Сжиженные углеводородные газы, их состав и транспортировка

Понятие сжиженных углеводородных газов (СУГ), их товарный вид, химический состав. Основные свойства пропана и бутана. Производство сжиженного газа за счет нефтедобычи, газодобычи и нефтеперегонной установки. Фазные состояния сжиженных газов при хранении.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 01.05.2015
Размер файла 376,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Сжиженные углеводородные газы (СУГ) - смесь сжиженных под давлением лёгких углеводородов с температурой кипения от ?50 до 0 °C. Предназначены для применения в качестве топлива. Основные компоненты: пропан, пропилен, изобутан, изобутилен, н-бутан ибутилен.

Производится в основном из попутного нефтяного газа. Транспортируется и хранится в баллонах и газгольдерах. Применяется для приготовления пищи, кипячения воды, отопления, используется в зажигалках, в качестве топлива на автотранспорте.

Газы углеводородные сжиженные (пропан-бутан, в дальнейшем СУГ) - смеси углеводородов, которые при нормальных условиях находятся в газообразном состоянии, а при небольшом повышении давления или незначительном понижении температуры переходят из газообразного состояния в жидкое.

Основными компонентами СУГ являются пропан и бутан. Пропан-бутан (сжиженный нефтяной газ, СНГ, по-английски - liquifiedpetroleumgas, LPG) - это смесь двух газов. В состав сжиженного газа входят в небольших количествах также: пропилен, бутилен, этан, этилен, метан и жидкий неиспаряющийся остаток (пентан, гексан).

Сырьем для получения СУГ являются в основном нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти. сжиженный углеводородный пропан нефтеперегонный

С заводов СУГ в железнодорожных цистернах поступает на газонаполнительные станции (ГНС) газовых хозяйств, где хранится в специальных резервуарах до продажи (отпуска) потребителям. Потребителям СУГ доставляется в баллонах или автоцистернами.

В сосудах (цистернах, резервуарах, баллонах) для хранения и транспортировки СУГ одновременно находится в 2-х фазах: жидкой и парообразной. СУГ хранят, транспортируют в жидком виде под давлением, которое создаётся собственными парами газа. Это свойство делает СУГ удобными источниками снабжения топливом коммунально-бытовых и промышленных потребителей, т.к. сжиженный газ при хранении и транспортировке в виде жидкости занимает в сотни раз меньший объем, чем газ в естественном (газообразном или парообразном) состоянии, а распределяется по газопроводам и используется (сжигается) в газообразном виде.

Сжиженные углеводородные газы (СУГ) состоят из простых углеводородных соединений, являющихся органическими веществами, содержащими в своём составе 2 химических элемента - углерод (С) и водород (Н). Углеводороды отличаются друг от друга количеством атомов углерода и водорода в молекуле, а также характером связей между ними.

Товарный сжиженный газ должен состоять из углеводородов, которые в нормальных условиях являются газами, а при сравнительно небольшом повышении давления и температуре окружающей среды или незначительном понижении температуры при атмосферном давлении переходят из газообразного состояния в жидкое.

Самый простой углеводород, содержащий всего один атом углерода, - метан (СН4). Он является основным компонентом природного, а также некоторых искусственных горючих газов. Следующий углерод этого ряда - этан (С2Н6) - имеет 2 атома углерода. Углеводород с тремя атомами углерода - пропан (С3Н8), а с четырьмя - бутан (С4Н10).

Все углеводороды этого типа имеют общую формулу СnH2n+2 и водят в гомологический ряд предельных углеводородов - соединений, в которых углерод до предела насыщен атомами водорода. При нормальных условиях из предельных углеводородов газами являются лишь метан, этан, пропан и бутан.

Для получения сжиженных газов в настоящее время широко применяют природные газы, добываемые из недр Земли, которые представляют собой смесь различных углеводородов, преимущественно метанового ряда (предельных углеводородов). Природные газы чисто газовых месторождений в основном состоят из метана и являются тощими или сухими; тяжелых углеводородов (от пропана и выше) содержат менее 50 г/см3. Попутные газы, выделяемые из скважин нефтяных месторождений совместно с нефтью, помимо метана содержат значительное количество более тяжелых углеводородов (обычно более 150 г/м3) и являются жирными. Газы, которые добывают из конденсатных месторождений, состоят из смеси сухого газа и паров конденсата. Пары конденсата представляют собой смесь паров тяжелых углеводородов (С3, С4, бензина, лигроина, керосина). На газоперерабатывающих заводах из попутных газов выделяют газовый бензин пропан-бутановую фракцию.

ШФЛУ - широкая фракция легких углеводородов, включает в основном смесь легких углеводородов этановой (С2) и гексановой (С6) фракций. В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжиженный газ фракций С45 40-85%; гексановая фракция С6 от 15 до 30%, на пентановую фракцию приходится остаток.

Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.

Пропамн -- это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C3H8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения ?42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.

Пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.

Бутамн (C4H10) -- органическое соединение класса алканов. В химии название используется в основном для обозначения н-бутана. Химическая формула C4H10 (рис. 1). Такое же название имеетсмесь н-бутана и его изомера изобутана CH(CH3)3. Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °C и нормальном давлении или при повышенном давлении и обычной температуре -- легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций.

Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:

? предприятия нефтедобычи - получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой нефти;

? предприятия газодобычи - получение СУГ и ШФЛУ происходит при первичной переработке скважинного газа или несвязанного газа и стабилизации конденсата;

? нефтеперегонные установки - получение сжиженного газа и аналогичных ШФЛУ происходит при переработке сырой нефти на НПЗ. В данной категории ШФЛУ состоит из смеси бутан-гексановых фракций (С4-С6) с небольшим количеством этана и пропана.

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях, как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным параметрам, поддающимся непосредственному измерению и влияющим на режимы течения СУГ, относятся давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных изменений. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот

или иной процесс.

Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары над жидкостью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.

Давление и температура. Давление газа представляет собой суммарный результат соударения молекул о стенки сосуда, занятого этим газом.

Упругость (давление) насыщенных паров газа* pп -важнейший параметр, по которому определяют рабочее давление в резервуарах и баллонах. Температура газа определяет степень его нагретости, т.е. меру интенсивности движения его молекул. Давление и температура сжиженных газов строго соответствуют друг другу.

Упругость паров СУГ - насыщенных (кипящих) жидкостей - изменяется пропорционально температуре жидкой фазы (см.рис.I-1) и является величиной, строго определенной для данной температуры. Во все уравнения, связывающие физические параметры газового или жидкого вещества, входят абсолютные давление и температура, а в уравнения для технических расчетов (прочности стенок баллонов, резервуаров) - избыточное давление.

Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.

Это свойство сжиженных газов является одним из определяющих при проектировании систем хранения и распределения. При отборе из резервуаров кипящей жидкости и транспортировании ее по трубопроводу часть жидкости испаряется из-за потерь давления, образуется двухфазный поток, упругость паров которого зависит от температуры потока, которая ниже температуры в резервуаре. В случае прекращения движения двухфазной жидкости по трубопроводу давление во всех точках выравнивается и становится равным упругости паров.

Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части сосудов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары (рис. 2). При снижении температуры в резервуарах часть паров сконденсируется, т.е. увеличивается масса жидкости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз. Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом температуры испарения и конденсации равны.

Рисунок 2. Фазные состояния сжиженных газов при хранении.

В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени растворимости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-300С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах. Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.

Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.

За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.

Плотность. Масса единицы объема, т.е. отношение массы вещества в состоянии покоя к занимаемому им объему, называется плотностью (обозначение ). Единица плотности в системе СИ - килограмм на кубический метр (кг/м3). В общем случае

=m/V

При движении сжиженных газов с давлением ниже упругости пара, т.е. при движении двухфазных потоков, для определения плотности в точке следует пользоваться пределом отношения:

При многочисленных расчетах, особенно в области термодинамики газов и газо-жидкостных смесей, часто приходится пользоваться понятием относительной плотности d - отношением плотности данного вещества к плотности данного вещества к плотности какого-либо вещества, принимаемой за удельную или стандартную с ,

d=/c

Для твердых и жидких веществ в качестве стандартной принимают плотность дистиллированной воды при давлении 760 мм рт.ст. и температуре 3,98єС (999, 973 кг/м3 1 т/м3), для газов - плотность сухого атмосферного воздуха при давлении 760 мм рт.ст. и температуре 0 єС (1,293 кг/м3).

На рисунке I-2 приведены кривые зависимости плотности насыщенной жидкой и паровой фаз основных компонентов сжиженных газов от температуры. Черной точкой на каждой кривой указана критическая плотность. Это точка перегиба кривой плотности соответствует критической температуре, при которой плотность паровой фазы равна плотности жидкой. Ветвь кривой, расположенная выше критической точки, дает плотность насыщенной жидкой фазы, а ниже - насыщенных паров. Критические точки предельных углеводородов соединены сплошной, а непредельных - штриховой линией. Плотность можно также определить по диаграммам состояния. В общем виде зависимость плотности от температуры выражается рядом

Т = Т0+(Т-Т0)+(Т-Т0)2+(Т-Т0)2±.

Влияние третьего и других членов этого ряда на величину плотности в связи с малыми значениями , и незначительно, поэтому с точностью, вполне достаточной для технических расчетов, им можно пренебречь. Тогда

Т = Т0+(Т-Т0)

Где =1.354 для пропана, 1,068 - для н-бутана, 1,145 - для изобутана.

Относительное изменение объема жидкости при изменении температуры на один градус характеризуется температурным коэффициентом объемного расширения вт, который у сжиженных газов (пропана и бутана) в несколько раз больше чем у иных жидкостей.

Пропан - 3,06 *10-3;

Бутан - 2,12 *10-3;

Керосин - 0,95 *10-3;

Вода - 0,19 *10-3;

При повышении давления жидкая фаза пропана и бутана сжимается. Степень сжатия ее оценивается коэффициентом объемной сжимаемости всж, размерность которого обратна размерности давления.

Удельный объем. Объем единицы массы вещества называется удельным объемом (обозначение ). Единица удельного объема в системе СИ - кубический метр на килограмм ( м3/кг)

=V/m.

Удельный объем и плотность являются обратными величинами, т.е.

=1/.

В отличие от большинства жидкостей, которые при изменении температуры незначительно изменяют свой объем, жидкая фаза сжиженных газов довольно резко увеличивают свой объем при повышении температуры ( в 15 раз больше, чем вода). При заполнении резервуаров и баллонов приходится учитывать возможное увеличение объема жидкости (рис. I-3).

Сжимаемость. Оценивается коэффициентом объемного сжатия, м3/н,

Величину, обратную р , называют модулем упругости и записывают так:

Е=1/р.

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительны. Так, если сжимаемость воды (48,310-9 м2/н) принять за 1, то сжимаемость нефти 1,565, бензина 1,92, а пропана - 15,05 (соответственно 75,5610-9, 92,7910-9 и 727,4410-9 м2/н).

Если жидкая фаза занимает весь объем резервуара (баллона), то при повышении температуры расширяться ей некуда и она начинает сжиматься. Давление в резервуаре в этом случае повышается на величину, н/м2,

где t - перепад температур жидкой фазы, .

Повышение давления в резервуаре (баллоне) при повышении температуры окружающей среды не должно быть более допустимого расчетного, иначе возможна авария. Поэтому при заполнении необходимо предусматривать паровую подушку определенной величины, т.е. заполнить резервуар не полностью. Значит, необходимо знать степень заполнения , определяемую соотношением

Если же необходимо выяснить, какой перепад температур допустим при имеющемся заполнении, его можно рассчитать по формуле:

Критические параметры. Газы могут быть превращены в жидкое состояние сжатием, если температура при этом не превышает определенной величины, характерной для каждого однородного газа. Температуру, при превышении которой данный газ не может быть сжижен никаким повышением давления, называют критической температурой газа (Ткр). Давление, необходимое для сжижения газа при критической температуре, называют критическим давлением (ркр). Объем газа, соответствующий критической температуре, называют критическим объемом (Vкр), а состояние газа, определяемое критическими температурой, давлением и объемом, - критическим состоянием газа. Плотность пара над жидкостью при критическом состоянии становится равной плотности жидкости.

Принцип соответственных состояний. Обычно для обобщения опытных данных по исследованию различных процессов и веществ используют критериальные системы, основанные на анализе уравнений движения, теплопроводности и др. Для использования таких уравнений подобия необходимы таблицы физических свойств рабочих сред. Неточность определения физических свойств или отсутствие их не дает возможности использовать уравнения подобия. Особенно это относится к мало изученным рабочим телам, в частности к сжиженным углеводородным газам, о физических свойствах которых в литературе имеются достаточно противоречивые данные, зачастую при случайных давлениях и температурах. В то же время имеются точные данные о критических параметрах и молекулярной массе вещества. Это позволяет, используя приведенные параметры и закон соответственных состояний, который подтвержден многочисленными исследованиями и теоретически обоснован современной кинетической теорией вещества, определять неизвестные параметры.

Для термодинамически подобных веществ, а сжиженные углеводородные газы термодинамически подобны, приведенные уравнения состояния, т.е. уравнения состояния, написанные в безразмерных (приведенных) параметрах (рпр = р/ркр = ), имеют один и тот же вид. В разное время различными авторами было предложено до пятидесяти уравнений состояния для реальных веществ. Наиболее известным и употребительным из них является уравнение Ван-дер-Ваальса:

где а и b - константы, присущие данному химическому соединению;

Выразив параметры газа в безразмерных приведенных величинах, можно установить, что для газов существует общее уравнение состояния, не содержащее величин, характеризующий данный газ:

F(рпр, Тпр, Vпр) = 0.

Законы газового состояния справедливы только для идеального газа, поэтому в технических расчетах, связанных с реальными газами, их применяют с реальными газами в пределах давления, 2-10 кгс/см2 и при температурах, превышающих 0. Степень отклонения от законов идеальных газов характеризуется коэффициентом сжимаемости Z = (рис. 1-4 - 1-6). По нему можно определить удельный объем, если известны давление и температура, или давление если известны удельный объем и температура. Зная удельный объем, можно определить и плотность.

Удельный вес. Вес единицы объема вещества, т.е. отношение веса (силы тяжести) вещества к его объему называют удельным весом (обозначение . В общем случае где G вес (сила тяжести вещества, V объем, м3. Единица удельного веса в СИ = ньютон на кубический метр (н/м3). Удельный вес зависит от ускорения силы тяжести в пункте его определения и, следовательно, но является параметром вещества.

Теплота сгорания. Количество тепла, которое выделяется при полном сгорании единицы массы или объема газа, называют теплотой сгорания (обозначение Q). Размерность теплоты сгорания в СИ - джоуль на килогамм (дж/кг) или джоуль на кубический метр (дж/м3).

Температура воспламенения. Минимальную температуру, до которой должна быть нагрета газовоздушная смесь, чтобы начался процесс горения (реакция горения), называют температурой воспламенения. Она не является постоянной величиной и зависит от многих причин: содержания горючего газа в газовоздушной смеси, степени однородности смеси, размеров и формы сосуда, в котором она нагревается, быстроты и способа нагрева смеси, давления, под которым находится смесь, и др.

Пределы воспламеняемости газа. Газовоздушные смеси могут воспламеняться (взрываться) только в том случае, если содержание газа в воздухе (или кислороде) находится в определенных пределах, вне которых эти смеси самопроизвольно (без постоянного притока тепла извне) не горят. Существование этих пределов объясняется тем, что по мере увеличения содержания в газовоздушной смеси воздуха или чистого газа уменьшается скорость распространения пламени, увеличиваются тепловые потери и горение прекращается. С увеличением температуры газовоздушной смеси пределы воспламеняемости расширяются.

Теплоемкость. Количество теплоты, необходимое для изменения температуры тела или системы на один градус, называют теплоемкостью тела или системы (обозначение С). Размерность в СИ - джоуль на градус Кельвина (дж/К). 1 дж/К - 0,2388 кал/К =0,2388*10-3ккал/К.

В практических расчетах различают среднюю и истинную теплоемкость в зависимости от того, в каком интервале температур она определена. Средняя теплоемкость Сm представляет собой величину, определенную в конечном интервале температур, т.е.

Сm = q/(t2-t1).

Истинная теплоемкость есть величина, определенная в данной точке (при данных р и Т или и Т), т.е.

Различают теплоемкость, определенную при постоянном давлении (Ср) или при постоянном объеме (Сv).

Теплопроводность. Способность вещества передавать тепловую энергию называют теплопроводностью. Она определяется количеством тепла Q , проходящего через стенку площадью F толщиной за промежуток времени при разности температур t2-t1, т.е.

,

где - коэффициент теплопроводности, характеризующий теплопроводящие свойства вещества, вт/(м*К) или ккал/(м*ч*С).

Вязкость - это способность газов или жидкостей оказывать сопротивление сдвигающим усилиям, обусловленная силами сцепления между молекулами вещества. Сила сопротивления скольжению или сдвигу F, и, возникающая при перемещении двух смежных слоев жидкости или газа, пропорциональна изменению (градиенту) скорости вдоль оси, нормальной к направлению потока жидкости изи газа, т.е.

,

где - коэффициент пропорциональности, нсек/м2 (в СИ); его называют коэффициентом динамической вязкости 9внутреннего трения) или динамической вязкостью; dw - градиент скорости в двух соседних слоях, находящихся на расстоянии dy.

Во многих технических расчетах пользуются кинематической вязкостью , представляющей собой отношение динамической вязкости жидкости или газа к их плотности , т.е. =/. Единица кинематической вязкости в СИ - квадратный метр на секунду (м2/сек).

Вязкость жидкой фазы с возрастанием температуры уменьшается, а вязкость газа и пара увеличивается.

Октановое число газового топлива выше, чем у бензина, поэтому детонационная стойкость сжиженного газа больше, чем бензина даже самого высшего качества. Среднее октановое число сжиженного газа - 105 - недостижимо для любых марок бензина. Это позволяет добиться большей экономичности использования топлива в газовом котле.

Диффузия. Газ легко смешивается с воздухом и равномерней сгорает. Газовая смесь сгорает полностью, поэтому не образуется сажи в топках и на нагревательных элементах.

Давление в емкости. В закрытом сосуде СУГ образует двухфазную систему, состоящую из жидкой и паровой фаз. Давление в емкости зависит от давления насыщенных паров, которое в свою очередь зависит от температуры жидкой фазы и процентного соотношения пропана и бутана в ней. Давление насыщенных паров характеризует испаряемость СУГ. Испаряемость пропана выше чем бутана, поэтому и давление при отрицательных температурах у него значительно выше. Расчетами и экспериментами установлено, что при низких температурах окружающего воздуха эффективнее использовать СУГ с повышенным содержанием пропана, так как при этом обеспечивается надежное испарение газа, а следовательно и достаточность газа для газопотребления. Кроме того, достаточное избыточное давление в емкости обеспечит надежную подачу газа к котлу в сильные морозы. При высоких положительных температурах окружающего воздуха эффективнее использовать СУГ с меньшим содержанием пропана, так как при этом в емкости будет создаваться значительное избыточное давление, что может вызвать срабатывание клапана сброса. Кроме пропана и бутана, в состав СУГ входит незначительное количество метана, этана и других углеводородов, которые могут изменять свойства СУГ. В процессе эксплуатации емкости может образовываться неиспаряемый конденсат, который отрицательно сказывается на работе газовой аппаратуры.

Изменение объема жидкой фазы при нагревании. Правилами Европейской Экономической Комиссии ООН предусмотрена установка автоматического устройства, ограничивающего наполнение емкости до 85% ее объема. Данное требование объясняется большим коэффициентом объемного расширения жидкой фазы, который для пропана составляет 0,003, а для бутана 0,002 на 1°С повышения температуры газа. Для сравнения: коэффициент объемного расширения пропана в 15 раз, а бутана в 10 раз, больше, чем у воды.

Изменение объема газа при испарении. При испарении сжиженного газа образуется около 250л. газообразного. Таким образом, даже незначительная утечка СУГ может быть опасной, так как объем газа при испарении увеличивается в 250 раз. Плотность газовой фазы в 1,5--2,0 раза больше плотности воздуха. Этим объясняется тот факт, что при утечках газ с трудом рассеивается в воздухе, особенно в закрытом помещении. Пары его могут накапливаться в естественных и искусственных углублениях, образуя взрывоопасную смесь. СНиП 42-01-2002 предусматривает обязательную установку газоанализатора, выдающего сигнал отсечному клапану на закрытие в случае скопления газа в концентрации 10% от взрывоопасной.

Одорация. Сам газ практически не пахнет, поэтому для безопасности и своевременной диагностики утечек газа органами обоняния человека в него добавляют незначительные количества сильнопахнущих веществ. При массовой доле меркаптановой серы менее 0,001% СУГ должны быть одорированы. Для одорации применяется этилмеркаптан (С2Н5SH), представляющий собой неприятно пахнущую жидкость плотностью 0,839 кг/л и с точкой кипения 35°С. Порог чувствительности запаха 0,00019 мг/л, предельно допустимая концентрация в воздухе рабочей зоны 1 мг/м3. В случае, когда токсичность в норме или несколько ниже нормы, запах одоранта практически не ощущается и его накопления в помещении не наблюдается.

Вывод

Таким образом, можно подвести итог и выделить основные свойства пропан-бутановых смесей, влияющих на условия их хранения, транспортирования и измерения.

1. Сжиженные углеводородные газы относятся к низкокипящим жидкостям, способным находиться в жидком состоянии под давлением насыщенных паров.

Температура кипения:

Пропан -420 С;

Бутан - 0,50 С.

2. При нормальных условиях объем газообразного пропана больше в 270 раз, чем объем пропана сжиженного.

3. Сжиженные углеводородные газы характеризуются высоким коэффициентом теплового расширения.

4. СУГ характеризуются низкой плотностью и вязкостью по сравнению со светлыми нефтепродуктами.

5. Нестабильность агрегатного состояния СУГ при течении по трубопроводам в зависимости от температуры, гидравлических сопротивлений, неравномерности условных проходов.

6. Транспортирование, хранение и измерение СУГ возможны только посредством закрытых (герметизированных) систем, рассчитанных, как правило, на рабочее давление 1,6 МПа.

7. Перекачивающие, измерительные операции требуют применения специального оборудования, материалов и технологий.

Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.

Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.

Принципиально, системы, перекачивающие СУГ, мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.

Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.

Размещено на Allbest.ru

...

Подобные документы

  • Требования и основные характеристики сжиженных газов. Характеристика исходного сырья, реагентов и продуктов. Описание технологического процесса и технологической схемы ректификации сжиженных углеводородных газов. Определение температуры ввода сырья.

    курсовая работа [125,3 K], добавлен 19.02.2014

  • Баллоны для сжатых и сжиженных газов и пропан-бутана, кислородные и ацетиленовые баллоны, запорные вентили. Хранение и транспортировка, маркировка, объем, конструкция баллонов. Меры безопасности при работе с газовыми баллонами и при их транспортировке.

    реферат [753,5 K], добавлен 16.03.2010

  • Назначение товарного парка сжиженных газов. Схема сбора факельного газа и подтоварной воды. Подача синтетического спирта в трубопроводы. Система программирования промышленных контроллеров. Схема поступления и откачки пропан-пропиленовой фракции.

    дипломная работа [2,7 M], добавлен 16.04.2015

  • Развитие переработки газовых конденсатов. Характеристика углеводородных газов, совершенствование технологии их переработки. Естественные и искусственные углеводородные газы. Сепарация газа (низкотемпературная) как важнейшая промысловая операция.

    реферат [232,2 K], добавлен 27.11.2009

  • Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.

    презентация [3,6 M], добавлен 26.06.2014

  • Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат [175,4 K], добавлен 11.02.2014

  • Подготовка нефти к транспортировке. Обзор различных систем внутрипромыслового сбора: самотечных и герметизированных высоконапорных. Типы танкеров для перевозки сжиженных газов. Техническая и экологическая безопасность в процессе транспортировки нефти.

    курсовая работа [488,8 K], добавлен 21.03.2015

  • История развития рынка сжиженного природного газа, его современное состояние и перспективы развития. Технология производства и транспортировки сжиженного природного газа, обзор перспективных проектов по созданию заводов по сжижению газа в России.

    реферат [2,5 M], добавлен 25.12.2014

  • Технологическое описание структурной схемы проекта по автоматизации процесса переработки предельных углеводородных газов. Изучение функциональной схемы автоматизации и обоснование выбора средств КИП установки. Математическая модель контура регулирования.

    контрольная работа [67,1 K], добавлен 13.06.2012

  • Описание технологической схемы установки утилизации теплоты отходящих газов технологической печи. Расчет процесса горения, состав топлива и средние удельные теплоемкости газов. Расчет теплового баланса печи и ее КПД. Оборудование котла-утилизатора.

    курсовая работа [160,1 K], добавлен 07.10.2010

  • Технология переработки компонентов природного газа и отходящих газов С2-С5 нефтедобычи и нефтепереработки в жидкие углеводороды состава С6-С12. Особенности расчета технологических параметров ректификационной колонны, ее конденсатора и кипятильника.

    контрольная работа [531,6 K], добавлен 06.11.2012

  • Электросталеплавильное производство, состав отходящих газов. Фильтровальные материалы рукавного фильтра, газоотводящие тракты. Расчет дымососа-вентилятора, рукавного фильтра и дымовой трубы. Особенности принципиальных схем центробежных скрубберов.

    курсовая работа [858,7 K], добавлен 27.06.2019

  • Изучение классификации методов осушки природных газов. Состав основного технологического оборудования и механизм работы установок подготовки газа методом абсорбционной и адсорбционной осушки. Анализ инновационного теплофизического метода осушки газа.

    доклад [1,1 M], добавлен 09.03.2016

  • Основные компоненты, химическая переработка и утилизация попутных газов. Выcoкoтеxнoлoгичнoе ocвoение меcтopoждений нефти для ликвидации неблагоприятных последствий и возврата в оборот углеводородного сырья. Применение мембранной углеводородной установки.

    презентация [185,5 K], добавлен 18.04.2015

  • Исследование областей устойчивости локальных параметров сжиженного природного газа при хранении в резервуарах с учетом неизотермичности и эффекта ролловера. Анализ существующих методов расчета ролловера. Математическое моделирование явления ролловера.

    магистерская работа [2,4 M], добавлен 25.06.2015

  • Применение лопастных насосов для перекачки жидкостей - от химикатов до сжиженных газов. Одноступенчатые и многоступенчатые насосы. Организации монтажа насоса, проведение контроля его качества. Обслуживание и ремонт насоса. Соблюдение техники безопасности.

    курсовая работа [436,5 K], добавлен 07.12.2016

  • Физические свойства и химический состав пластовой нефти и газа. Текущее состояние разработки нефтяного месторождения. Анализ состояния фонда скважин. Технология зарезки боковых стволов. Оценка безопасности рабочего места оператора буровой установки.

    дипломная работа [2,4 M], добавлен 07.08.2015

  • Использование криолита в процессе производства алюминия. Получение вторичного криолита путем флотации и регенерации. Состав анодных газов и их утилизация с получением вторичного криолита на Братском алюминиевом заводе. Источники выделения анодных газов.

    дипломная работа [1,7 M], добавлен 20.07.2012

  • Применение газов в технике: в качестве топлива; теплоносителей; рабочего тела для выполнения механической работы; среды для газового разряда. Регенераторы и рекуператоры для нагрева воздуха и газа. Использование тепла дымовых газов в котлах-утилизаторах.

    контрольная работа [431,9 K], добавлен 26.03.2015

  • Классификация методов и аппаратов для обезвреживания газовых выбросов. Каталитическая очистка газов: суть метода. Конструкция каталитических реакторов. Технологическая схема установки каталитического обезвреживания отходящих газов в производстве клеенки.

    курсовая работа [1,7 M], добавлен 12.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.