системы блока измерения качества нефти и ее основных функций. Средства автоматизации, устанавливаемые на БИК. Увеличение надежности системы контроля загазованности за счет внедрения оптического газоанализатора и ее расчет.

    дипломная работа [4,3 M], добавлен 16.04.2015

  • Принципы управления производством. Определение управляющей системы. Типовые схемы контроля, регулирования, сигнализации. Разработка функциональных схем автоматизации производства. Автоматизация гидромеханических, тепловых, массообменных процессов.

    учебное пособие [21,4 K], добавлен 09.04.2009

  • Основные понятия производства и технологических процессов. Классификация производства на категории: тип, вид, часть, массовое, серийное и единичное. Методы и средства контроля качества машин. Погрешности сборочных процессов. Виды обработки заготовок.

    лекция [35,0 K], добавлен 08.04.2009

  • Расчет устойчивости одноконтурной системы регулирования. Технологический процесс восстановления молока. Выбор средств его автоматического контроля и регулирования. Описание установки для растворения сухих молочных продуктов и емкости для хранения молока.

    курсовая работа [1,1 M], добавлен 14.01.2015

  • Технологический процесс подготовки нефти. Описание системы автоматизации управления процессами. Программируемый логический контроллер SLC5/04: выбор, алгоритм контроля. Оценка безопасности, экологичности и экономической эффективности исследуемого проекта.

    дипломная работа [402,6 K], добавлен 11.04.2012

  • Описание процесса структурообразования мармелада на основе агара и сахара. Составление уравнения регрессии, отражающего зависимость пластической прочности массы от дозировки сахара и малинового пюре. Оптимизация структурно-механических свойств мармелада.

    реферат [44,9 K], добавлен 23.08.2013

  • Назначение и конструкция червячного редуктора. Определение типа производства, оснастка, анализ точности обработки детали. Разработка автоматизированного процесса механической обработки детали резанием. Экономическое обоснование средств автоматизации.

    курсовая работа [90,4 K], добавлен 01.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.