Электрометаллургия и производство специальных видов сталей
Методы получения металлов, основанные на электролизе, выделении металлов из растворов или расплавов их соединений при пропускании через них электрического тока. Использование электротермических процессов для выделения металлов из руд и концентратов.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 01.05.2015 |
Размер файла | 467,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Электрометаллургия и производство специальных видов сталей
Электрометаллургия -- Методы получения металлов, основанные на электролизе, т. е. выделении металлов из растворов или расплавов их соединений при пропускании через них постоянного электрического тока. Этот метод применяют главным образом для получения очень активных металлов - щелочных, щелочноземельных и алюминия, а также производства легированных сталей.
Виды процессов
Фото из одноимённой статьи в "ЭСБЕ". Фиг. 11. Печь для электролиза расплавленных солей. -- Фиг. 12. Прибор Borchers'a для получения металлического натрия. -- Фиг. 13. Прибор Borchers'a для получения металлического натрия. -- Фиг. 14. Прибор Borchers'a для получения магния. -- -- Фиг. 15. Печь Hйroult для добывания алюминия. -- Фиг. 16. Печь Kiliani для добывания алюминия. -- Фиг. 17. Печь Stassano. -- Фиг. 18. Печь Kyellin'a. металл электролиз расплав электротермический
В электрометаллургии используются электротермические и электрохимические процессы. Электротермические процессы используются для выделения металлов из руд и концентратов, производства и рафинирования чёрных и цветных металлов и сплавов на их основе (Электротермия). В этих процессах электрическая энергия является источником технологического тепла. Электрохимические процессы распространены в производстве чёрных и цветных металлов на основе электролизаводных растворов и расплавленных сред (Электрохимия). За счёт электрической энергии осуществляются окислительно-восстановительные реакции на границах раздела фаз при прохождении тока через электролиты. Особое место в этих процессах занимает гальванотехника, в основе которой лежат электрохимические процессы оседания металлов на поверхность металлических и неметаллических изделий.
Электрохимические процессы охватывают плавку стали в дуговых и индукционных печах, спецэлектрометаллургию, рудовосстанавливающую плавку, включающую производство ферросплавов иштейнов, выплавку чугуна в шахтных электропечах, получения никеля, олова и других металлов.
Электродуговая плавка
Электросталь, предназначенная для дальнейшего передела, выплавляется главным образом в дуговых печах с основной футеровкой. Важные преимущества этих печей перед другими сталеплавильными агрегатами (возможность нагрева металла до высоких температур за счёт электрической дуги, обновляемая атмосфера в печи, меньший угар легирующих элементов, высокоосновные шлаки, обеспечивающие существенное снижение содержания серы) обусловили их использование для производства легированных высококачественных сталей -- коррозионностойких, инструментальных (в том числе быстрорежущих), конструкционных, электротехнических, жаропрочных и т. д., а также сплавов на никелевой основе.
Мировая тенденция развития электродуговой плавки -- увеличение ёмкости отдельного агрегата до 200--400 тонн, удельной мощности трансформатора до 500--600 и более кВА/т, специализация агрегатов (в одних -- только расплавление, в других -- рафинирование и легирование), высокий уровень автоматизации и использования ЭВМ для программного управления плавкой. В печах повышенной мощности экономически целесообразно плавить не только легированную, но и обычную углеродистую сталь. В развитых странах доля углеродистой стали от общего объёма электростали, выплавляемой в электропечах, составляет 50 % и более. В СССР в электропечах выплавлялось ~80 % легированного металла.
Для выплавки специальных сталей и сплавов приобретают распространение плазменно-дуговые печи с основным керамическим тиглем (ёмкостью до 30 т), оборудованные плазмотронами постоянного и переменного тока (Плазменная металлургия). Дуговые электропечи с кислотной футеровкой используют для плавки металла, предназначенного для стального литья. Кислотный процесс в целом более высокопродуктивный, чем основной, из-за кратковременности плавки, благодаря меньшей продолжительности окислительного и восстановительного периодов. Кислотная сталь дешевле основной вследствие меньшего расхода электроэнергии, электродов, лучшей стойкости футеровки, меньшим затратам окислителей и возможности осуществления кремневосстанавливающего процесса. Дуговые печи ёмкостью до 100 тонн широко используются также для плавки чугуна в чугуноплавильных цехах.
Индукционная плавка
Плавка стали в индукционной печи, осуществляемая в основном методом переплавки, сводится, как правило, к расплавлению шихты, раскислению металла и отпуску. Это обуславливает высокие требования к шихтовым материалам с содержанием вредных примесей (P, S). Выбор тигля (основной или кислый) обуславливается свойствами металла. Чтобы кремнезём футеровки не восстанавливался в процессе плавки, стали и сплавы с повышенным содержанием Mn, Ti, Al выплавляют в основном тигле. Существенный недостаток индукционной плавки -- холодные шлаки, которые нагреваются только от металла. В ряде конструкций этот недостаток устраняется путём плазменного нагрева поверхности металл-шлак, что позволяет также значительно ускорить расплавление шихты. В вакуумных индукционных печах выплавляют чистые металлы, стали и сплавы соответствующего назначения (Вакуумная плавка). Ёмкость существующих печей составляет от нескольких килограмм до десятков тонн. Вакуумную индукционную плавку интенсифицируют продувкой инертными (Ar, He) и активными (CO, CH4) газами, электромагнитным перемешиванием металла в тигле, продувкой металла шлакообразующими порошками.
Спецэлектрометаллургия
Спецэлектрометаллургия охватывает новые процессы плавки и рафинирования металлов и сплавов, которые получили развитие в 50--60-х гг. 20 столетия для удовлетворения потребностей современной техники (космической, реактивной, атомной, химического машиностроения и др.) в конструкционных материалах с высокими механическими свойствами, жаропрочностью, коррозионной стойкостью и т. д. Спецэлектрометаллургия включает вакуумную дуговую плавку, электроннолучевую плавку, электрошлаковую переплавку и плазменно-дуговую плавку. Этими методами переплавляют стали и сплавы ответственного назначения, тугоплавкие металлы -- вольфрам, молибден, ниобий и их сплавы, высокореакционные металлы -- титан, ванадий, цирконий, сплавы на их основе и др. Вакуумная дуговая плавка была предложена в 1905 году В. фон Больтоном (Германия); в промышленных масштабах этот метод впервые был использован для плавки титана В. Кроллом (США) в 1940 году. Метод электрошлакового переплава разработан в 1952--53 гг. в Институте электросварки им. Патона АН УССР. Для получения сталей и сплавов на никелевой основе особо ответственного назначения используют разные варианты дуплекс-процессов, наиважнейший из которых -- объединение вакуумной индукционной плавки и вакуумно-дуговой переплавки. Особое место в спецэлектрометаллургии занимает вакуумная гарнисажная плавка, в которой источниками тепла служат электрическая дуга, электронный луч, плазма. В этих печах, используемых для высокоактивных и тугоплавких металлов (W, Мо и др. и сплавы на их основе), порция редкого металла в водоохлаждаемом тигле с гарнисажем используется для получения слитков и фасонных отливок.
Рудовосстанавливающая плавка
Рудовосстанавливающая плавка включает производство ферросплавов, продуктов цветной металлургии -- медных и никелевых штейнов, свинца, цинка, титановых шлаков и др. Процесс заключается в восстановлении природных руд и концентратов углеродом, кремнием и другими восстановителями при высоких температурах, которые создаются главным образом за счёт мощной электрической дуги (Рудотермическая печь). Восстанавливающие процессы обычно являются непрерывными. По мере проплавления подготовленную шихту загружают в ванну, а полученные продукты периодически выпускают из электропечи. Мощность таких печей достигает 100 МВА. На некоторых предприятиях на основе рудовосстанавливающей плавки производится чугун в электродоменных печах или электродуговых бесшахтных печах.
Электрохимические процессы получения металлов
Г. Деви в 1807 впервые использовал электролиз для получения натрия и калия.
В конце 1970-х гг. методом электролиза были получены более 50 металлов, в частности медь, никель, алюминий, магний, калий, кальций. Различают 2 типа электролитических процессов. Первый связан с катодным оседанием металлов из растворов, полученных методами гидрометаллургии; в этом случае восстановлению (откладыванию) на катоде металла из раствора отвечает реакция электрохимического окисления аниона на нерастворимом аноде.
Второй тип процессов связан с электролитическим рафинированием металла из его сплава, из которого изготавливается растворимый анод. На первой стадии в результате электролитического растворения анода металл переводится в раствор, на второй стадии он оседает на катоде. Последовательность растворения металлов на аноде и осаждения на катоде определяется предел напряжения. Однако в реальных условиях потенциалы выделения металлов существенно зависят от величины перенапряжения водорода на соответствующем металле. В промышленных масштабах рафинируют цинк, марганец, никель, железо и другие металлы; алюминий, магний, калий и др. получают электролизом расплавленных солей при 700--1000 °C. Последний способ связан с бомльшим потреблением электроэнергии (15--20 тыс. кВт*час/т) в сравнении с электролизом водных растворов (до 10 тыс. кВт*час/т).
История
В начале 19 века В. В. Петров увидел возможность получения при помощи электрической дуги чистых металлов из их оксидов (руд). Этот процесс восстановления металлов лежит в основе современной электрометаллургии. Первые дуговые электрические печи для восстановления из руд были построены в конце 1870 годов. Но электропечи расходуют очень много электроэнергии, поэтому их промышленное применение началось только тогда, когда стали строить мощные электростанции и была решена проблема передачи электрической энергии на расстояние.
Размещено на Allbest.ru
...Подобные документы
Изучение промышленных способов получения металлов. Электрометаллургия - под действием электрического тока. Гидрометаллургия - на основе химических реакций в растворах. Пирометаллургия - при высоких температурах. Металлотермия - выделение из оксидов.
презентация [3,8 M], добавлен 31.01.2012Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.
презентация [2,4 M], добавлен 19.02.2015Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.
реферат [25,4 K], добавлен 25.10.2014Электрохимические процессы – основа электрохимических технологий. Образование моноатомных слоев металлов при потенциалах положительнее равновесных. Влияние различных факторов на процессы катодного выделения металлов. Природа металлического перенапряжения.
курсовая работа [376,6 K], добавлен 06.03.2009Гидрометаллургические способы получения цветных металлов в металлургической промышленности. Процесс получения металла высокой чистоты с помощью растворов. Сведения об алюминии, сырьё для глинозёма, получение алюминатно-щелочного раствора из бокситов.
реферат [34,7 K], добавлен 14.09.2012Сущность процессов спекания изделий из порошков. Особенности получения отливок из медных сплавов. Технологический процесс ковки, ее основные операции. Производство стали в дуговых электрических печах. Способы электрической контактной сварки металлов.
контрольная работа [208,1 K], добавлен 23.05.2013Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.
курсовая работа [534,9 K], добавлен 28.12.2003Компьютерные программа, применяемые для разработки конструкторской документации и моделирования процессов обработки металлов давлением. Общая характеристика, особенности технологии и принципы моделирования процессов горячей объемной штамповки металлов.
курсовая работа [984,9 K], добавлен 02.06.2015Современные способы повышения качества металлов и сплавов. Подготовка руд к доменной плавке. Устройство и работа доменной печи. Сущность технологического процесса изготовления деталей и заготовок порошковой металлургией. Производство цветных металлов.
дипломная работа [6,3 M], добавлен 16.11.2011Методика производства стали в конвейерах, разновидности конвейеров и особенности их применения. Кристаллическое строение металлов и её влияние на свойства металлов. Порядок химико-термической обработки металлов. Материалы, применяющиеся в тепловых сетях.
контрольная работа [333,8 K], добавлен 18.01.2010Определение причин и описание механизма необратимости пластичной деформации металлов. Изучение структурных составляющих сплавов железа с углеродом, построение кривой охлаждения сплава. Описание процессов закаливаний углеродистых сталей, их структура.
контрольная работа [596,1 K], добавлен 18.01.2015Перемещение дислокаций при любых температурах и скоростях деформирования в основе пластического деформирования металлов. Свойства пластически деформированных металлов, повышение прочности, рекристаллизация. Структура холоднодеформированных металлов.
контрольная работа [1,2 M], добавлен 12.08.2009Изменение термодинамического потенциала твердого и жидкого металла. Механизм и закономерности кристаллизации металлов. Зависимость параметров кристаллизации от степени переохлаждения. Получение мелкозернистой структуры. Строение металлического слитка.
презентация [358,7 K], добавлен 14.10.2013Описание технологии производства чугуна и стали: характеристика исходных материалов, обогащение руд, выплавка и способы получения. Медь, медные руды и пути их переработки. Технология производства алюминия, титана, магния и их сплавов. Обработка металлов.
реферат [101,6 K], добавлен 17.01.2011Сущность и назначение термической обработки металлов, порядок и правила ее проведения, разновидности и отличительные признаки. Термомеханическая обработка как новый метод упрочнения металлов и сплавов. Цели химико-термической обработки металлов.
курсовая работа [24,8 K], добавлен 23.02.2010В последние годы в связи с развитием новых специальных областей техники широкое применение получили жаропрочные сплавы, способные без разрушения в течении длительного времени сопротивляться незначительным пластическим деформациям при высоких температурах.
доклад [1,3 M], добавлен 03.01.2009Импульсные методы обработки металлов давлением. Сведения о взрывчатых веществах: оборудование для штамповки взрывом. Процесс гидровзрывной штамповки. Электрогидравлические установки для штамповки деталей. Сущность магнитно-импульсной обработки металлов.
реферат [811,8 K], добавлен 10.05.2009Промышленное значение цветных металлов: алюминий, медь, магний, свинец, цинк, олово, титан. Технологические процессы производства и обработки металлов, механизация и автоматизация процессов. Производство меди, алюминия, магния, титана и их сплавов.
реферат [40,4 K], добавлен 25.12.2009Электродинамическая сепарация, методы интенсификации технологического процесса. Извлечение из цветных металлов без разделения потока на две фракции. Извлечение черных и цветных металлов в самостоятельные продукты. Удаление части балластных компонентов.
курсовая работа [95,7 K], добавлен 18.01.2015Производство металлических пен из расплавов металлов. Свойства пеноалюминия и пеноникеля. Применение металлических пен в машиностроении, космических технологиях, строительстве и медицине. Их использование для уменьшения концентрации нежелательных ионов.
курсовая работа [586,3 K], добавлен 07.01.2014