Машины для помола мелкодисперсных материалов
Классификация и основная конструкция машин для помола. Рабочие процессы и оборудование при распределении сыпучих материалов механическим способом, характеристика инерционных грохотов. Особенности функционирования проходного и циркулярного сепараторов.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.03.2015 |
Размер файла | 345,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
1. Машины для помола. Классификация. Конструкции
Повышение технической вооруженности строительного производства, в том числе, совершенствование и развитие помольного оборудования, является одним из основных условий эффективности данного производства. На строительных предприятиях, производящих сухие строительные смеси, полистербетон, пенобетон, цемент, гипс, известь и другие строительные материалы, использование оборудования для измельчения материалов повышает качество выпускаемой продукции при снижении ее себестоимости. Кроме того, получение некоторых видов современных строительных материалов невозможно без использования высокоэффективного оборудования для измельчения материалов.
Тонкий помол материалов (инертных и вяжущих) ведет к существенному улучшению качества новообразованных поверхностей, увеличению показателей удельной поверхности, разрушению структурно нестабильных и ослабленных частиц. Методика активации (тонкого измельчения) хорошо зарекомендовала себя в практике обработки лежалого и низкомарочного цемента с целью повышения полезных свойств и восстановления. Без широкого использования оборудования для измельчения немыслимо современное производство теплоэффективных строительных материалов, например, ячеистого бетона автоклавного твердения.
Область применения оборудования, обеспечивающего измельчение материалов, весьма широка:
· производство строительных материалов (кирпич, газобетоны, пенобетоны и другие);
· помол и активация низкомарочного цемента, производство высокомарочного цемента;
· производство тонкомолотых сухих строительных смесей и их компонентов;
· производство вяжущего низкого водопотребления;
· производство пигментов, лакокрасочных материалов;
· производство тонкомолотых продуктов для стекольной промышленности;
· производство тонкомолотых продуктов для пищевой промышленности;
· производство шлифовальных порошков, узкофракционных абразивных материалов и другое.
Особый интерес представляют агрегаты, обеспечивающие тонкий помол цемента (увеличение удельной поверхности цемента) и активацию инертных составляющих бетонной смеси. Такие установки позволяют кардинально улучшить основные физико-механические характеристики выпускаемой продукции и значительно снизить расход цемента на производстве.
Оборудования для измельчения (тонкого помола) материалов должно удовлетворять следующим требованиям:
· быть экономичным;
· быть надежным, долговечным (как следствие - выполняться из новых износоустойчивых материалов);
· обеспечивать гарантируемые сроки и ресурсы работы;
· выполняться с учетом условий конкретных предприятий и существующих технологий.
Мельницы, применяемые при производстве строительных материалов
В промышленности строительных материалов помол осуществляют с помощью мельниц со свободными и закрепленными мелющими телами и без них (рис. 1). К машинам со своб. мелющими телами относятся: тихоходные вращающиеся барабанные мельницы - шаровые, стержневые, галечные (для грубого, среднего и тонкого помола); быстроходные мельницы - центробежно-шаровые, вибрационные, планетарные, магнитные, бисерные и др. (для тонкого и сверхтонкого помола). Барабанные шаровые мельницы (рис. 1,а) загружены мелющими телами обычно на 35-40% объема, в межшаровом пространстве находится материал, измельчается в результате совместного действия шаров и крупных кусков, а также взаимного истирания частиц.
Рис. 1. Основные типы мельниц: а - барабанная шаровая (1 - корпус, 2 - мелющие тела, 3 - футеровочные плиты, 4 - привод); б - барабанная бесшаровая (1 - корпус, 2 - привод, 3 - диафрагма); в - центробежно-шаровая (1,12 - привод, 2 - корпус, 3 - чаша, 4 - отбойная поверхность статора, 5 - отражательная решетка, 6 - воздушный сепаратор, 7 - воздухопровод, 8 - вентилятор, 9 - шары, 10, 11 - штуцеры для подачи соотв. исходного материала и воздуха); г - вибрационная шаровая(1 - корпус, 2 - дебалансы, 3 - электродвигатель); д - планетарная(1 - привод, 2 - зубчатое колесо, 3 - малая шестерня, 4 - барабан, 5 - водило)
Основные достоинства: возможность применения в многотоннажных производствах, простота конструкции; недостатки: большая металлоемкость, значительный износ мелющих тел, сильный шум, производимый при работе. Эти измельчители используют для помола разл. материалов, напр., в производствах барита и фосфоритной муки; степень измельчения 20-100. Барабанные бесшаровые мельницы, или машины самоизмельчения (рис. 1,б), применяемые, напр., в производстве асбеста, при переработке горнохим. сырья и т. п., по принципу действия аналогичны шаровым измельчителям; мелющие тела - крупные куски материала. Достоинство - возможность получения высокочистых измельченных продуктов; недостатки: большие габариты, возможность накапливания фракций средних размеров, которые приходится возвращать на доизмельчение; степень измельчения 180-300. В центробежно-шаровых мельницах (рис.1,в), используемых для помола талька, мела и др., шары из вращающейся чаши отбрасываются центробежными силами к отбойной статора, измельчая материал действием стесненного удара, а затем снова падают в чашу. Материал увлекается воздушным потоком, создаваемым вентилятором, при этом в чашу на доизмельчение падают наиб.
Крупные куски и зерна, отраженные соотв. решеткой и сепаратором. Достоинство - высокая уд. производительность; недостатки: сильный износ рабочих органов, высокий уровень шума; степень измельчения 5-100. Вибрационные мельницы (рис. 1,г) заполнены шарами на 80-90% объема; под действием вращающихся дебалансов корпус, опирающийся на пружины, совершает частые круговые колебания, и шарам сообщаются импульсы, в результате они движутся по сложным траекториям, интенсивно измельчая и перемешивая материал, находящийся в межшаровом пространстве. Достоинства: возможность получения высокодисперсных продуктов (степень измельчения 20-200), малая продолжительность помола, компактность; недостатки: ограниченная производительность, высокий уровень шума. В этих машинах измельчают, напр., гидрокарбонат Na, сурик, охру, пигменты, кварц, графит. В планетарных мельницах (рис. 2,1) несколько барабанов смонтировано на общем водиле. На оси каждого барабана насажена малая шестерня, которая находится в зацеплении с неподвижным центральным зубчатым колесом. При вращении водила малые шестерни обкатываются вокруг колеса, и барабаны одновременно вращаются вокруг своих осей и центр вала; в результате мелющие тела приобретают сложное движение при больших ускорениях, что обусловливает весьма интенсивное измельчение материала. Основное достоинство - высокая эффективность измельчения; недостатки: малая производительность, периодичность процесса, возможность использования, как правило, в малотоннажных производствах, сильный разогрев продуктов вследствие значит выделения теплоты. Эти мельницы применяют, напр., в горнохим, а также в качестве быстродействующих лаб. устройств (подготовка проб для экспресс-анализов); степень измельчения 20-300. Бисерные мельницы (рис. 1,е), широко применяемые в производствах красок, эмалей, грунтовок и др., примерно на 2/3 или 3/4 объема заполнены спец. кварцевым бисером (диаметр 1-2 мм) или износостойким песком.
Предварительно подготовленная суспензия, напр., из пигмента и связующего, подается насосом (на рис. не показан) в цилиндр. поднимается вверх, проходит через слой бисера (песка), подвергаемый действию вращающегося дискового ротора, интенсивно измельчается, перетирается, фильтруется через сито и выводится ниже части мельницы. Достоинство - высокая гомогенность продуктов; недостатки: ограниченные габариты и производительность, необходимость частой замены мелющих тел; степень измельчения 200-300. К машинам с закрепленными мелющими телами (ролики, катки, вальцы и т. п.) относятся: среднеходовые мельницы - бегуны (для грубого и среднего помола), кольцевые, жернова, краскотерки и др. (для среднего и тонкого помола); быстроходные центробежные мельницы - ножевые, штифтовые, дисмембраторы, дезинтеграторы и т. п. (для грубого, среднего и тонкого помола).
В бегунах (рис. 2,ж), служащих в для измельчения вязких материалов (часто в сочетании с перемешиванием), напр., в горнохим. и коксохим. отраслях промышленности (угольные шихты и др.), при вращении вала катки, которые свободно сидят на полуосях, катятся ("бегут") по дну чаши, раздавливая и истирая находящийся в ней материал. Под действием центробежных сил его куски перемещаются к наружному борту чаши, откуда возвращаются на катки с помощью спец. скребков. Достоинство - простота конструкции; недостатки: низкая производительность, ограниченная степень измельчения (10-40).
Ролико-кольцевые маятниковые мельницы (рис. 1, з) предназначены для измельчения мягких, хрупких и нелипких материалов (напр., каолина, белых пигментов, ильменита, цементного клинкера). В них катки или ролики катятся, прижимаясь центробежными силами размольного кольца и измельчая материал в зазоре между мелющими телами и кольцом. Измельченный материал увлекается воздушным потоком в сепаратор, где разделяется на готовый продукт и грубую фракцию, возвращаемую на доизмельчение. В зону измельчения исходный материал перемещается посредством скребков. Достоинство - возможность изменения степени измельчения в широких пределах (5-100); недостатки: интенсивный износ рабочих органов, сложность конструкции. В жерновах (рис. 1, и), применяемых гл. обр. в производствах красителей, а также бумаги и картона, материал через загрузочную воронку поступает внутрь верхнего (неподвижного) корундового круга-жернова, который своей тяжестью и пружинами прижимается к ниж вращающемуся кругу. Под воздействием центробежных сил и благодаря направляющим насечкам на рабочих поверхностях кругов материал втягивается в кожух и выгружается через спец. патрубок.
Основное достоинство - высокая степень помола; недостатки: низкая производительность, необходимость частой замены рабочих органов; степень измельчения 5-100. Краскотерки (рис. 1,к) позволяют диспергировать или перетирать материал (в производствах красок, полимерных паст и др.) в регулируемом узком зазоре между параллельно установленными валками, вращающимися навстречу друг другу с разной скоростью.
Рис. 2. Основные типы мельниц: е - бисерная (1 - корпус, 2 - цилиндр, 3 - кожух, 4 - вал, 5 - диски, 6 - мелющие тела, 7 - сито, 8 - приемник переработанной суспензии, 9 - дисковый ротор, 10 - электродвигатель, 11 - станина, 12 -кран); ж - бегуны (1 - каток, 2 - полуось катка, 3 - водило, 4 - центральный вал, 5 - чаша, 6 - привод); з - ролико - кольцевая маятниковая (1 -размолыюе кольцо, 2 - ролик или каток, 3 - крестовина, 4 - маятник, 5 - вал, 6 - привод. 7 - скребок); и - жернова (1 - загрузочная воронка, 2 - пружина, 3, 4 - соотв. верхний и нижний каменные круги, 5 - патрубок для выгрузки готового продукта); к - краскотерка (1 - корпус, 2 - валок, 3 - загрузочная воронка, 4 - разгрузочный лоток)
Готовый продукт удаляется через лоток, снабженный скребковым устройством. Достоинство - удобство регулирования степени измельчения (20-300); недостатки: ограниченная производительность, неравномерный износ валков. В ножевых мельницах (рис. 2,л) материал подвергается рубящему и режущему действию ножей ротора и статора. Измельченный продукт выгружается из мельницы через перфорир. решетку. Достоинство - возможность эффективной переработки эластичных отходов (линолеума, резины) без глубокого охлаждения в отличие от др. мельниц; степень измельчения 10-50. Дезинтеграторы (рис. 2,м) служат преим. для сухого помола хрупких, мягких материалов с малой абразивной способностью (напр., каолин, мел, литопон). Исходный материал через загрузочную воронку поступает в центр часть одного из роторов, вращающихся в противоположных направлениях, и попадает между их пальцами. Под действием центробежных сил куски (зерна) материала продвигаются от центра к периферии роторов, многократно ускоряются, ударяясь о пальцы и сталкиваясь. Измельченный продукт отбрасывается из роторов в кожух и ссыпается через спец. патрубок. Достоинства: простота устройства, высокий смешивающий эффект; недостатки: интенсивный износ пальцев, большое пылеобразование, значит расход энергии; степень измельчения 5-10. К машинам без мелющих тел относятся: барабанные мельницы самоизмельчения (для грубого, среднего и тонкого помола); воздухо-, паро- и газоструйные (для тонкого и сверхтонкого помола); пневматические (для среднего и тонкого помола); кавитационные (для переработки суспензий); коллоидные, ультразвуковые, электрогидравлические и др. (преим. для тонкого и сверхтонкого помола). В струйных противоточных мельницах (рис. 2,н) измельчение происходит за счет энергии потока компримированного газа, напр., воздуха, или перегретого пара.
Два встречных потока, несущих с большой скоростью исходный материал в виде мелких кусков, пройдя сопла, которые установлены в разгонных трубах, соударяются, и частицы измельчаются. Восходящие потоки увлекают материал в зону предварительно сепарации грубых фракций и далее в сепаратор, где отделяется тонкая готовая фракция, улавливаемая сначала в циклоне и окончательно в фильтре. Грубые фракции непрерывно возвращаются из сепаратора в размольную камеру. Достоинство - возможность диспергирования термолабильных материалов [кубовых красителей, (NH4)2SO4 и т. п.]; недостаток - необходимость установки дополнительного оборудования (компрессора, газогенератора, мощной пылеулавливающей системы). Такие машины предназначены для измельчения кокса, слюды, известняка, пластмасс, инсектицидов и др.; степень измельчения 20-120. Кавитационные мельницы (рис. 2,о) работают в системе с напорными баками, что обеспечивает многократную циркуляцию и высокую степень диспергирования материала.
Рис. 3. Основные типы мельниц: н - струйная противоточная (1 - сопло, 2 - разгонная труба, 3 - размольная камера, 4 - воздушный сепаратор); о - кавитационная (1 - ротор, 2 - статор)
Действуя как насос, мельница прокачивает диспергируемую суспензию через кольцевой зазор между ротором и статором, причем благодаря наличию на их поверхностях продольных канавок сечение прохода то возрастает, то уменьшается, что вызывает значит. колебания давления и, как следствие, кавитационный эффект. В результате суспензия интенсивно измельчается и по окончании цикла переработки отводится через спец. кран в ниж части машины. Достоинство - высокая гомогенность получаемых суспензий; недостатки: интенсивный износ рабочих органов, малая производительность. Эти измельчители применяют для приготовления резиновых смесей, в лакокрасочных и др. производствах; степень измельчения 5-40. В т. наз. коллоидных мельницах материал измельчается (до частиц размером неск. мкм и менее), многократно проходя через малый зазор между быстро вращающимся диском (ротором) и неподвижным кольцом (статором) либо через зазор между пальцами ротора и корпусом машины. Из-за высокого износа рабочих поверхностей и малой производительности эти мельницы применяют в осн. в лаб. практике для помола небольших порций материала. В ультразвуковых мельницах помол происходит под действием высокочастотных звуковых колебаний (более 20 тыс. в 1 с).
Сравнительно небольшая мощность генераторов ультразвука и высокий уровень шума ограничивают область использования таких мельниц; их применяют преим. для получения высокодисперсных (средний размер частиц - мкм и доли мкм) и однородных суспензий, напр., в производствах красителей и ср-в. В электрогидравлические измельчителях твердое тело подвергается высокоинтенсивному воздействию импульсных давлений, возникающих при высоковольтном разряде в жидкости; эти машины м. б. использованы как для тонкого помола, так и для дробления.
Процессы измельчения связаны со значит. расходом энергии. Для выражения зависимости между затратами энергии и результатами измельчения, т. е. размерами кусков (зерен) продукта, предложен ряд теорий, гипотез и эмпирические соотношений, которые м. б. использованы, однако, лишь с целью сопоставления измельчающих машин. Практически для выбора типов и размеров машин, а также расчета их производительности, продолжительности процесса и дисперсности продуктов экспериментально изучают в равных условиях кинетику измельчения исследуемого и эталонного материалов и определяют измельчаемости, который характеризует сопротивляемость материала измельчению в конкретной машине. Далее выбирают тип измельчителя и с использованием соответствующих таблиц - параметры и режим его работы. Повышению эффективности измельчения, наряду с совмещением его с классификацией и проведением процесса в нескольких стадий, способствует рациональный выбор уд. энергетических затрат, мех. усилий и частот их воздействия на материал, соотношений твердое: жидкое при мокром помоле и др. Для получения высокодисперсных продуктов из материалов, склонных к агрегированию, их подвергают сначала сухому, а затем мокрому помолу с добавками ПАВ. Последние препятствуют агрегированию мелких частиц и позволяют получать тонкие порошки с модифицированной (гидрофобизированной или гидрофилизированной) поверхностью. Одновременно ПАВ облегчают возникновение и развитие в измельчаемом материале пластич. сдвигов и трещин, что снижает его сопротивляемость измельчению Перспективен также метод т. наз. упругодеформационного измельчения, заключающийся в совместном воздействии на материал, давления и деформации сдвига. С помощью этого метода на модифицированных экструзионных и вальцевальных машинах получают сверхтонкие порошки из вторичных полимерных материалов, напр., изношенных резин (размер частиц до 60 мкм) или полиэтиленовой пленки (до 10 мкм). Для поддержания заданных характеристик продуктов измельчения необходимо контролировать и корректировать параметры процесса (влажность, крупность, измельчаемость, др. свойства исходных материалов, производительность машин). Для этого мощные дробильные и помольные установки оснащают системами автоматического регулирования. С целью уменьшения износа оборудования при измельчении абразивных материалов ограничивают скорость движения рабочих органов, применяют быстросъемные узлы и детали, подвергаемые легкому изнашиванию, футеруют рабочие поверхности; в ряде случаев осуществляют совместную обработку абразивного и мягкого компонентов композиции, при которой первый способствует измельчению второго, а мягкий полирует твердый, снижая его абразивность. Для уменьшения износа машин при мокром измельчении в жидкость вводят ингибиторы коррозии. При измельчении пожаро- и взрывоопасных материалов необходимо соблюдать правила техники безопасности. Установки и помещения для измельчения необходимо проектировать и эксплуатировать с учетом ниж концентрации пределов и т-р воспламенения, а также способности исходных материалов к электризации и т. п. Должны быть обеспечены прочность и герметичность корпусов измельчителей и коммуникаций, установлены разрывные предохранит. мембраны. Для изготовления мелющих тел и корпусов измельчителей необходимо использовать материалы, исключающие возможность искрообразования при соударениях. Установки для измельчения следует заземлять и оснащать защитой от атм. и статического электричества, вместо пневматического транспорта применять механический с изготовлением его деталей (напр., ковшей элеватора) из цветных металлов. Электрооборудование должно быть во взрывобезопасном исполнении, а категория помещений выбрана в соответствии с санитарными нормами и правилами. Пылеулавливающие устройства (циклоны, фильтры) следует монтировать в отдельном помещении; анализ пылесодержания воздушной среды и мокрую очистку трактов, оборудования и помещений от осевшей пыли необходимо проводить строго по графику. Эффективны также замена сухого измельчения на мокрое, измельчение в среде азота, оснащение установок системами контроля, управления и сигнализации.
2. Рабочие процессы и оборудование при распределении сыпучих материалов механическим способом. Инерционные грохоты
Процесс разделения массы или смеси зерен природного происхождения на классы по крупности называется грохочением или сортировкой. Грохочение осуществляют механическим, гидравлическим, воздушным и магнитным способами. Наиболее распространен механический способ, при котором дробленую массу разделяют путем просеивания на грохотах. Основной частью грохота является просеивающая поверхность. Она выполняется в виде сита из плетеной или сварной сетки, а также решета, штампованного из листовой стали, или литого из резины. Сита и решета должны быть износостойкими, сохранять в процессе работы неизменным размер отверстий, иметь большую площадь отверстий.
Различают грохочение предварительное, промежуточное, товарное (окончательное). Предварительное грохочение применяют для грубой сортировки на крупные и мелкие куски перед дробилками первичного дробления. При промежуточном грохочении из дробленого материала отделяются более крупные куски для направления в дробилки последующих стадий дробления. При окончательном грохочении материал разделяют на фракции в соответствии с требованиями стандарта. Разделение материала по крупности на фракции осуществляется в результате придания поверхности грохочения определенных по частоте и амплитуде колебаний, обеспечивающих эффективное встряхивание материала и прохождение зерен через просеивающие поверхности. На грохотах можно устанавливать до трех сит. Сита располагают в одной плоскости (грохочение от мелкого к крупному) или ярусами (грохочение от крупного к мелкому).
При грохочении от мелкого к крупному (рис. 4.а) грохот имеет конструкцию простую, удобную для осмотра и ремонта сит.
Рис. 4. Схемы расположения сит на грохотах: а) от мелкого к крупному б) от крупного к мелкому в) комбинированное
Недостатками такой схемы являются большая длина грохота, интенсивный износ первого сита, низкое качество грохочения, так как мелкие частицы увлекаются более крупными. При грохочении от крупного к мелкому достигаются высокое качество сортирования, более равномерный износ сит, однако ухудшается возможность наблюдения за работой грохота. Комбинированная схема по сравнению с другими занимает промежуточное положение и является наиболее распространенной.
При перемещении по просеивающей поверхности сит материал разделяется по крупности. Зерна материала, превышающие размер отверстий сит, сходят с поверхности грохочения, образуя верхний класс. Зерна материала, прошедшие через отверстия, называются нижним классом. Нижний класс каждого предыдущего сита является исходным материалом для следующего расположенного за ним сита. При движении материалов по ситу не все зерна размером меньше отверстия сита могут пройти через него. В результате верхний класс оказывается засоренным зернами нижнего класса. Отношение (в процентах) массы зерен, прошедших сквозь сито, к количеству материала такой же крупности, содержащегося в исходном материале, называют эффективностью грохочения. Эталонное значение эффективности грохочения в зависимости от материала и типа грохотов составляет 86...91 %.
По исполнению и типу привода грохоты делят на неподвижные колосниковые, барабанные вращающиеся, эксцентриковые и инерционные виброгрохоты.
Неподвижные грохоты. Такие грохоты представляют собой колосниковые решетки из износостойкой стали с высоким ударным сопротивлением. Их применяют для предварительного грохочения.
Барабанные грохоты. Они имеют наклонный, под углом 5...7°, вращающийся барабан, состоящий из секций с различными размерами отверстий. Загрузка осуществляется в секцию с меньшими размерами отверстий. При трех секционном барабане получают четыре фракции щебня. Диаметры барабанов таких грохотов 600...1000 мм при длине З...3,5 м. Частота вращения грохота зависит от его диаметра и составляет 15...20 мин-1. При большей частоте грохочение прекращается. Производительность их 10...45 м3/ч при мощности двигателя 1,7...4,5 кВт. В связи с низким качеством грохочения и большим расходом энергии барабанные грохоты имеют ограниченное применение.
Эксцентриковые грохоты. Грохот (рис. 3, а) состоит из наклонного под углом 15...25° короба 1 с ситами 6 и 8; шарнирно подвешенного к шейкам приводного эксцентрикового вала 7 с дебалансами 5 и опирающегося на пружины 2. Вращение вала передается от электродвигателя 3 через клиноременную передачу 4. При такой подвеске короба материал на его просеивающей поверхности получает круговые колебания с постоянной амплитудой, равной двойному эксцентриситету вала, при любой нагрузке. Эксцентриковые грохоты изготовляют с двумя ситами размером 1500х3750 мм и амплитудой колебаний 3...4,5 мм и частотой колебаний 800...1400 в минуту.
Рис. 5. Схемы плоских грохотов
Инерционные виброгрохоты. Они делятся на инерционные наклонные (угол наклона сит 10...25°) и инерционные горизонтальные.
Инерционный наклонный виброгрохот (рис. 5, б) имеет приводной механизм, представляющий собой вал 6 с дебалансами 5, опертый на два подшипника, корпуса которых укреплены в стенках короба
1. Короб с ситами 7 и 8 опирается на основание через упругие связи
2. Форма колебаний зависит от расположения неуравновешенных масс и способа подвески короба. Они могут быть круговыми, эллиптическими или прямолинейными (грохоты с пластинчатыми рессорами). Наиболее эффективны грохоты на пружинных опорах. Регулирование амплитуды колебаний достигается сменными дебалансами. В отличие от эксцентриковых в инерционных грохотах с увеличением нагрузки амплитуда колебания короба уменьшается автоматически, защищая конструкцию от перегрузок. Такие грохоты применяют для тяжелых условий работы при товарном грохочении, а также для предварительного грохочения крупнокусковых материалов перед первичным дроблением (вместо сит устанавливают колосниковые решетки в один ярус). Размеры просеивающей поверхности сит 1750х1450 мм, частота вращения вала вибратора порядка 800 мин-1, амплитуда колебаний 3,7...4,5 мм.
Эффективное сортирование достигается с вибраторами направленного действия (рис. 5, в, г).
Инерционный горизонтальный виброгрохот имеет вибровозбудитель прямолинейно направленных колебаний 9, смонтированный на коробе с ситами. Возбудитель состоит из двух параллельно расположенных дебалансных валов, синхронно вращающихся в разных направлениях. Возмущающая сила такого вибратора направлена по прямой, перпендикулярной линии, соединяющей центры дебалансных валов, и изменяется по закону синуса. Угол действия между возмущающей силой и плоскостью сит составляет 35...45°. Короб с ситами опирается на основание через вертикальные пружины. Размеры просеивающей поверхности сит таких грохотов 1250x3000 мм, частота колебаний 500... 700 в минуту, амплитуда колебаний 8... 12 мм, мощность приводного двигателя 5,5 кВт. Горизонтальные виброгрохоты с направленными колебаниями обеспечивают большую удельную производительность и лучшее качество грохочения по сравнению с наклонными.
Техническая производительность грохотов (мэ/ч) при промежуточном и окончательном грохочении.
помол грохот циркулярный сепаратор
Пт = q*AR1*R2*R3,
где q -- удельная производительность 1 м2 сита для определенного размера отверстий (для отверстий от 5 до 70 мм изменяется от 12 до 82 м3/ч);
А -- площадь сита, м2; R1 -- коэффициент, учитывающий угол наклона грохота (для горизонтальных грохотов с направленными колебаниями
R1 = 1,0; для наклонных при угле наклона 9...15° -- 0,45...1,54);
R2 -- коэффициент, учитывающий содержание в данном продукте зерен нижнего класса (при содержании 10... 90 % соответственно 0,58...1,25);
R3 -- коэффициент, учитывающий содержание в нижнем классе зерен меньше размера отверстий сит (при содержании 10..90 % соответственно 0,63...1,37).
При приближенных расчетах можно определять производительность грохота как производительность желоба с определенной пропускной способностью
Пт=3600b*hs*Rp,
где b -- ширина сита, м;
h -- толщина слоя сортируемого материала, м (принимается равной размеру поступающих на сито кусков);
s = 0,05...0,25 м/с -- скорость движения материала вдоль желоба;
Rp = 0,4...0,5 -- коэффициент разрыхления материала.
3. Процесс распределения мелкодисперсных сыпучих материалов в воздушном потоке. Сепараторы
Сущность пневматической (воздушной) классификации заключается в разделении сыпучего материала за счет различных скоростей движения крупных и мелких частиц в воздушном потоке.
Классификацию материалов с размером частиц менее одного миллиметра нецелесообразно проводить в грохотах, так как их удельная производительность при этом весьма низкая. Такие мелкозернистые сухие матtриалы рациональнее разделять в воздушных классификаторах, в которых при определенных условиях более крупные частицы выпадают из потока воздуха под действием сил тяжести или центробежных сил, а мелкие выносятся потоком воздуха в осадительные устройства. Регулированием скорости и траектории движения воздушного потока можно варьировать крупность разделяемых частиц.
В реальных условиях точное разделение частиц по заданной границе обеспечить невозможно, так как скорость движения непрерывно колеблется из-за изменения концентрации частиц, их формы, размеров, местных завихрений газового потока и т.д. Вследствие этого мелкая фракция оказывается загрязненной крупными частицами и наоборот.
Эффективность воздушной классификации определяется по зависимости
Е = (m / m0) 100% ,
где m и m0 - масса мелкого продукта соответственно после сепаратора и в исходном материале.
Засоренность продукта
k = [(m1? m2) /m1]100%
где m1и m2 - масса продукта, соответственно, после сепаратора и после отсева мелкой фракции.
В производственных условиях эффективность разделения составляет 67…80 %, а засоренность - 60…70 %.
Смесь сыпучих материалов в воздушных классификаторах делится на классы вследствие различного действия массовых сил и сил аэродинамического сопротивления на частицы разных размеров и, следовательно, большей скорости движения, приобретаемой крупными частицами. При этом конструкции аппаратов должны обеспечивать регулирование действующих на частицы сил и движение частиц различной крупности в разных направлениях. Частицы граничного размера находятся в динамическом равновесии и в зависимости от колебаний режима движения воздушного потока попадают в крупный или мелкий класс.
Рис. 7. Схемы разделения частиц: а - вертикально-проточная; б - противоточно-центробежная; в - центробежная поперечно-проточная
В процессе воздушной классификации в сепараторах различают три схемы разделения частиц материала (рис. 7): вертикально-проточную, прямоточно-центробежную, центробежную поперечно-проточную. Найдем зависимости, связывающие скорость движения газов с размерами частиц, перемещаемых в требуемых направлениях.
На частицу, движущуюся в газовом потоке в вертикальном канале (рис. 7, а), действуют сила тяжести G и сила давления газа P. При равенстве этих сил частица зависает (витает) в газовом потоке. Размер такой частицы будет «границей» разделения смеси. Более мелкие частицы выносятся газовым потоком, а более крупные - выпадают из потока. Сила давления потока газа на частицу
P = ckфсврd2х02/8,
Где c - коэффициент аэродинамического сопротивления шаровидной частицы;
kф - коэффициент формы частицы (для шаровидной формы kф = 1; для пирамидальной - kф = 1,5; для продолговатой - kф = 1,76);
св - плотность газа, кг/м3;
d - приведенный диаметр частицы, м;
х0- скорость обтекания частицы газом, м/с.
Условие витания частицы
P=G=mg
ckфсврd2х02/8=смрd3g/6,
m - масса частицы, кг; см - плотность материала частицы, кг/м3.
При этом условии частица зависает и скорость обтекания х0 ее воздухом равна скорости движения воздуха хв. Диаметр частицы, по которому проходит граница разделения смеси, равен
d=3ckфсвхв2/(4смg).
Скорость, при которой происходит витание частицы,
хвит=v4смdg/(3ckфсв)
При движении частицы в газовом потоке (P > G) скорость ее движения хч равна разности скоростей движения воздуха и витания частицы:
хч=хв ? хвит.
В сепараторах используется и криволинейная траектория движения газов, когда поток вводится по касательной к стенкам цилиндрического аппарата и выводится по центральной трубе (рис. 7, б). В этом случае траектория потока газа с частицами материала близка к архимедовой спирали, для которой касательная составляющая скорости хф = соnst и произведение радиальной составляющей хR скорости на радиус R расположения рассматриваемой точки хRR = сonst. При этом на частицу действуют сила P давления газа, направленная по радиусу к центру, центробежная сила инерции Pц, направленная по радиусу к периферии, и сила тяжести. Мелкие частицы, для которых P > Pц, выносятся потоком к центру, образуя тонкий продукт, а крупные, для которых P < Pц, движутся к периферии камеры. Условия равновесия частиц граничного размера Pц=P, откуда диаметр частицы, по которому проходит граница разделения, равен
d=3ckфсвхR2R/(4смхф2).
В центробежной поперечно-поточной схеме разделения (рис. 7, в) на частицу действуют центробежная сила Pц, сила давления газа P, направленная вверх, и сила тяжести G. Крупные частицы, на которые преобладающее влияние оказывают центробежные силы, движутся в горизонтальном направлении к периферии и при касании стенки, потеряв скорость, оседают. Мелкие частицы воздушным потоком выносятся вверх. Частицы граничного размера в течение некоторого времени перемещаются по вертикали на расстояние h и по горизонтали - на расстояние l.
Границу разделения определяют из условия равенства времени движения частицы по вертикали фв и горизонтали фг:
h/х1=l/х2
х1и х2 - скорость движения частицы соответственно по вертикали и горизонтали
Скорость движения частицы по вертикали
х1= хв?хвит.
Скорость движения частицы в горизонтальном направлении определяется из равенства действий центробежной силы и силы давления газа на частицу в радиальном направлении:
х2=v4смaцd/(3ckфсв),
aц - центростремительное ускорение, м/с2;
d - граничный диаметр частиц, м:
d=3kфсвl2хв2/[4см(+h)2].
В реальных аппаратах обычно используется сочетание различных схем движения газа, за счет чего обеспечивается более полное использование энергии газовых потоков и разделение материала на несколько фракций.
Конструкции воздушных сепараторов
В химической промышленности преимущественное применение имеют проходные и циркуляционные сепараторы. Проходной сепаратор (рис. 4.а) представляет собой статический аппарат, в котором материал разделяется только за счет энергии сжатого воздуха. Исходный материал вместе со сжатым воздухом поступает по патрубку 1 в корпус 2 сепаратора. Из-за расширения канала, по которому движется смесь, скорость потока уменьшается и крупные частицы выпадают из смеси под действием сил тяжести. Воздушный поток с мелкими частицами проходит по направляющим лопастям 4 во внутренний корпус 3. В корпусе поток закручивается и из него под действием центробежных сил выпадают мелкие частицы. Крупные частицы выводятся из сепаратора по патрубку 7, мелкие - по трубе 6, а отработанный воздух направляется по трубе 5 в пылеочистительные аппараты. Граница разделения регулируется дросселированием потока воздуха и изменением угла установки направляющих лопастей 4.
Недостатком проходных сепараторов является высокий расход сжатого воздуха и их целесообразно применять в установках, в которых сжатый воздух используется для транспортирования материала. Более компактными и экономичными являются циркуляционные сепараторы с собственными генераторами воздушного потока. На рис. 4.б показана схема такого сепаратора с разбрасывающим диском и вентилятором. Исходный материал поступает по патрубку 1 на диск 5, установленный на вращающемся валу 2. Под действием центробежных сил материал движется к периферии диска и стекает с него.
Крупные частицы под действием сил тяжести падают вниз в воронку 11, образуя крупную фракцию, которая выводится из сепаратора по патрубку 9. Вентилятор 3 и крыльчатка 4, вращаемые вместе с диском 5, засасывают воздух из нижней зоны внутреннего корпуса 6, который проходя сквозь материал, сбрасываемый с диска, захватывает средние и мелкие частицы и выносит их в зону вращающейся крыльчатки 4. Здесь под действием центробежных сил средние частицы отбрасываются к стенкам корпуса 6 и стекают вниз, где расположены крупные частицы.
Рис. 8. Схема проходного и циркулярного сепаратора
Мелкие частицы вместе с воздухом вентилятором 3 направляются в пространство между стенками наружного 8 и внутреннего корпусов, где воздух движется вниз по спирали. Окружная скорость потока в этой зоне наибольшая, вследствие чего мелкие частицы отбрасываются центробежной силой к стенкам наружного корпуса, теряют скорость и стекают вниз по трубе 10. Воздух снова через жалюзи 7 поступает во внутренний кожух. Граница разделения частиц регулируется изменением радиуса расположения лопастей крыльчатки 4 и угла лопаток жалюзи 7.
Литература
1. Сиденко П.М., Измельчение в химической промышленности, 2 изд., М., 1977
2. Андреев С.Е., Перов В.А., Зверевич В.В., Дробление, измельчение и грохочение полезных ископаемых, 3 изд., М., 1980
3. Чернилевсий Д.В. Детали машин и механизмов. Учебное пособие - 2-е изд. перероб. и доп. - К.: Выща шк. Головное изд-во 1987г. - 328 с.
4. Мартынов В.Д. Строительные материалы и монтажное оборудование / В.Д. Мартынов, Н.И. Алешин, Б.П. Морозов. М. : Машиностроение, 1990. 352 с.
5. Строительные машины: Учеб. для вузов по спец. С86 ПГС/Д.П. Волков, Н.И. Алешин, В.Я. Крикун, О. Е. Рынсков; Под ред. Д. П. Волкова.--М.: Высш. шк., 1988.
Размещено на Allbest.ru
...Подобные документы
Классификация машин и оборудования для измельчения материалов: щековые, конусные, валковые, дробилки ударного действия. Машины и оборудование для помола, сортировки нерудных материалов. Передвижные дробильно-сортировочные установки. Ковшовые элеваторы.
курсовая работа [3,4 M], добавлен 26.11.2011Понятие сыпучих материалов. Классификация методов сепарирования сыпучих сред. Виды сепараторов. Основные характеристики, конструкция и принцип работы устройства для разделения зерен по длине - цилиндрического триера. Расчет его конструктивных размеров.
курсовая работа [1,6 M], добавлен 24.10.2014Машины для добычи каменных материалов. Классификация методов и машин для измельчения материалов. Оборудование для измельчения каменных материалов, для сортирования и обогащения. Мельницы истирающе-срезающего действия. Дробильно-сортировочные установки.
реферат [732,2 K], добавлен 17.11.2009Свойства материалов, предназначенных для изготовления деталей машин, аппаратов, приборов, конструкций, подвергающихся механическим нагрузкам. Классификация материалов: металлические, электротехнические, магнитные, проводники, полупроводники, диэлектрики.
презентация [670,7 K], добавлен 18.05.2019Общие сведения и классификация бегунов - машин для измельчения материала. Характеристика конструкции, принцип действия и описание процессов, происходящих в машине. Проведение экспериментальных исследований зависимости функции от варьируемых параметров.
курсовая работа [1,9 M], добавлен 08.11.2010Классификация применяемых машин для измельчения материалов: дробилки и мельницы. Назначение, устройство и работа бегуна размалывающего модели 1А18М. Правила технической эксплуатации машины. Общие сведения и виды бегунов. Характер износа деталей машины.
реферат [459,7 K], добавлен 17.05.2015Использование измельчения материала в бегунах в поточно-механизированных линиях. Параметры проектируемой машины. Кинематический и конструкторский расчёт привода машины. Правила технической эксплуатации машины при обслуживании. Схема и карта смазки.
курсовая работа [1,6 M], добавлен 28.11.2014Основные понятия сопротивления материалов. Определение напряжении и деформации. Механические характеристики материалов и расчеты на прочность. Классификация машин и структурная классификация плоских механизмов. Прочность при переменных напряжениях.
курс лекций [1,3 M], добавлен 07.10.2010Характеристика предприятия ОАО "Поливтор", организация ремонтов оборудования. Назначения, техническая характеристика шаровой мельницы сухого помола модели 151М. Описания конструкции основных узлов и принцип работы. Периодичность технических обслуживаний.
дипломная работа [2,6 M], добавлен 09.01.2009Разработка проекта мельницы двухсортного помола ржи с использованием четырехвальцевых станков, производительностью 220 тонн/сутки. Описание технологии и схемы предварительного просушивания и подготовки зерна к помолу. Экономическое обоснование проекта.
курсовая работа [531,0 K], добавлен 13.09.2011Применение операции грохочения в промышленности. Назначение питателей и дозаторов в цепочке выдачи сыпучих материалов в технологические машины. Роль и функции транспортеров в производстве. Использование воронки-весов для работы с горячим агломератом.
реферат [610,5 K], добавлен 05.02.2016Требования к фармацевтической упаковке, ее виды. Классификация тароупаковочных и укупорочных материалов по защитным свойствам. Основные типы флаконов и емкостей. Обзор современных блистерных и картонажных машин. Принципы упаковки лекарственных средств.
курсовая работа [3,1 M], добавлен 16.06.2015Разработка технологии подготовки шлама с установкой сырьевых мельниц. Выбор и обоснование места проектирования цеха помола. Характеристика требуемой марки цемента, выбор сырьевых материалов. Обоснование метода подбора технологического оборудования.
курсовая работа [652,3 K], добавлен 16.09.2014Автоматическое регулирование влажности шлама в трубной шаровой мельнице при максимальной производительности. Ведрение ПИД-регулятора (пропорционально-интегрально-дифференциального) для автоматического регулирования процесса мокрого помола сырья.
курсовая работа [3,6 M], добавлен 21.10.2009Применение дырчатых вальцов, бегунов мокрого помола и глинорастирателей для вторичного измельчения и обработки глиняной массы. Пуск и остановка дырчатых вальцов, наблюдение за ними. Дифференциальные вальцы тонкого помола: основные элементы и строение.
реферат [2,1 M], добавлен 25.07.2010Применение шаровых мельниц для грубого и тонкого помола материалов. Принцип действия механизма, каскадный и водопадный режимы работы мелющих тел. Мельницы периодического действия с неметаллической футеровкой. Критическая и рабочая частота вращения.
курсовая работа [94,1 K], добавлен 07.12.2010Область применения оборудования, обеспечивающего измельчение материалов. Мельницы, применяемые при производстве строительных материалов, их устройство, принцип действия и классификация. Характеристика помольного оборудования разных производителей.
реферат [484,2 K], добавлен 07.05.2011Взаимодействие рабочих органов машин с грунтом. Землеройно-транспортные машины: бульдозеры, среперы. Классификация и функции экскаваторов: одноковшовые строительные, полноповоротные экскаваторы с механическим и гидравлическим приводом, планировщики.
реферат [1,6 M], добавлен 11.01.2014Теоретические основы дробления, измельчения. Свойства материалов подвергаемых измельчению. Требования предъявляемые к продуктам измельчения. Классификация методов машин для измельчения материалов. Щековые и молотковые дробилки, дробильное оборудование.
контрольная работа [691,0 K], добавлен 09.11.2010Классификация механизмов, узлов и деталей. Требования, предъявляемые к машинам, механизмам и деталям. Стандартизация деталей машин. Технологичность деталей машин. Особенности деталей швейного оборудования. Общие положения ЕСКД: виды, комплектность.
шпаргалка [140,7 K], добавлен 28.11.2007