Диагностика машин

Основные принципы и этапы технической функциональной и тестовой диагностики. Оценка и прогноз технического состояния объекта диагностики по результатам прямых или косвенных измерений состояния машин, мониторинг измеряемых и контролируемых параметров.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 13.04.2015
Размер файла 41,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Диагностика - основа обслуживания машин по их фактическому техническому состоянию

Одной из наиболее важных и актуальных проблем современности является повышение качества и надежности механизмов, машин и оборудования в любой отрасли промышленности. Это вызвано постоянным ростом энерговооруженности современных предприятий, заводов, комбинатов, тепловых и атомных станций, морского, воздушного, железнодорожного и других видов транспорта и т.д., оснащением их сложной техникой, внедрением автоматизированных систем обслуживания и управления. машина диагностика тестовый технический

Известны традиционные пути увеличения надежности и ресурса, такие как оптимизация систем, совершенствование конструкции и технологии изготовления отдельных элементов, резервирование механизмов, машин и оборудования, увеличение коэффициента запаса (работа не на полную мощность, не на номинальном режиме и т.п.).

Эти пути наиболее эффективны для систем ограниченной мощности, таких как информационные системы, системы автоматического управления и связи и т.п. Перспективы указанных направлений связаны, в первую очередь, с высокими темпами развития элементной базы подобных систем, ее миниатюризацией и высокой степенью интеграции.

Однако во многих областях промышленности конструкция и технология изготовления отдельных узлов механизмов, машин, оборудования претерпели в течение последних десятилетий незначительные изменения, которые не привели к существенному повышению их надежности и ресурса. В то же время высокая степень резервации механизмов и введение коэффициентов запаса часто невозможны из-за ограничений по массе и габаритам. Поэтому потребовалось изыскание новых путей для решения проблемы повышения надежности и ресурса.

До недавнего времени машины и оборудование, в том числе и на промышленных предприятиях, либо эксплуатировались до выхода их из строя, либо обслуживались по регламенту, т.е. осуществлялось планово-профилактическое техническое обслуживание.

В первом случае эксплуатация оборудования до выхода из строя возможна при использовании недорогих машин и при дублировании важных участков технологического процесса.

Более широкое распространение в настоящее время получило обслуживание по регламенту, т.е. планово-профилактическое техническое обслуживание, что обусловлено невозможностью или нецелесообразностью дублирования и большими потерями при непредусмотренных остановках машин или оборудования. этом случае техническое обслуживание проводится с фиксированными интервалами времени. Эти интервалы часто определяются статистически как период с момента начала работы нового или прошедшего полное техническое обслуживание исправного машинного оборудования до момента, когда ожидается, что не более 2% машинного парка выйдет из строя. Но оказывается, что для многих машин обслуживание и ремонт по регламенту не снижает частоту выхода их из строя. Более того, надежность работы машин и оборудования после технического обслуживания часто снижается иногда временно до момента их приработки, а иногда это снижение надежности обусловлено появлением ранее отсутствующих дефектов монтажа. Очевидно, что увеличение эффективности, надежности и ресурса, а также обеспечение безопасной эксплуатации машин и механизмов тесно связано с необходимостью оценки их технического состояния. Это и определило формирование нового научного направления - технической диагностики, которое получило особо широкое развитие в последние десятилетия.

Техническая диагностика - это область науки и техники, изучающая и разрабатывающая методы и средства определения и прогнозирования технического состояния механизмов, машин и оборудования без их разборки.

Следует отметить, что техническое состояние механизмов, машин и оборудования в определенной степени оценивали и раньше. Это были измерительные приборы, системы контроля. Однако ограниченная информация о машинах и механизмах далеко не всегда позволяла выявить причины их отказов и, тем более, обнаружить дефект в объекте, который непосредственно не сказывался на его функционировании, но повышал вероятность отказа и, следовательно, снижал надежность и ресурс таких машин и механизмов.

В существующих системах управления, регулирования, контроля и диагностики эксплуатируемого оборудования основной особенностью является то, что операции контроля и защиты обычно автоматизированы, а решение задач диагностики до недавнего времени возлагалось на оператора или ремонтную бригаду. В этом случае решение задач диагностики усложнялось по следующим причинам: большой объем обрабатываемой информации, необходимость логического анализа сложных взаимосвязанных процессов, быстротечность рабочих процессов, опасность запоздалой или ошибочной оценки технического состояния.

Создание автоматизированных средств диагностики вывело техническую диагностику на еще более высокую ступень. В настоящее время успехи развития таких областей науки, как теории распознавания и контролеспособности, которые являются составной частью технической диагностики, создали предпосылки, для того чтобы создание и совершенствование методов и средств технической диагностики, в особенности автоматизированных, стали наиболее эффективным путем увеличения надежности и ресурса машин и оборудования.

Использование методов и средств технической диагностики позволяет значительно уменьшить трудоемкость и время ремонта и таким образом снизить эксплуатационные расходы. Следует отметить, что эксплуатационные расходы превышают расходы изготовления в несколько раз. Это превышение составляет, например, для самолетов в 5 раз, для автотранспорта в 7 раз, для станков в 8 раз и более. Если учесть, что за время эксплуатации механизм подвергается нескольким десяткам профилактических осмотров с частичной разборкой, до 10 вынужденных и плановых средних ремонтов и до 3 капитальных ремонтов, можно оценить, какой экономический эффект будет получен за счет внедрения средств технической диагностики.

По данным международной конфедерации по измерительной технике и приборостроению IМЕСО, только за счет внедрения средств диагностики, например для энергетических установок, сокращаются трудоемкость и время ремонта более чем на 40%, уменьшается расход топлива на 4% и увеличивается коэффициент технического использования оборудования на 12%.

Значительный экономический эффект достигается при переходе с обслуживания и ремонта по регламенту на ремонт и обслуживание по фактическому состоянию. Так, обслуживание роторных машин одного из химических комбинатов по техническому состоянию позволило снизить общее число проводимых техобслуживаний и ремонтов с 274 до 14. На нефтеперерабатывающем комбинате затраты на проведение технического обслуживания электродвигателей снизилось на 75%. На бумажной фабрике экономия в течение первого года составила не менее $250000, что в десять раз перекрыло расходы предприятия на закупку аппаратуры для мониторинга механических колебаний. На атомной электростанции в течение одного года были достигнуты экономия в $3 миллиона США за счет снижения затрат на проведение технического обслуживания и дополнительное увеличение доходов в размере $19 миллионов США за счет сокращения простоев.

Эти данные получены фирмой "Брюль и Къер" при внедрении систем мониторинга состояния машинного оборудования. Следует отметить, что самые современные средства технической диагностики, особенно автоматизированные, представляют собой новое поколение еще более эффективных систем, не требующих специальной подготовки обслуживающего персонала, что позволяет получить гораздо больший экономический эффект.

Повышенное внимание, уделяемое средствам технической диагностики специалистами по изготовлению и эксплуатации машин, механизмов и оборудования во многих отраслях промышленности, объясняется тем, что внедрение таких средств позволяет:

предупреждать аварии,

повышать безотказность машин и оборудования,

увеличивать их долговечность, надежность и ресурс,

повышать производительность и объем производства,

прогнозировать остаточный ресурс,

снижать затраты времени на ремонтные работы,

сокращать эксплуатационные затраты,

уменьшать количество обслуживающего персонала,

оптимизировать количество запасных деталей,

снижать затраты на страхование.

Таким образом, безопасная эксплуатация, повышение надежности и значительное увеличение ресурса машин, механизмов и оборудования невозможны в настоящее время без широкого применения методов и средств технической диагностики. Внедрение средств технической диагностики позволяет отказаться от обслуживания и ремонта по регламенту и перейти к прогрессивному принципу обслуживания и ремонта по фактическому состоянию, что дает значительный экономический эффект.

В развитии средств оценки технического состояния машин и оборудования можно выделить 4 основных этапа:

контроль измеряемых параметров,

мониторинг контролируемых параметров,

диагностика машин и оборудования,

прогноз изменения их технического состояния.

При контроле машин и оборудования достаточно информации о величинах измеряемых параметров и зонах их допустимых отклонений. При мониторинге контролируемых параметров необходима дополнительная информация о тенденциях изменения измеряемых параметров во времени. Еще больший объем информации требуется при диагностике машин и оборудования: определить место возникновения дефекта, идентифицировать его вид и оценить степень его развития. И наиболее сложной задачей является прогноз изменения технического состояния, позволяющий определить остаточный ресурс или период безаварийной работы.

В 'Настоящее время под термином «мониторинг технического состояния» понимается весь комплекс процедур оценки состояния машин или оборудования:

* защита от внезапных поломок,

предупреждение об изменении технического состояния оборудования,

обнаружение на ранних этапах зарождающихся дефектов и определение места их появления, вида и степени развития,

прогноз изменения технического состояния оборудования.

2. Основной принцип технической диагностики

Оценка и прогноз технического состояния объекта диагностики по результатам прямых или косвенных измерений параметров состояния или диагностических параметров и составляет суть технической диагностики.

Само по себе значение параметра состояния или диагностического параметра еще не дает оценки технического состояния объекта. Чтобы оценить состояние машины или оборудования необходимо знать не только фактические значения параметров, но и соответствующие эталонные значения.

Разность между фактическим ф и эталонным эт значениями диагностических параметров называется диагностическим симптомом.

= эт - ф

Таким образом, оценка технического состояния объекта определяется отклонением фактических значений его параметров от их эталонных значений.

Погрешность, с которой оценивается величина диагностического симптома, в значительной степени определяет качество и достоверность диагноза и прогноза контролируемого объекта. Эталонное значение указывает, какую величину будет иметь соответствующий параметр у исправного хорошо отрегулированного механизма, работающего при такой же нагрузке и таких же внешних условиях.

Математическая модель объекта диагностики может быть представлена набором формул, по которым рассчитываются эталонные значения всех диагностических параметров. Каждая формула должна учитывать условия нагрузки объекта и существенные параметры внешней среды.

3. Термины и определения

Основные термины и определения технической диагностики регламентированы действующими стандартами, например, российским ГОСТом "Техническая диагностика. Основные термины и определения". Некоторые из устоявшихся терминов еще не вошли в соответствующие регламентирующие документы. Ниже приведены лишь наиболее часто употребляемые термины и определения.

Техническое состояние - совокупность свойств объекта, определяющих возможность его функционирования и подверженных изменению в процессе производства, эксплуатации и ремонта.

Работоспособный объект - объект, который может выполнять возложенные на него функции.

Зарождающийся дефект - потенциально опасное изменение состояния объекта в процессе его эксплуатации, при котором значение информативного параметра (или параметров) не вышло за пределы допусков, задаваемых в технической документации.

Дефект - изменение состояния объекта в процессе его изготовления, эксплуатации или ремонта, которое потенциально может привести к уменьшению степени его работоспособности.

Неисправность - изменение состояния объекта, приводящее к уменьшению степени его работоспособности.

Отказ - изменение состояния объекта, исключающее возможность продолжения его функционирования.

Параметры состояния - количественные характеристики свойств объекта, определяющие его работоспособность, заданные технической документации на изготовление, эксплуатацию и ремонт.

Мониторинг - выполняемые без вмешательства в функционирование объекта процессы измерения, анализа и прогнозирования контролируемых параметров или характеристик объекта с отображением их во времени, сравнением с ретроспективными данными и с пороговыми значениями.

Защитный мониторинг - мониторинг, обеспечивающий в случае возникновения аварийной ситуации прекращение функционирования объекта.

Прогнозирующий мониторинг - мониторинг с прогнозом изменения контролируемых характеристик объекта на время, определяемое длительностью прогноза.

Диагностика (диагностирование) - процесс определения состояния объекта.

Тестовая диагностика - процесс определения состояния объекта по его реакции на внешнее воздействие определенного типа

Функциональная (рабочая) диагностика - процесс определения состояния объекта без нарушения режима его функционирования.

Диагностические показатели - значения параметров или характеристик объекта, совокупность которых определяет состояние объекта.

Диагностический признак - свойство объекта, качественно отражающее его состояние, в том числе и появление различных видов дефектов.

Диагностический сигнал - контролируемая характеристика объекта, используемая для выявления диагностических признаков. По диагностическому сигналу могут классифицироваться виды мониторинга и диагностики, например, тепловой или вибрационный мониторинг и диагностика.

Диагностический параметр - количественная характеристика измеряемого диагностического сигнала, входящая в совокупность показателей состояния объекта.

Диагностический симптом - это разность между фактическим и эталонным значениями диагностического параметра.

Диагностика в пространстве состояний - процесс определения состояния объекта по результатам непосредственного измерения параметров состояния.

Диагностика в пространстве признаков - процесс определения состояния объекта по результатам измерения диагностических параметров, определяющих диагностические признаки, в том числе косвенно связанные с параметрами состояния объекта.

Диагностическое правило - совокупность диагностических признаков и параметров, характеризующих появление в объекте определенного вида дефектов или неисправностей, и пороговых значений, разделяющих множества бездефектных объектов и объектов с разной величиной дефекта.

Диагностическая модель - совокупность диагностических правил по всем потенциально опасным дефектам в объекте диагностики.

Алгоритм диагностики - совокупность предписаний по выполнению определенных действий, необходимых для постановки диагноза в соответствии с конкретной диагностической моделью объекта.

Диагноз - заключение о состоянии технического объекта.

Прогноз - заключение о степени работоспособности объекта в течение прогнозируемого периода, вероятности его отказа за этот период или об остаточном ресурсе объекта.

Технические средства мониторинга - средства, предназначенные для измерения и анализа контролируемых характеристик объекта, а также для прогноза их возможных изменений.

Программное обеспечение для мониторинга - программное обеспечение для поддержки баз данных выполняемых для мониторинга измерений и/или для управления этими измерениями.

Технические средства диагностики - средства, предназначенные для измерения диагностических параметров и постановки диагноза.

Система мониторинга и диагностики - совокупность объекта, технических средств мониторинга и диагностики, а также (при необходимости) оператора и эксперта, обеспечивающая постановку диагноза и прогноза состояния объекта.

Автоматическая диагностика - процесс определения состояния объекта диагностики без участия оператора по данным измерений, выполненных техническими средствами диагностики либо с помощью оператора, либо автоматически.

Программы автоматической диагностики - программное || тспечение, позволяющее заменить эксперта персональным компьютером при решении типовых диагностических задач.

4. Разделы технической диагностики

Техническая диагностика вращающегося оборудования - это направление науки и техники, находящееся на стыке многих областей знаний. Для разработки и эксплуатации систем диагностики вращающегося оборудования необходимо иметь знания и практические навыки в таких областях, как:

теория машин и механизмов, позволяющие описать работу объекта диагностики и выбрать основные виды диагностических сигналов;

методы формирования и распространения диагностических сигналов в объекте диагностики, позволяющие оптимизировать объем диагностических измерений;

методы определения влияния дефектов на функционирование объекта диагностики и на свойства диагностических сигналов, позволяющие выбирать и оптимизировать диагностические признаки различных дефектов и неисправностей;

теория сигналов и теория информации, позволяющие получать максимум диагностической информации при минимуме измерений;

теория и техника измерений и анализа сигналов, позволяющие оптимизировать качество диагностических измерений;

теория распознавания состояний, позволяющая с максимально возможной достоверностью определять состояние объекта и идентифицировать дефекты по результатам диагностических измерений;

методы автоматизации различных процессов, позволяющие автоматизировать измерения и анализ диагностических сигналов, постановку диагноза и составление отчетных материалов;

компьютерная техника и операционные системы, позволяющие эксплуатировать современные технические средства диагностики. В технической диагностике можно выделить два взаимосвязанных и взаимопроникающих направления - теория распознавания и теория контролеспособности.

Теория распознавания позволяет решить основную задачу технической диагностики, а именно, распознавание состояния технической системы в условиях ограниченной информации. Она изучает алгоритмы распознавания применительно к задачам диагностики, обычно это задачи классификации. Алгоритмы распознавания часто основываются на диагностических моделях, которые устанавливают связь между состояниями технической системы и их отображениями в пространстве диагностических сигналов. Одной из проблем распознавания являются правила принятия решений (исправен объект или не исправен), что всегда связано с риском ложной тревоги и пропуска цели. Для решения диагностических задач, а именно, определения исправен объект или нет, целесообразно использовать методы статистических решений.

В технической диагностике кроме теории распознавания следует выделить еще одно важное направление - теорию контроле-способности. Контролеспособностью называется свойство изделия обеспечивать достоверную оценку своего технического состояния и раннее обнаружение неисправностей и отказов. Контролеспособность обеспечивается конструкцией изделия и системой технической диагностики.

К важнейшим задачам теории контролеспособности можно отнести изучение и разработку средств и методов получения диагностической информации, автоматизированный контроль состояния, который предусматривает обработку диагностической информации и формирование управляющих сигналов, разработку алгоритмов поиска неисправностей, диагностических тестов, минимизации процесса установления диагноза и т.д.

В технической диагностике вращающегося оборудования абсолютное большинство диагностических задач решается методами виброакустической диагностики, в которой вопросы контролеспособности объекта являются наиболее сложными, а необходимые для диагностики разделы знаний в большинстве случаев не входят и дисциплины, традиционно читаемые инженерам-механикам.

Для практического освоения виброакустической диагностики, и первую очередь, необходимо изучить:

влияние дефектов на шум и вибрацию машин и механизмов,

методы и средства измерения и анализа шума и вибрации,

методы обнаружения и идентификации дефектов по сигналу вибрации и шума.

5. Основные этапы технической диагностики

Первым этапом оценки технического состояния любого объекта является определение номенклатуры дефектов, которые представляют наибольшую опасность для его функционирования и должны обнаруживаться в процессе диагностики. Для ее решения проводятся специальные исследования причин наиболее частых отказов объектов диагностики или их аналогов, а также тех изменений параметров состояния, которые измеряются в процессе предремонтной дефектации аналогичных объектов, отработавших межремонтный ресурс.

Второй этап - это определение совокупности максимально возможных параметров состояния, диагностических признаков и диагностических параметров, которые могут быть измерены для определения технического состояния объекта. (Избыточность параметров в этой совокупности необходима для того, чтобы выбрать из всех возможных параметров те, которые наиболее доступны для измерения, имеют минимальные ошибки определения диагностических симптомов и позволяют обнаруживать дефекты на стадии их зарождения.) Как правило, вторая задача решается на основе многочисленных опубликованных результатов исследований влияния дефектов на разные параметры состояния и диагностические параметры сигналов контролируемых объектов.

Следующий, третий этап оценки технического состояния - это оптимизация совокупности измеряемых параметров состояния и диагностических параметров. Эта совокупность должна отражать развитие всех дефектов, определяющих ресурс контролируемого узла или машины в целом. При этом желательно, чтобы каждый параметр из выбранной совокупности зависел бы преимущественно от одного вида дефекта. При выборе параметров предпочтение отдается тем, которые в значительной степени зависят от дефектов и слабо от режимов и условий работы, наиболее доступны для измерения, имеют минимальные ошибки определения диагностических симптомов и позволяют обнаруживать дефекты на стадии их зарождения.

Для оценки технического состояния объекта необходимо определять для каждого параметра не только его эталонное значение, которое характеризует состояние бездефектного объекта, но и его пороговые значения, характеризующие состояние объекта с дефектом определенной величины, т.е. определяющие допустимую величину изменения данного контролируемого параметра.

Таким образом, значение параметра состояния или диагностического параметра, соответствующее состоянию объекта с дефектом определенной величины, принято называть пороговым значением (пороговым уровнем) параметра при этом виде дефекта. Параметр состояния или диагностический параметр может иметь несколько, например, три пороговых значения, характеризующих, соответственно, зарождающийся, средний и сильный дефекты.

Эталонные значения параметров состояния и диагностических параметров могут определяться различными способами. Один из них - расчетный с использованием математической модели объекта.

Математическая модель объекта может представлять собой набор формул, по которым рассчитываются эталонные значения всех выбранных параметров для конкретного режима работы объекта с учетом конкретных внешних условий. В нее же входят и формулы, определяющие пороги допустимых значений этих же параметров при появлении тех или иных дефектов.

Еще один способ определения эталонных и пороговых значений - это определение их по результатам непосредственных измерений параметров состояния или диагностических параметров. При этом эталонные и пороговые значения могут определяться как по измерениям одних и тех же параметров группы одинаковых дефектов, работающих в одинаковых режимах и внешних условиях, так и по периодическим измерениям каждого из этих параметров у одного объекта.

Пороговые значения дефектов - это термин, который используется для определения пороговых значений величин диагностических параметров, характеризующих диагностические признаки дефекта конкретного вида. Пороговые значения дефектов также могут определяться различными способами. Один из них - расчетный с использованием математической модели объекта диагностирования, если в модель включены соответствующие формулы для расчета влияния дефектов на параметры состояния или диагностические параметры. Пороговые значения дефектов могут определяться и по результатам экспериментальной оценки эталона параметра бездефектного объекта диагностики эт и статистической величины ошибки измерения эталона, например 2, где -| среднеквадратическое отклонение параметра. Это значение, например эт+2 и может быть принято за пороговое значение дефекта в том случае, если имеется априорная информация о диапазоне изменения величины диагностического параметра в зависимости от величины дефекта и известно, что этот диапазон в несколько раз превышает ошибку измерения эталона. Еще один способ определения пороговых значений дефектов - экспериментальное многократное моделирование дефектов в однотипных объектах диагностики со статистической оценкой величины соответствующего диагностического симптома.

В технической диагностике, как уже упоминалось, в зависимости от ошибки измерения диагностического симптома может использоваться несколько пороговых значений дефектов. Если погрешность измерения симптома велика, чаще всего используется два порога - порог допустимых отклонений диагностического параметра от эталона (порог появления дефекта) и порог аварийного отклонения диагностического параметра от эталона. При использовании чувствительных к появлению дефектов диагностических параметров, позволяющих достаточно точно определять величины дефектов, количество порогов может быть больше, например пороги слабого, среднего и сильного дефекта, а также порог аварийного отклонения состояния объекта.

Следует отметить, что практически во всех случаях величины порогов, определяемые как расчетными, так и экспериментальными способами, требуют корректировки в процессе адаптации технических систем диагностики к условиям их работы.

После решения третьей, наиболее сложной с практической точки зрения задачи, оптимизации диагностических параметров с построением эталонов и пороговых значений, необходимо выбрать методы и технические средства измерений и анализа диагностических сигналов, а также, если это возможно, параметров состояния объекта диагностики. На этом этапе также осуществляется выбор точек контроля диагностических параметров и режимов работы объекта во время диагностирования. Основной задачей этого выбора является минимизация затрат на диагностические измерения без потерь качества диагностики, т.е. с сохранением минимальной вероятности пропуска дефектов в процессе диагностирования.

Следующий этап - создание диагностической модели, т.е. совокупности диагностических параметров и правил их измерения, их эталонных значений и пороговых значений дефектов. Кроме этого в диагностическую модель входят правила принятия решений в тех случаях, когда одним и тем же дефектам соответствует группа различных признаков и параметров и, что не менее сложно, когда один и тот же признак или параметр отвечает за появление разных дефектов в различных режимах работы объекта диагностики.

Современные системы диагностики кроме оценки состояния объекта дают возможность прогноза его работоспособности. Для этого анализируются тренды, представляющие собой зависимость диагностических симптомов от времени.

На рис.3а представлен тренд, характеризующий четыре этапа изменения характеристик вибрации, что соответствует четырем этапам жизненного цикла машины или оборудования. Первый этап Т1 - приработка машины, второй Т2 - нормальная работа, третий Т3 -развитие дефекта, четвертый Т4 - этап деградации (устойчивое развитие цепочки дефектов с момента, когда появляется потребность к обслуживании или ремонте объекта, до момента возникновения аварийной ситуации).

Наибольшая практическая сложность для решения задач диагноза и прогноза состояния машин возникает на первом этапе. Это обусловлено возможностью появления специфических дефектов изготовления и монтажа машины, многие из которых после приработки исчезают, что затрудняет дальнейшую оценку ее состояния.

Существует два основных вида прогнозирования состояния объектов диагностики. Первый - по тренду, построенному в результате аппроксимации ретроспективных данных диагностических симптомов с дальнейшей экстраполяцией аппроксимирующей функции. В этом случае прогнозирование требует знания предельного значения диагностического симптома пр и фактической кривой тренда, который совсем не обязательно бывает линейным и может характеризоваться большим разбросом точек. При условии монотонности тренда остаточный ресурс может быть оценен в первом приближении как интервал времени с момента последнего измерения диагностического параметра до момента времени, соответствующего точке пересечения тренда с линией, характеризующей предельное значение диагностического симптома пр .

Второй вид прогнозирования - по заранее известному тренду, построенному с момента начала нормальной работы однотипных машин до полного их выхода из строя, т.е. по всему жизненному циклу подобных машин. Тогда остаточный ресурс в первом приближении может быть оценен как разность времени tпр, соответствующего предельному значению диагностического симптома пр, и времени tизм, соответствующего значению диагностического симптома изм на момент измерения диагностического параметра.

Во многих практических случаях тренды могут быть немонотонными. Так, представлен тренд, участок I которого характеризует развитие одного дефекта, на участке II наблюдается стабилизация уровня вибрации и на участке III производная изменения уровня вибрации увеличивается в результате появления еще одного дефекта. В этом случае достоверный прогноз состояния объекта и оценка остаточного ресурса возможны только на последнем участке развития цепочки дефектов.

6. Функциональная и тестовая диагностика

По тем действиям, которые производятся с объектом, техническую диагностику можно разделить на функциональную (рабочую) и тестовую.

Функциональная диагностика осуществляется без нарушения режимов работы объекта, т.е. при выполнении им своих функций. Все измерения или другие виды оценки параметров состояния и диагностических параметров, анализ результатов и принятие решения выполняются до того, как по результатам оценки состояния формируется, если это необходимо, результирующее воздействие на объект, например, прекращается его работа или он переводится на другой режим функционирования.

По способу получения диагностической информации функциональная диагностика подразделяется на вибрационную, тепловую, электрическую и т.п.

Тестовая диагностика - это определение состояния объекта по результатам его реакции на внешнее воздействие. Отличительной особенностью этого вида диагностики является использование источника внешнего воздействия, например, генератора тестовых сигналов (рис.4). Если генератором тестовых сигналов является источник определенного вида излучений, например акустических, рентгеновских, электромагнитных и других, то такой вид тестовой диагностики часто называют дефектоскопией.

Генератором тестовых сигналов (воздействий) может быть и система управления объектом, а самим воздействием - включение (выключение) объекта, переход на другой режим и т.п. Диагностическая информация в этом случае содержится в переходных процессах, сопровождающих смену режима работы объекта.

К тестовым воздействиям с диагностической тоски зрения можно отнести все виды неразрушающих испытаний объектов, например, испытания повышенным напряжением электрических машин, аппаратов и сетей на предмет обнаружения нарушений изоляции, испытания оборудования на предельных нагрузках или давлениях, тепловые испытания и т.д.

Тестовая диагностика существовала уже в начале XX века и представляла собой основной вид технической диагностики, оставляя за функциональной диагностикой лишь решение отдельных задач, и в первую очередь, задач аварийной защиты технических систем. Функции аварийной защиты выполняли средства контроля таких параметров состояния объекта, которые, с одной стороны, значительно изменялись на начальных стадиях развития аварийной ситуации, а, с другой стороны, были доступны для измерения простейшими средствами контроля.

Во второй половине XX века стали интенсивно развиваться методы и технические средства мониторинга технических систем, которые, не нарушая режимов работы, обеспечивали слежение и глубокий анализ многих характеристик и свойств этих систем. Вместе с мониторингом стала развиваться и функциональная диагностика, которая взяла на себя функции интерпретации причин обнаруживаемых при мониторинге изменений характеристик и свойств технических систем.

И лишь в последнее десятилетие XX века глубокая функциональная диагностика технических объектов получила стимул для интенсивного развития. Он связан с реальным переводом технических объектов, и особенно машин и оборудования, с обслуживания и ремонта по регламенту на ремонт и обслуживание по фактическому состоянию. Для реализации такого перевода потребовались новые методы и средства технической диагностики, которые смогли бы обеспечить глубокую профилактическую диагностику объектов с долгосрочным прогнозом состояния. Естественно, что методы функциональной диагностики стали основой для разработок в этой области и лишь в редких случаях к ним добавлялись наиболее эффективные из методов тестовой диагностики технических систем.

Профилактическая (превентивная) диагностика технических систем, объединяющая лучшие из достижений функциональной и тестовой диагностики, по своим задачам во многом похожа на медицинский контроль профессиональной пригодности людей, работающих в опасных условиях, и включающий в себя кроме периодического общего контроля их здоровья, еще и раннюю диагностику, и предупреждение профилактических заболеваний. Задачи такой диагностики несколько отличаются от задач мониторинга и тестовой диагностики, а их решение требует разработки более тонких методов и более эффективных средств массового диагностического обслуживания. В последние годы в технической диагностике этим вопросам уделяется наибольшее внимание.

7. Методология технической диагностики

Методология диагностики технических объектов включает в себя описание их бездефектных состояний и состояний с различными видами дефектов, выбор контролируемых параметров состояния и/или диагностических сигналов, оптимизацию диагностических параметров и средств их измерения и, наконец, составление алгоритмов постановки диагноза и прогноза.

При составлении подобных алгоритмов необходимо классифицировать возможные состояния объектов. Чаще всего эти состояния разбиваются на два подмножества - работоспособные и неработоспособные. Для подмножества работоспособных состояний «оставляются алгоритмы определения и прогноза степени работоспобности объекта, поиска дефектов, а для подмножества неработоспособных состояний - только алгоритмы поиска неисправностей (дефектов). В таком случае процесс формирования технического диагноза может быть представлен в виде структурной схемы.

Виброакустическая диагностика имеет свою особенность - она дает наиболее эффективные результаты в основном тогда, когда объект может функционировать и в нем формируются колебательные силы, возбуждающие вибрацию и/или шум. Именно поэтому в виброакустической диагностике множество состояний объекта разбивается минимум на два подмножества - множество бездефектных состояний и множество состояний с дефектами (неисправностями), при которых объект остается работоспособным, но степень его работоспособности снижается. Те же состояния, когда объект теряет работоспособность, исключаются из рассмотрения в виброакустической диагностике и ими занимаются обычно в рамках другой области техники, называемой дефектацией.

Объект может находиться в конечном множестве состояний S, разделяемом на два подмножества S1 (бездефектные состояния, различающиеся, например, режимами работы объекта) и S2 (состояния с различными видами дефектов, при которых объект остается работоспособным). Каждое состояние из подмножества S2 отличается степенью или запасом работоспособности.

Состояние объекта характеризуется совокупностью диагностических показателей d1, d2,…, dk, которая представляет собой вектор состояния D:

D = (d1, d2,…, dk).

Диагностические показатели могут представлять собой параметры или характеристики. В качестве параметров могут быть использованы, например, уровень вибрации или акустического шума, давление, сопротивление изоляции, температура и т.п. В качестве характеристик могут быть использованы показатели, характеризующие форму кривой, например огибающая спектра сиг нала вибрации или шума ("маска"), затухание, крутизна и т.п.

Условие работоспособности задают областью работоспособности исходя из следующих предположений:

вектор состояний оборудования определен,

существует номинальный вектор состояний,

отклонения вектора состояний от номинального допускают только в определенных пределах,

допустимые отклонения определяют область работоспособности.

Условия работоспособности задают по-разному для случае использования в качестве диагностического показателя параметров или характеристик.

Если в качестве диагностического показателя используете один параметр, то условия работоспособности задаются неравенствами, ограничивающими его значение с одной или с двух сторон. Таким образом, объект работоспособен, если все неравенств выполняются:

di > diн , di < diв ,

или

diн < di < diв ,

где di , diн и diв - соответственно, текущее, нижнее допустимое и верхнее допустимое значения диагностического параметра.

Каждый из диагностических показателей состояния dj может определяться по совокупности диагностических параметров dji , … , dj1:

dj = dji , … , dj1

Для каждого диагностического параметра di существует номинальное значение d0i, область допустимых отклонений 0i и предельное отклонение (порог опасного изменения параметра) iпр , при превышении которого объект считается неработоспособным и должен быть остановлен.

Объект считается бездефектным, если для каждого параметра выполняется неравенство

| di - d0i | ? d0i ,

где 0i - порог допустимого отклонения.

Объект считается неработоспособным, если хотя бы для одного| из параметров выполняется неравенство

| di - d0i | > iпр,

где iпр - порог опасного изменения параметра.

Во всех других случаях объект имеет ограниченную работоспособность.

В качестве диагностических показателей могут использоваться не только параметры, но и характеристики объекта у = f(х), где x и у - входная и выходная переменные соответственно. В последнем случае условие работоспособности объекта определяется отклонения р(f,) текущей характеристики f(х) объекта от номинальной (х):

где р - фиксированный параметр, определяющий критерий принятия решения о степени отклонения текущей характеристики от номинальной.

При р=1 выражение дает оценку среднего отклонения (критерий среднего отклонения) :

При р=2 получим среднеквадратическое отклонение, т.е большее отклонение будет иметь больший вес (критерий средне-квадратического отклонения):

При р = основной вклад в выражение вносит только одно максимальное отклонение (критерий равномерного приближения) :

x(a,b)

В общем случае условие работоспособности представляется в виде

где - допустимое отклонение.

Если характеристики у = f(х) оцениваются по точкам на ограниченном интервале значений входной переменной х а,b , то условие работоспособности задают в виде неравенств для каждой точки:

Полагают, что объект работоспособен, если последние неравенства выполняются для всех без исключения точек, входящих в диапазон (а, b).

Сложные объекты в целом оцениваются как работоспособные при условии работоспособности каждого его узла или структурной единицы.

В случаях ограниченной работоспособности контролируемого объекта при любой степени (запасе) его работоспособности задами ми диагностики являются идентификация и прогноз развития имеющихся дефектов, определение интервала безаварийной работы или остаточного ресурса объекта.

8. Выбор диагностического сигнала

Оценить состояние оборудования можно по величинам свойств: механических (износ, деформация, перемещение и т.п.); электрических (напряжение, ток, мощность и др.); химических состав газов, смазки и т.п.), а также по излучению энергии (тепловой, электромагнитной, акустической и т.п.). Эти величины, преобразованные, как правило, в электрические сигналы, обрабатывают специальные технические средства, а оператор принимает решение об изменении режима работы, о возможности дальнейшего использования оборудования, о мерах, которые необходимо принять для поддержания надежности, а при полной автоматизации оператор получает рекомендации, что делать.

При выборе диагностического сигнала для решения такой сложной задачи, как оценка технического состояния машины или оборудования с определением места возникновения дефекта, идентификацией вида дефекта и степени его развития, а также прогнозирование изменения технического состояния объекта, требуется большой объем диагностической информации.

Такие диагностические сигналы, как температура, давление, напор жидкости, наличие металлических частиц в смазке и т.п., можно характеризовать практически только одним параметром - их величиной (если не говорить о присущих большинству сигналов таких параметрах, как, например скорость их изменения, инерционность и т.п.).

Значительно больший объем диагностической информации содержится в акустическом или гидродинамическом шуме и вибрации - это их общий уровень, уровни в определенных полосах частот, соотношения между этими уровнями, амплитуды, частоты и начальные фазы каждой составляющей, соотношения между амплитудами и частотами и т.д. Таким образом, именно сигналы вибрации и шума в наибольшей степени удовлетворяют требованию, предъявляемому к диагностическим сигналам для решения задач глубокой диагностики и прогноза состояния машин.

Еще одним важным обстоятельством в пользу выбора вибрации машин и оборудования в качестве диагностического сигнала является то, что дополнительные колебательные силы, возникающие из-за дефекта, возбуждают вибрацию непосредственно в месте его появления.

Вибрация практически без потерь распространяется до точки ее измерения, и, поскольку машина «прозрачна» для вибрации, появляется возможность исследовать колебательные силы, действующие в работающей машине. Это позволяет диагностировать ее на рабочем месте, без остановки и разборки.

Размещено на Allbest.ru

...

Подобные документы

  • Организация и режим работы станции диагностики гусеничных машин. Определение количества технического обслуживания и ремонтов по номограмме. Планировка станции диагностики гусеничных машин. Расчет численности работающих, количества постов и площади.

    курсовая работа [81,8 K], добавлен 05.12.2012

  • Сущность, физические основы и методы диагностики автомобилей. Выбор диагностических параметров для оценки технического состояния и постановка диагноза. Структурно-следственная схема цилиндропоршневой группы двигателя. Средства технической диагностики.

    курсовая работа [439,2 K], добавлен 18.02.2009

  • Определение технического состояния машин без разборки и в отделениях технической диагностики. Выполнение технологических процессов разборки, сборки, обкатки машин, узлов и агрегатов при ремонте в мастерских хозяйств и на специализированных предприятиях.

    отчет по практике [25,9 K], добавлен 04.09.2014

  • История дисциплины "Техническая диагностика". Теоретические принципы технической диагностики. Установление признаков дефектов технических объектов. Методы и средства обнаружения и поиска дефектов. Направления развития методов и средств диагностики.

    реферат [1,1 M], добавлен 29.09.2008

  • Основные этапы диагностирования трубопроводов. Анализ методов диагностики технического состояния: разрушающие и неразрушающие. Отличительные черты шурфового диагностирования и метода акустической эмиссии. Определение состояния изоляционных покрытий.

    курсовая работа [577,3 K], добавлен 21.06.2010

  • Анализ вибрации роторных машин, направления проведения диагностики в данной сфере. Практика выявления дефектов деталей машин и оценка его практической эффективности. Порядок реализации расчета частоты дефектов с помощью калькулятора, анализ результатов.

    учебное пособие [3,2 M], добавлен 13.04.2014

  • Основные принципы и методы диагностики. Особенности метода вибрационного контроля и акустической эмиссии. Осевые компрессоры: основные элементы, принцип действия. Краткая характеристика программы диагностики неисправностей агрегата ГПА-Ц-6,3 и ГТК-10-4.

    курсовая работа [3,1 M], добавлен 02.03.2015

  • Оценка технического состояния магистрального нефтепровода "Холмогоры-Клин" на участке "Лысьва-Пермь", диаметром 1220 мм с заменой трубы по результатам внутритрубной диагностики. Виды и описание ремонтных конструкций. Организация процесса строительства.

    курсовая работа [1,1 M], добавлен 28.01.2014

  • Средства контроля и диагностики тягового подвижного состава. Стенды и оборудование для испытания топливной аппаратуры. Характеристика системы мониторинга дизеля. Технико-экономическое обоснование применение переносного диагностического комплекса.

    дипломная работа [5,5 M], добавлен 08.03.2018

  • Основные причины возникновения паразитных колебаний в ротационных машинах, методы их измерения и отслеживания, применяемое при этом оборудование. Механизм диагностики и устранения паразитных колебаний. Анализ оценка точности измерительных процессов.

    дипломная работа [2,0 M], добавлен 30.04.2011

  • Методика количественной оценки параметров качества. Экономически обоснованный выбор необходимых технических параметров машин и механизмов. Проведение технико-экономической оптимизации параметров технической системы - привода ленточного транспортера.

    контрольная работа [194,3 K], добавлен 19.10.2013

  • Обработка результатов прямых и косвенных измерений с использованием ГОСТ 8.207-76. Оценка среднего квадратического отклонения, определение абсолютной погрешности и анормальных результатов измерений. Электромагнитный логометр, его достоинства и недостатки.

    курсовая работа [938,3 K], добавлен 28.01.2015

  • Понятие и виды производительности горных машин, принципы и критерии ее оценки. Основные показатели качества и надежности горных машин, методика их расчета. Главные физико-механические свойства горных пород, их классификация по контактной прочности.

    реферат [25,6 K], добавлен 25.08.2013

  • Детали и узлы общего назначения, их классификация и типы, функции и сферы использования. Критерии работоспособности и расчета параметров. Стандартизация и взаимозаменяемость деталей машин, принципы подбора материалов в зависимости от использования.

    презентация [825,1 K], добавлен 13.04.2015

  • Выбор машин для лесозаготовительного производства. Планирование численности и фонда оплаты труда цехового персонала. Калькуляции себестоимости ремонтных работ. Расчет трудоемкости и простоев машин и оборудования в ремонтно-профилактическом обслуживании.

    курсовая работа [124,8 K], добавлен 15.03.2015

  • Обработка результатов прямых равноточных и косвенных измерений. Нормирование метрологических характеристик средств измерений классами точности. Методика расчёта статистических характеристик погрешностей в эксплуатации. Определение класса точности.

    курсовая работа [1,2 M], добавлен 16.06.2019

  • Факторы, неблагоприятно влияющие на состояние электродвигателей. Методы диагностики неисправностей асинхронных электродвигателей. Диагностика асинхронного электропривода по данным измерений рабочего режима. Связь диагностируемых дефектов и их симптомов.

    курсовая работа [184,7 K], добавлен 27.09.2013

  • Назначение и область применения машин для измельчения. Классификация машин для дробления. Разработка задания на проведение патентных исследований. Экспериментальное исследование влияния рабочих параметров машины на технико-эксплуатационные показатели.

    курсовая работа [1,8 M], добавлен 15.11.2014

  • Разработка пункта диагностики и технического обслуживания тракторов в ФХ "Сапфир" Курской области. Определение годового объема работ, количества наладчиков; подбор оборудования, технологические расчеты; техника безопасности, экология, экономическая часть.

    дипломная работа [355,7 K], добавлен 02.12.2011

  • Оценка погрешностей результатов прямых равноточных, неравноточных и косвенных измерений. Расчет погрешности измерительного канала. Выбор средства контроля, отвечающего требованиям к точности контроля. Назначение класса точности измерительного канала.

    курсовая работа [1002,1 K], добавлен 09.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.