Механизмы двухступенчатого двухцилиндрового воздушного компрессора
Структурный анализ механизма двухступенчатого двухцилиндрового воздушного компрессора. Особенность построения планов скоростей и ускорений. Нахождение внешних сил, действующих на устройство. Определение уравновешивающей мощи методом рычага Жуковского.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.04.2015 |
Размер файла | 126,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Кинематический анализ
1.1 Исходные данные
1.2 Структурный анализ механизма
1.3 Построение планов положения механизмов механизма
1.4 Построение планов скоростей
1.5 Построение плана ускорений
2. Определение движения механизма под действием заданных сил
2.1 Исходные данные
2.2 Определяем внешние силы, действующие на механизм
2.3 Силовой анализ группы Асура 4-5
2.4 Силовой анализ группы Ассура 2-3
2.5 Силовой анализ группы Ассура 6-1
2.6 Определение уравновешивающей силы методом рычага Жуковского
2.7 Проверка
1. Кинематический анализ
1.1 Исходные данные
Схема механизма двухступенчатого двухцилиндрового воздушного компрессора представлена на рисунке 1.
Рис 1.Схема механизма воздушного компрессора
1 - Кривошип
2 - Шатун
3 - Поршень
4 - Шатун
5 - Поршень
6 - Неподвижные опоры
а) б)
Рис 2. Индикаторные диаграммы
а - I ступени компрессора; б - II ступени компрессора (фазы индикаторных диаграмм: 1 - всасывание; 2 - сжатие; 3 - нагнетание; 4 - расширение)
Данные для исследования механизма представлены в таблице 1.
Таблица 1 Исходные данные
Параметры |
Обозначения |
Единица |
Числа |
|
Размеры звеньев рычажного механизма |
lOA = lOС lAB = lCD lА S2 = lCS4 = lАВ/3 |
м |
0,15 0,62 0,206 |
|
Частота вращения электродвигателя |
nдв |
об/мин |
2940 |
|
Частота вращения коленчатого вала 1 |
n1 |
об/мин |
655 |
|
Массы звеньев и рычажного механизма |
m2 = m4 m3 m5 |
кг |
19 40 21 |
|
Момент инерции звеньев |
Js1 Js2 = Js4 Jдв |
0.75 0.60 0.12 |
||
Максимальное давление в цилиндре I ступени II ступени |
Pimax |
MПа |
0.26 0.87 |
|
Диаметры цилиндров: I ступени 2 ступени |
D1 D2 |
м |
0.38 0.22 |
1.2 Структурный анализ механизма
Проведем структурный анализ механизма двухступенчатого двухцилиндрового воздушного компрессора.
Определим степень подвижности и класс всего механизма. Степень подвижности определяем по формуле Чебышева
где, n - число подвижных звеньев;
p5 - число низших кинематических пар;
p4 - число высших кинематических пар.
В данном случае:
n = 5;
p4 = 7 [4 - 1; 1 - 6; 1 - 2; 2 - 3; 3 - 6; 4 - 5; 5 - 6];
p5 = 0.
Подставив данные в формулу Чебышева, определим W=3*3-2*4=1
Из формулы Чебышева видим, что степень подвижности механизма равна 1, это значит, что необходимо задать движение одному звену, чтобы другие работали по определенному закону.
Для определения класса механизма необходимо разложить его на структурные группы (группы Асура).
Группы Асура представлены на рисунке 2
а) б) в)
Рис3. Группы Асура
а) 2 класс, 2 порядок, 2 вид
б) 2 класс, 2 порядок, 2 вид
в) Механизм первого класса
Составим структурную формулу всего механизма.
I [6 - 1] > II [2 - 3] > II [4 - 5]
По структурной формуле механизма видим, что максимальный класс группы является 2, вследствие чего весь механизм является механизмом 2 класса.
1.3 Построение планов положения механизмов механизма
Определение положений и перемещений звеньев проще всего сделать путем построения планов механизма. Планом механизма называют изображение его кинематической схемы в масштабе.
Планы положений строим следующим образом
- Проведем окружность с центром в точке О радиусом ОА - траекторию движения по которой движется точка А и разделим эту окружность начиная от точки А0 (начало рабочего хода) на 12 частей. Точки деления обозначим А0…А11 в направлении движения кривошипа. Для каждого положения кривошипа строим план механизма методом засечек.
Затем отмечаем на чертеже неподвижную точку О, проводим линию движения точки В радиусом АВ из каждой точки А и находим соответствующее положение точки В. Аналогично проводим и для точки D радиусом СD из соответствующих точек С.
Принимаем масштабный коэффициент размеров µL = 0,002 м / мм. Масштабный коэффициент представляет собой отношение какой либо физической величины измеряемой в присущей ей единицах к отрезку, изображающих указанную величину графически.
Переведем длину из метров в миллиметры. Для этого воспользуемся формулой
OA = 0,15 / 0,002 = 75 мм
где, lOA - длина звена
Таким же путем переводим все оставшиеся длины в миллиметры с учетом масштабного коэффициента.
AB = 0,62 / 0,002 = 310 мм;
CS4 = 0,206 / 0,002 = 103 мм;
CD = 0,62 / 0,002 = 310 мм;
В графической части (формата А1) изображаем двенадцать наложенных друг на друга планов положений механизма.
1.4 Построение планов скоростей
Планом скоростей называется пучок векторов, изображающих в некотором масштабе абсолютные скорости различных точек механизма. Отрезки, соединяющие концы векторов абсолютных скоростей каких-либо двух точек, изображают относительные скорости этих точек.
Для построения планов скоростей назначаем масштабный коэффициент µv.
Возьмем его 0.20568 м*с-1/мм.
Построение плана скоростей начинаем с определения скорости т.А кривошипа. Предварительно находим значение угловой скорости кривошипа.
щ1 = рn / 30 = (655*3,14) / 30 = 68,56 c-1
где, n - частота вращения коленчатого вала
где , lOA - длина звена (кривошипа)
Подставив значение угловой скорости и длины кривошипа, найдем скорость т.А:
VA = 68,56 * 0,15 = 10,284 м/с
На плане скоростей изобразим скорость с помощью вектора Рa.
Рa = VA / µv = 10,284 / 0,20568 = 50 мм
где, µv - масштабный коэффициент плана скоростей.
Вектор направляем перпендикулярно кривошипу в сторону его вращения.
Для определения скорости точки В и D запишем следующие уравнения векторов:
Уравнения решаем графически. Из полюса проводим скорость VA перпендикулярную кривошипу ОА. Через точку А проводим линию VBA , перпендикулярную АВ, из полюса P - опускаем вертикальную линию, и в месте пересечения с VBA мы и получим точку пересечения скоростей VB и VBA.
Пересечение этих линий и есть точка b. Ставим направление скорости точки b.
Положения точек S2 и S4 на плане скоростей находятся в серединах отрезков VBA и VDC соответственно. Следовательно, на плане скоростей делим отрезок ab пополам, и ставим точку S2. Соединяем полюс и эту точку, и получаем скорость точки S2.
Таким же образом определяем скорость точки S3.
Чтобы из плана скоростей найти скорость в м/с, необходимо длину выбранного отрезка умножить на масштабный коэффициент.
Определим с плана скоростей все скорости при положении рабочего хода:
VBA = ab * µv = 25,567 * 0,20568 = 5,26 м/с
VDC = dc * µv = 25,567 * 0,20568 = 5,26 м/с
VA = Рa * µv = 50 * 0,20568 = 10,284 м/с
VB = Рb * µv = 37,94 * 0,20568 = 7,8 м/с
VD = Рd * µv = 48,66 * 0,20568 = 10 м/с
VS2 = РS2* µv = 44,74 * 0,20568 = 9,2 м/с
VS4= РS4* µv = 48,07 * 0,20568 = 9,89 м/с
щ2 = VBA / lAB = 5,26 / 0,62 = 8,48 c-1
щ4 = VDC / lDC = 5,26 / 0,62 = 8,48 c-1
Угловые скорости кроме значений имеют и направление. Для определения направления угловой скорости звена 2 с построенного плана скоростей переносим параллельно самому себе сохраняя направление вектор относительной скорости VBA в т.B. Смотрим, как этот вектор поворачивает звено относительно т.А. Туда и направляем угловую скорость. Для определения остальных направлений угловых скоростей, пользуемся этим же правилом.
Аналогично построим план скоростей холостого хода и нулевого положения. двухступенчатый воздушный компрессор сила
Определим скорости при холостом ходе 9-го положения:
VB = Рb * µv = 50 * 0,20568 = 10,284 м/с
VD = Рd * µv = 50 * 0,20568 = 10,284 м/с
VA = Рa * µv = 50 * 0,20568 = 10,284 м/с
VS2 = РS2 * µv = 50 * 0,20568 = 10,284 м/с
VS4 = РS4* µv = 50 * 0,20568 = 10,284 м/с
VBA = ab * µv = 0 * 0,20568 = 0 м/с
VDC = dc * µv = 0 * 0,20568 = 0 м/с
Из скоростей мы найдем угловую скорость:
щ2 = VBA / lAB= 0 / 0,52 = 0 c-1
щ4= VDC / lDC= 0 / 0,52 = 0 c-1
Определим с плана скоростей все скорости при нулевом положении:
VB = Рb* µv = 0 * 0,20568 = 0 м/с
VA = Рa * µv = 50 * 0,20568 = 10,284 м/с
VD = Рd * µv = 0 * 0,20568 = 0 м/с
VS2 = РS2* µv = 33,34 * 0,20568 = 6,86 м/с
VS4 = РS4* µv = 33,34 * 0,20568 = 6,86 м/с
VBA = ab* µv = 50 * 0,20568 = 10,284 м/с
VDC = dc * µv = 50 * 0,20568 = 10,284 м/с
Из скоростей мы найдем угловую скорость
щ2 = VBA / lAB = 10,284 / 0,62 = 16,59 c-1
щ4 = VDC/ lDC = 10,284 / 0,62 = 16,59 c-1
Результаты вычислений занесем в таблицу 2
Таблица 2 Относительные, линейные и угловые скорости
№ |
VB |
VD |
VA |
VS2 |
VS4 |
VBA |
VDC |
щ2 |
щ4 |
|
0 |
0 |
0 |
10,28 |
6,86 |
6,86 |
10,28 |
10,28 |
16,59 |
16,59 |
|
Р.х (2) |
7,8 |
10 |
10,28 |
9,2 |
9,89 |
5,26 |
5,26 |
8,48 |
8,48 |
|
Х.х (9) |
10,28 |
10,28 |
10,28 |
10,28 |
10,28 |
0 |
0 |
0 |
0 |
1.5 Построение плана ускорений
План ускорений строится аналогично плану скоростей. Рассматриваются те же точки и в том же порядке. Используются уравнения, связывающие ускорения точек твердых тел в их плоском движении.
Назначаем масштабный коэффициент для ускорений
Ma = 10 м*с-2 / мм
Строим план ускорений для положения холостого хода.
Как и в планах скоростей начинаем строить ускорение точки а кривошипа.
Ускорение точки a равняется:
= щ12 * lOA = 68,562 * 0,15 = 705,07 м/с2
Составляем уравнение для ускорения точки а.
Чтобы построить вектор ускорения нужно найти его значение в мм. Для этого воспользуемся формулой:
Рa= / Ma = 705,07 / 10 = 70,5 мм
где Ma - масштабный коэффициент для планов ускорений.
Для построения ускорения точки b необходимо составить уравнение:
= щ2 * lAB = 0 * 0,62 = 0 м/с2
Ускорение точки d найдем, составив формулу:
= щ4 * lAB = 0 * 0,62 = 0 м/с2
Из полученного плана ускорений найдем:
= щ12 * lOA = 68,562 * 0,15 = 705,07 м/с2
= щ2 * lAB = 0 * 0,62 = 0 м/с2
= щ2 * lDC = 0 * 0,62 = 0 м/с2
= Pb * Ma = 17,58 * 10 = 175,8 м/с2
= Pd * Ma = 17,58 * 10 = 175,8 м/с2
= bn1* Ma = 72,67 * 10 = 726,7 м/с2
= dn2 * Ma = 72,67 * 10 = 726,7 м/с2
= PS4* Ma = 48,05 * 10 = 480,5 м/с2
= PS2* Ma = 48,05 * 10 = 480,5 м/с2
Из построенного плана ускорений найдем угловые ускорения:
е 2 = / lAB = 726,7 / 0,62 = 1172,097 с-2
где - касательное ускорение
lAB - длина звена
е 4 = / lDC = 726,7 / 0,62 = 1172,097 с-2
Аналогично как мы строили ускорения для холостого хода, построим планы ускорений для рабочего хода и нулевого положения.
Ускорение точки а найдем из формулы:
= щ12 * lOA = 68.562 * 10 = 705,07 м/с2
Рa= / Ma = 705,07 / 10 = 70,507 мм
Из полученного плана ускорений найдем:
= щ12 * lOA = 68.562 * 10 = 705,07 м/с2
= щ22 * lAB = 8,482 * 0,62 = 44,58 м/с2
= щ42 * lDC = 8,482 * 0,62 = 44,58 м/с2
= bn1* Ma = 61,49 * 10 = 614,9 м/с2
= Pb * Ma = 43,78 * 10 = 437,8 м/с2
= Pd * Ma = 26,73 * 10 = 267,3 м/с2
= cd * Ma= 61,49 * 10 = 614,9 м/с2
= Ps4 * Ma = 51,94 * 10 = 519,4 м/с2
= Ps2 * Ma = 55,76 * 10 = 557,6 м/с2
е 2 = / lAB = 614,9 / 0,62 = 991,77 с-2
е 4 = / lCD = 614,9 / 0,62 = 991,77 с-2
Определим с плана ускорений все ускорения при нулевом положении:
= щ12 * lOA = 68,562 * 10 = 705,07 м/с2
= щ22 * lAB = 16,592 * 0,62 = 170,64 м/с2
= щ42 * lDC = 16,592 * 0,62 = 170,64 м/с2
= Pb * Ma = 0 * 10 = 0 м/с2
= Pd * Ma = 0 * 10 = 0 м/с2
= bn2 * Ma = 0 *10 = 0 м/с2
= dn1 * Ma= 0 * 10 = 0 м/с2
= Ps4 * Ma = 47,01 * 10 = 470,1 м/с2
= Ps2 * Ma = 47,32 * 8 = 473,2 м/с2
е 2 = / lAB = 0 / 0,62 = 0 с-2
е 4 = / lCD = 0 / 0,62 = 0 с-2
Результаты вычислений занесем в таблицу 3.
Таблица 3 Относительные, линейные и угловые ускорения
№ |
е2 |
е 4 |
||||||||||
0 |
705,07 |
170,6 |
0 |
0 |
0 |
0 |
170,6 |
473,2 |
470,1 |
0 |
0 |
|
Р.х(2) |
705,07 |
44,58 |
614,9 |
437,8 |
267,3 |
614,9 |
44,58 |
557,6 |
519,4 |
991,77 |
991,77 |
|
Х.х(3) |
705,07 |
0 |
726,7 |
175,8 |
175,8 |
726,7 |
0 |
480,5 |
480,5 |
1172,09 |
1172,09 |
2. Определение движения механизма под действием заданных сил
Одним из основных этапов при проектировании машин является силовой расчет механизма. Задача силового анализа состоит в расчете внешних сил, действующих на звенья механизма, определении динамических давлений в кинематических парах, вычислении уравновешивающей силы (момента), приложенной к ведущему звену и представляющую собой реакцию двигателя, приводящего машину в движение. Расчет производится с учетом сил инерции по уравнениям.
2.1 Исходные данные
Основной из внешних сил действующих на механизм является сила полезного сопротивления. Значение ее определяем по индикаторной диаграмме, изображенной на рисунке 2, которую выстраиваем по таблице зависимости давления воздуха от перемещений поршня, согласовав её ординату с ходом Sb max (Sd max) ползуна на кинематической схеме, вычерченной в масштабе длины µL. Подобное построение позволяет перенести на индикаторную диаграмму разметку траектории точек A (C) и найти значение давления в каждой фиксированной позиции механизма (в данном случае - позиции рабочего хода).
Таблица 4. Зависимость давления воздуха от перемещений поршня.
Относительное перемещение поршня. |
0 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,6 |
0,7 |
0,8 |
0,9 |
1,0 |
||
Давление в цилиндре. |
I ступ. Движ вверх. |
1,0 |
1,0 |
1,0 |
0,55 |
0,38 |
0,27 |
0,18 |
0,12 |
0,08 |
0,04 |
0 |
|
Движ вниз. |
1,0 |
0,3 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
||
II ступ. Движ вверх. |
1,0 |
1,0 |
1,0 |
0,7 |
0,59 |
0,5 |
0,42 |
0,37 |
0,34 |
0,32 |
0,3 |
||
Движ вниз. |
1,0 |
0,54 |
-,3 |
0,3 |
0,3 |
0,3 |
0,3 |
0,3 |
0,3 |
0,3 |
0,3 |
В данном случае: FC1 = 2727 Н;
FC2 = 9916 H
2.2 Определяем внешние силы, действующие на механизм
Для каждого звена определяем главный вектор сил инерции , который прикладываем к центру масс звена противоположного его ускорению as, и главный момент сил инерции, прикладываемый к звену противоположно его угловому ускорению е.
Допущения:
- вращение ведущего звена - равномерное;
- силы трения в работе не учитываются;
- векторы всех сил, действующих на механизм, расположены в одной плоскости;
- силы тяжести, моменты инерции, положения центров масс звеньев заданы.
Сила тяжести будет направлена перпендикулярно вниз. Её определяем по формуле:
G = m * g
где m - масса звена;
g - ускорение свободного падения;
G - сила тяжести.
G2 = G4 = 19 * 10 = 190 Н
G3 = 40 * 10 = 400 Н
G5 = 21 * 10 = 210 Н
Силу инерции находим по формуле:
где as - вектор ускорения центра масс (берем из таблицы 3)
Знак «-» показывает, что сила инерции, приложенная в центре масс, направлена противоположно ускорению центра масс.
Pu2 = 19 * 557,6 = 10594,4 Н*м
Pu4 = 19 * 519,4 = 9868,6 Н*м
Pu3 = 40 * 437,8 = 17512 Н*м
Pu5 = 21 * 267,3 = 5613,3 Н*м
Момент инерции находим по формуле:
M u = - IS * е
где е - угловое ускорение звена (берем из таблицы 3)
IS - момент инерции звена, относительно оси, проходящей через центр масс, перпендикулярно плоскости движения (берем из таблицы 1)
Знак «-» показывает, что момент инерции направлен противоположно угловому ускорению.
M u2 = 0,6 * 991,77= 595,06 Н*м
M u1 = 0,75 * 0 = 0 м
M u4 = 0,6 * 991,77 = 595,06 Н*м
2.3 Силовой анализ группы Асура 4-5
Принимаем масштаб для силового анализа равный µf = 0,0052 Н*мм
Реакцию R41 разложим на две: нормальную R41n и касательную R41t.
Записываем уравнение моментов относительно точки D.
?MD(Fi) = 0
R41t * cd - G4 * h2 + Pu4 * h1 + M u24/ µf = 0
R41t = (G4 * h2 - Pu4 * h1 - M u24/ µf ) / cd = (190 * 13,97 - 9868,6 * 59,7 - 595,06 / 0,0062) / 100 = - 6824,785 Н
Так как числовое значение касательной реакции в результате принимает отрицательное значение - меняем направление реакции на противоположное.
Значение остальных реакций находим с помощью силового многоугольника, назначив масштаб µf = 200 H/мм.
Для этого составляем геометрическое уравнение.
6824,785 190 9868,6 210 9916 5613,3 Н
34,12 0,95 49,34 1,05 49,58 28,07 мм
С построенного плана сил определяем значение реакции:
R41n = ha * µf = 0,072 * 200 = 14,4 Н
R65 = gh * µf = 2,52 * 200 = 504 Н
R41 = hb * µf = 5,25 * 200 = 1050 Н
2.4 Силовой анализ группы Ассура 2-3
Реакцию R21 разложим на две реакции: нормальную R21n и касательную R21t.
Записываем уравнение моментов относительно точки В.
?MB(Fi) = 0
G2 * h4 - R21t * ab - Pu2* h3 - M u2/ µf = 0
R21t = (G2 * h4 - Pu2* h3 - M u2/ µf ) / ab = (190 * 13,95 - 10594,4 *37,8714 - 595,06 / 0,0062) / 100 = - 4945,47 Н
Так как числовое значение касательной реакции в результате принимает отрицательное значение - меняем направление реакции на противоположное.
Не меняя масштаб, составляем геометрическое уравнение для нахождения значений остальных реакции с помощью силового многоугольника.
4945,47 190 10594,4 400 2727 17512 Н
24,727 0,95 52,972 2 13,635 87,56 мм
С построенного плана сил определяем значение реакции:
R21n = ha * µf = 149,522* 200 = 29904,4 Н
R63 = gh * µf = 19,756* 200 = 3951,2 Н
R21 = hb * µf = 152,071* 200 = 30414,2 Н
2.5 Силовой анализ группы Ассура 6-1
На листе изобразим структурную группу 6-1, учитывая масштаб, аналогичный масштабу, назначенному для плана положений - (µf) - 0,0052 Н*мм.
Действие внешних сил уравновешиваем силой .
Для определения реакции составим уравнение равновесия:
?M0(Fi) = 0
R12 * h5 - Pур * oc - R14 * h6 = 0
Pур = (R12 * h5 - R14 * h6) / oc = (30414,2 * 14,02 - 1050 * 7,888) / 24,1 = 17349,5 Н
Значение остальных реакций находим с помощью силового многоугольника.
Примем масштаб, равный (µf) - 400 H/мм
Для нахождения значений реакций составим геометрическое уравнение:
R12 + Pур + R14 + R61 = 0
30414,2 18151,6 1050 H
76,03 43,379 2,6 мм
С построенного силового многоугольника определяем:
R61 = da * µf = 107,324* 400 = 42929,6 H
2.6 Определение уравновешивающей силы методом рычага Жуковского
На листе формата А1 изображаем рычаг Жуковского. Для этого поворачиваем план скоростей для рабочего хода вокруг полюса на угол 90є в произвольную сторону. Прикладываем внешние силы. Уравновешивающую силу прикладываем со стороны точки С.
Момент инерции надо переводить по формуле:
M u21 = (M u2/AB) * ab = (595,06 / 0,62) * 25,21 = 24195,9 Н*мм
M u41= (M u4/DC) * dc = (595,06 / 0,62) * 25,21 = 24195,9 Н*мм
G3h1- G5 h4 + G2 h2 + Pu3 h1 + Pu2h5 + Pu5h4 + FC1h1 + Pu4h6 - G4 h3 - Pур* oс - FC2h4 - M u4 - M u2 = 0
Pур = (G3h1- G5 h4 + G2 h2 + Pu3 h1 + Pu2h5 + Pu5h4 + FC1h1 + Pu4h6 - G4 h3 - FC2h4 - M u4 - M u2) / oс
Pур = (400 * 37,99 - 210 * 48,158 + 190 * 41,52 + 17512 * 37,99 + 10594,4 * 16,2 + 5613,3 * 48,7 + 2727 * 37,99 + 9868,6 * 15,04 - 190 * 45,01 - 9916 * 48,158 - 24195,9 * 2) / 50 = 16820 Н
2.7 Проверка
Сравним значение уравновешенной силы, определенной с помощью планов сил и рычага Жуковского:
д = (Pурб- Pурм ) / Pурб * 100 % = (17349,5 - 16820) / 17349,5 * 100 % = 3,05%
Полученное отклонение не превышает 5%, допускаемых при расчетах.
Размещено на Allbest.ru
...Подобные документы
Структурная схема рычажного механизма. Расчёт приведенного момента инерции. Расчёт приведенного момента движущих сил и момента сил сопротивления. Динамический анализ рычажного механизма. Проектирование кинематической схемы планетарного редуктора.
курсовая работа [231,8 K], добавлен 03.05.2015Выбор и сравнение прототипов по ряду критериев. Геометрический и кинематический анализ механизма двухцилиндрового поршневого компрессора. Определение силовых и кинематических характеристик механизма. Динамическое исследование машинного агрегата.
курсовая работа [1,4 M], добавлен 20.09.2012Структурный и кинематический анализ рычажного механизма вытяжного пресса. Определение класса и разложение его на группы Асура. Построение планов положения механизмов, скоростей и ускорений. Определение уравновешивающей силы методом рычага Жуковского.
курсовая работа [164,7 K], добавлен 17.05.2015Описание устройства и работы силовой установки. Схема кривошипно-ползунного механизма. Проектирование и исследование двухцилиндрового компрессора. Математическая динамическая модель. Действие газов на поршень. Определение приведенных моментов инерции.
курсовая работа [22,1 M], добавлен 29.03.2012Структурный и кинематический анализ механизма поршневого компрессора. Расчет скоростей и ускорений точек и угловых скоростей звеньев механизма методом полюса и центра скоростей. Определение параметров динамической модели. Закон движения начального звена.
курсовая работа [815,2 K], добавлен 29.01.2014Синтез рычажного механизма двигателя. Структурный анализ механизма, построение планов их положений, скоростей и ускорений, а также кинематических диаграмм. Расчет сил, действующих на звенья. Порядок определения уравновешивающей силы методом Жуковского.
курсовая работа [512,3 K], добавлен 20.09.2013Определение закона движения механизма при установившемся режиме работы. Кинематический и силовой анализ рычажного механизма. Методы определения скоростей и ускорений. Определение уравновешивающей силы с помощью теоремы Н.Е. Жуковского о "жестком рычаге".
курсовая работа [304,8 K], добавлен 25.02.2011Определение положений, скоростей и ускорений звеньев рычажного механизма и их различных точек. Исследование движения звеньев методом диаграмм, методом планов или координат. Расчет усилий, действующих на звенья методом планов сил и рычага Жуковского.
курсовая работа [2,8 M], добавлен 28.09.2011Структурный и кинематический анализ механизма кузнечно-штамповочного автомата методом планов и диаграмм. Определение сил и реакций, действующих на звенья в кинематических парах. Определение уравновешивающей силы методом "жесткого рычага" Н. Жуковского.
курсовая работа [538,9 K], добавлен 01.11.2013Структурный анализ рычажного механизма. Его кинематический анализ методом графического дифференцирования: определение скоростей звеньев, ускорений точек. Определение реакций в кинематических парах, и уравновешивающей силы методом Н.Е. Жуковского.
курсовая работа [42,4 K], добавлен 18.04.2015Структурный анализ механизма, построение его положений. Определение уравновешивающей силы с помощью рычага Жуковского. План скоростей и ускорений для рабочего и холостого хода, верхнего и нижнего положений. Определение сил инерции и сил тяжести звеньев.
курсовая работа [692,4 K], добавлен 29.07.2010Кинематическое и кинетостатическое исследование механизма рабочей машины. Расчет скоростей методом планов. Силовой расчет структурной группы и ведущего звена методом планов. Определение уравновешивающей силы методом "жесткого рычага" Н.Е. Жуковского.
курсовая работа [1,3 M], добавлен 04.05.2016Структурный анализ рычажного механизма. Метрический синтез механизма штампа. Построение планов аналогов скоростей. Расчет сил инерции звеньев. Определение уравновешивающей силы методом Жуковского. Построение профиля кулачка. Схема планетарного редуктора.
курсовая работа [2,5 M], добавлен 17.05.2015Расчет недостающих размеров и кинематическое исследование механизма, построение плана скоростей для заданного положения. Определение угловых скоростей, планов ускорений, угловых ускорений и сил полезного сопротивления, параметров зубчатого зацепления.
курсовая работа [103,5 K], добавлен 13.07.2010Структурный и кинетостатический анализ механизма двухцилиндрового компрессора; определение реакции в кинематических парах. Проектирование эвольвентного зацепления прямозубых цилиндрических колёс. Расчет геометрии зубчатой передачи, профиля кулачка.
курсовая работа [395,1 K], добавлен 07.01.2012Термодинамический расчёт двухступенчатого компрессора. Выбор двигателя, определение размеров поршней и цилиндров, частоты вращения коленчатого вала, действующих сил и сил инерции от вращательных и поступательно движущихся масс и их уравновешивание.
курсовая работа [3,9 M], добавлен 16.10.2013Структурный и кинематический анализ механизма инерционного конвейера. Определение скоростей, ускорений всех точек и звеньев механизма методом планов. Синтез рычажного механизма. Расчет реакций в кинематических парах и сил, действующих на звенья механизма.
курсовая работа [314,9 K], добавлен 04.04.2014Подвижные звенья и неподвижные стойки механизма. Построение планов скоростей. Расчет кинематических параметров. Построение планов ускорений механизма и кинематических диаграмм. Кинестетический анализ механизма. Определение сил, действующих на звенья.
контрольная работа [528,2 K], добавлен 31.10.2013Определение степени подвижности плоского механизма. Основные задачи и методы кинематического исследования механизмов. Определение скоростей точек механизма методом планов скоростей и ускорений. Геометрический синтез прямозубого внешнего зацепления.
курсовая работа [111,6 K], добавлен 17.03.2015Структурный анализ кривошипно-ползунного механизма. Построение планов положения, скоростей, ускорений и кинематических диаграмм. Определение результирующих сил инерции и уравновешивающей силы. Расчет момента инерции маховика. Синтез кулачкового механизма.
курсовая работа [522,4 K], добавлен 23.01.2013