Разливка стали в изложницы

Оборудование для разливки стали: сталеразливочный ковш, разливочный стакан, стопор, воронки, изложницы. Классификация стали по степени раскисленности, разливка кипящей или полуспокойной стали. Рослость слитка спокойной стали и внутренние газовые пузыри.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 13.05.2015
Размер файла 368,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Скорость разливки сверху до недавнего времени выбирали в пределах 0,3--1,1 м/мин. В последние годы для сталей не склонных образованию продольных трещин внедряют скоростную разливку (до 4,5 м/мин - стакан диаметром 80мм). Длительность наполнения тела слитков массой от 2 до 20 т составляет 0,5--8 мин.

При сифонной разливке низ изложницы также заполняют медленно. В дальнейшем скорость разливки регулируют в зависимости от вида поверхности металла в изложнице. Обычно на поверхности металла образуется окисленная корка, завороты которой у стенок изложницы -- серьезный дефект слитка. Образование и рост корки интенсифицируются при малой скорости разливки, недостаточной температуре металла и в особенности при наличии в стали легкоокисляющихся элементов (алюминия, титана, хрома). Для предотвращения заворотов корки разливку стараются вести с "чистым зеркалом".

Величина скорости разливки стали сифоном обычно находится в пределах 0,15--0,7 м/мин. Прибыльную часть слитка, как и при разливке сверху, наполняют замедленно. Длительность наполнения тела слитков массой от 1 до 13 т изменяется в пределах от 1,5 до 9 мин.

После окончания разливки слитка спокойной стали поверхность металла в прибыльной надставке засыпают экзотермическим или теплоизолирующими смесями. Состав с изложницами с затвердевающими в них слитками выдерживают в разливочном пролете без движения от 30 мин до 2 ч (в зависимости от марки стали и массы слитка). Необходимость длительной выдержки до начала транспортировки вызывается тем, что при сотрясении кристаллизующегося слитка резко усиливается внеосевая (зональная) ликвация.

Защита металла в изложнице от окисления

Для предотвращения образования и заворота корки при сифонной разливке спокойной стали, а иногда и при разливке сверху применяют следующие способы защиты поверхности металла в изложнице от окисления и охлаждения.

Разливка под слоем жидкого шлака. На поверхности поднимающегося в изложнице металла создают слой жидкого шлака, который защищает сталь от окисления и охлаждения, что исключает образование окисленной корочки. Шлак также поглощает частицы окислов, всплывающие из металла. Помимо этого, в результате прилипания шлака к стенкам изложницы между ними и поднимающимся металлом остается тонкая (1--3 мм) шлаковая прослойка, что обеспечивает получение чистой поверхности слитка.

Разливка под теплоизолирующими смесями и материалами. При разливке углеродистых и низколегированных сталей, не содержащих легкоокисляющихся элементов применяют более дешевые материалы -- малотеплопроводные неплавящиеся и частично плавящиеся. К первым относятся диски и плиты, получаемые прессованием из слюды, асбестита, графито-опилочной смеси и др. Диски во время заполнения изложницы плавают на поверхности поднимающегося металла.

Более широкое применение нашли частично плавящиеся смеси: зольно-графитовая, перлито-графитовая и вермикулито-графитовая, содержащие 12--30 % графита, а также чистый вермикулит (минерал типа гидрослюд). Зольно-графитовая смесь содержит золу тепловых электростанций, основу которой составляют SiO2 и А12О3.

Смеси или вермикулит загружают на дно несмазанных изложниц в бумажных мешках. При соприкосновении с жидким металлом смесь подплавляется и образует вязкий шлак, не налипающий на стенки изложницы; верхняя нерасплавившаяся часть смеси выполняет роль теплоизолятора. Графит в смесях предотвращает их спекание и налипание на стенки изложницы.

Расход зольно-графитовой смеси составляет 2--3,5, перлито- и вермикулито-графитовых 1,0--1,5, вермикулита 1,5--2,5 кг на 1 т стали.

Защита струи металла аргоном. На центровую устанавливают специальное кольцевое устройство, соединяемое с днищем сталеразливочного ковша и охватывающее во время разливки струю металла. В кольцевую полость подают аргон, предохраняющий металл от окисления. Готовая сталь при этом содержит пониженное количество кислорода и неметаллических включений. Из-за сложности способ применяется только при разливке сталей, содержащих легкоокисляющиеся элементы.

Разливка с использованием материалов, создающих в изложнице восстановительную атмосферу. Сюда относят ряд способов, из которых наибольшее применение находят разливка с деревянными рамками и разливка с петролатумом (побочный продукт переработки нефти), который загружают в количестве 0,2--1,0 кг/т в несмазанную изложницу до начала разливки, а изложницу плотно закрывают крышкой.

Методы снижения головной обрези

Наряду с применением футерованных прибыльных надставок в сочетании с засыпкой верха слитка теплоизолирующими смесями используют ряд других способов снижения величины головной обрези верха слитков спокойной стали.

1. Применение теплоизоляционных вкладышей. Вкладыши в виде пластин закрепляют у стенок прибыльной надставки или же в верхней части изложницы вдоль ее стенок, В последнем случае изложницы применяют без прибыльных надставок.

Благодаря низкой теплопроводности вкладышей охлаждение металла в прибыльной части изложницы происходит медленнее, чем при использовании обычных прибыльных надставок; это уменьшает глубину усадочной раковины в слитке и обрезь металла при прокатке на 2--5 %.

2. Применение экзотермических вкладышей. Вкладыши выполняют из экзотермических смесей в виде пластин. Их укрепляют у стенок верхней части изложницы или в прибыльной надставке; иногда прибыльную надставку обмазывают изнутри экзотермической массой. Экзотермические смеси, из которых на связке (жидкое стекло) готовят вкладыши, содержат горючее вещество (алюминий), окислитель (окалину) и нейтральные наполнители (шамот, глину, вермикулит). При контакте с горячим металлом алюминий окисляется за счет кислорода окислителя с выделением тепла. В результате обогрева уменьшается глубина проникновения в слиток усадочной раковины и снижается головная обрезь на 5--8 %.

3. Электродуговой обогрев. В прибыльную надставку вводят графитовый электрод, устанавливая его над поверхностью металла. Способ позволяет повысить выход годного на 5--8 % при расходе электроэнергии 15--40 кВт-ч на 1т стали.

4. Газовый обогрев. После наполнения слитка в прибыльную надставку засыпают шлаковую смесь и над поверхностью металла устанавливают газокислородную горелку. Обогрев в течение 15 -- 20 мин за счет сжигания природного или коксового газа в кислороде позволяет повысить выход годного металла на 6--8 %.

5. Электрошлаковая подпитка. Поверхность металла в прибыли покрывают шлаком, состоящим из CaO, CaF2 и А12О3, который обладает электропроводностью, и в то же время большим электросопротивлением. В шлак сверху погружают электрод из стали того же состава, что и отливаемый слиток. При прохождении электрического тока от электрода к металлу через шлак, последний сильно нагревается, электрод плавится и капли металла через шлак поступают в головную часть слитка. Способ позволяет получать слитки без усадочной раковины и увеличить выход годного металла на 15 % и более.

6.2 Особенности разливки кипящей стали

Кипящую сталь разливают и сифоном, и сверху в уширяющиеся книзу сквозные изложницы. В обоих случаях для предотвращения заплесков металла на стенки изложницы и образования плен на нижней поверхности слитков нижнюю часть изложницы заполняют медленно. В дальнейшем скорость наполнения изложницы при разливке сверху определяется диаметром стакана сталеразливочного ковша, а при разливке сифоном -- сечением каналов сифонного кирпича. При сифонной разливке перегретой стали и при чрезмерной ее окислениости могут происходить выплески металла из центровой. В этом случае в центровую для дополнительного раскисления вводят небольшие количества алюминия. При разливке кипящей стали важным фактором является скорость подъема металла в изложнице, определяющая толщину здоровой корки в слитке. Скорость разливки сверху без интенсификаторов кипения обычно составляет 0,5--1,0 м/мин и при скорости около 1,0 м/мин получают здоровую корочку минимально допустимой толщины (8--10 мм). Продолжительность отливки слитков массой 5--20 т при разливке сифоном составляет 5--12, при разливке сверху 2--4 мин.

После окончания наполнения изложницы металл в ней некоторое время кипит, а затем для уменьшения развития химической неоднородности кипение прекращают, применяя механическое или химическое закупоривание слитка. Состав с изложницами выдерживают у разливочной площадки до начала транспортировки не менее 20 мин.

Механическое закупоривание. Кипение в изложнице продолжается до тех пор, пока у ее стенок затвердеет слой металла, достаточный для укладки на него крышки. Толщина этого слоя составляет около 1/6 толщины слитка (60-100мм), а время кипения 7--15 мин. Затем на поверхность металла укладывают массивную металлическую крышку, вызывающую охлаждение и замораживание верха слитка, в результате чего прекращается кипение. Крышки снимают со слитка через 20--30 мин после закупоривания.

Химическое закупоривание. Как показал опыт, механическое закупоривание обеспечивает удовлетворительное качество слитков массой менее 6--8 т. В более крупных слитках из-за длительного кипения (7--15 мин) ликвация развивается столь сильно, что для удаления скоплений вредных примесей требуется существенное увеличение головной обрези при прокатке. Поэтому в последние годы, особенно в связи с увеличением массы отливаемых слитков, вместо механического закупоривания применяют химическое.

При химическом закупоривании для прекращения кипения и ускорения застывания верха слитка в изложницу вводят раскислители. Используют алюминий и иногда ферросилиций (в виде кусков размером 4--30мм), которые дают на поверхность металла через 1--1,5 мин после окончания наполнения изложницы. Закупоривание производят присадкой алюминия на зеркало металла непосредственно после окончания заливки изложницы. Алюминий дается в виде дроби или жидким.

При химическом закупоривании алюминием вследствие уменьшения ликвации головная обрезь крупных слитков кипящей стали составляет 4--8 % вместо 8--13 % при механическом закупоривании.

Способы повышения скорости разливки кипящей стали

Уровень окисленности кипящей стали, при ее выплавке существующими методами таков, что ее можно разливать со скоростью подъема металла в изложнице не более 1 м/мин, поскольку при большей скорости толщина здоровой корочки слитка получается недостаточной (<8--10 мм). Для решения проблемы "здоровой корочки" и повышения скорости разливки применяют следующие методы:

1. Применение интенсификаторов кипения -- порошкообразные смеси, содержащие окислы железа и способные легко передавать кислород этих окислов жидкой стали. Вследствие увеличения окисленности стали повышается интенсивность ее кипения, что обеспечивает утолщение здоровой корочки.

Применение интенсификатора кипения позволяет получать здоровую корочку достаточной толщины (10-20 мм) при увеличении скорости разливки до 2,0--2,5 м/мин, при этом повышенной загрязненности стали неметаллическими включениями не отмечается.

2. Обдув струи стали кислородом. Действенным средством увеличения толщины беспузыристой корочки является обдув струи стали при разливке кислородом.

3. Скоростная разливка - разливка химически закупориваемой стали со скоростью наполнения изложниц до 4--5 м/мин. При разливке кипящей стали со столь большой скоростью подъема металла в изложнице пузыри начинают формироваться у самой поверхности слитка, а благодаря быстрому закупориванию они не успевают вырасти до значительных размеров. Получается слиток без здоровой корочки с мелкими подкорковыми пузырями. Тонкий наружный слой металла с пузырями окисляясь при нагреве слитка под прокатку переходит в окалину и поверхность проката получается без дефектов, несмотря на отсутствие здоровой корочки.

6.3 Технология разливки полуспокойной стали

Полуспокойную сталь разливают как сифоном, так и сверху в сквозные расширяющиеся книзу или в бутылочные изложницы. Хорошие результаты дает применение скоростной разливки сверху с линейной скоростью подъема металла не менее 1,5 м/мин. В этом случае за счет быстрого роста ферростатического давления возможно подавить или по крайней мере ослабить процесс образования подкорковых пузырей. Если глубина их залегания не превышает 3--4 мм, они удаляются вместе со слоем окалины, образующимся при нагреве слитков, и не ухудшают поверхности проката.

Полуспокойную сталь разливают как в бутылочные, так и в сквозные уширяющиеся книзу изложницы. Последние получили большее распространение как более удобные в эксплуатации.

7. Дефекты стальных слитков

Дефекты стальных слитков разделяют на естественные или неизбежные, которые возникают при затвердевании и охлаждении слитка, и технологические, которые возникают из-за несовершенства технологии разливки, а также выплавки стали. К числу первых относятся усадочная раковина, осевая рыхлость, химическая и структурная неоднородность, сотовые пузыри, эндогенные неметаллические включения; к числу вторых -- трещины, плены, завороты корки, подкорковые пузыри в слитках спокойной стали, "голенища" и рослость слитков кипящей стали, малая толщина в них здоровой корочки и некоторые другие. Часть дефектов рассмотрены при описании строения слитков, наиболее важные из остальных рассматриваются ниже.

Осевая рыхлость. В верхней осевой части слитков спокойной стали обнаруживаются скопления мелких усадочных пустот, называемые осевой рыхлостью или пористостью. При кристаллизации слитка осевая зона незатвердевшего металла все время сужается и в отдельных местах происходит срастание кристаллов, растущих с противоположных боков этой зоны. Под сросшимися кристаллами затвердевание идет без доступа жидкого металла сверху из прибыльной части слитка и поэтому в этих местах образуются мелкие усадочные пустоты.

Увеличению осевой рыхлости способствуют понижение температуры разливаемого металла, увеличение массы слитка, наличие в стали элементов, повышающих усадку при затвердевании (в особенности углерода), наличие элементов (хрома, титана), увеличивающих вязкость жидкой стали,

Улучшение обогрева верхней части слитка приводит к уменьшению осевой пористости.

Заворот корки. Это дефект поверхности слитков, образующийся преимущественно при сифонной разливке вследствие окисления и охлаждения поверхности жидкой стали в изложнице.

Обычно поверхность поднимающегося в изложнице металла покрывается пленкой окислов, образующихся в результате окисления составляющих стали кислородом воздуха. Затвердевающий под пленкой металл образует вместе с ней корку, которая поглощает также всплывающие из жидкой стали неметаллические и шлаковые включения. Если корка пристает к стенкам изложницы, то поднимающийся снизу металл прорывает ее, заворачивает к стенке изложницы и заливает. В месте заворота корки в слитке обнаруживаются скопления неметаллических включений и газовые пузыри, образующиеся в результате взаимодействия окислов корки с содержащимся в стали углеродом. В процессе прокатки в месте заворота корки возникают рванины, поэтому требуется зачистка поверхности проката или поверхности слитков перед прокаткой, что усложняет производство и вызывает дополнительные потери металла.

Интенсивность роста корки и пораженностъ слитка заворотами увеличиваются при низких температуре разливаемой стали и скорости разливки и, в особенности, при наличии в стали легкоокисляющихся элементов (хрома, алюминия, титана). Для снижения пораженности слитка заворотами прибегают к специальным мерам защиты поверхности металла в изложнице от окисления.

Поперечные горячие трещины. Образование наружных поперечных трещин -- результат препятствия свободной усадке затвердевающего слитка. Наиболее часто трещины возникают вследствие местного зависания слитка в изложнице.

Для предупреждения образования этого порока необходимо обеспечивать плотное прилегание прибыльной надставки к изложнице и отбраковывать изложницы с дефектными стенками.

Продольные наружные горячие трещины. Они возникают при разливке перегретой стали и при повышенных скоростях разливки. Их ширина составляет 1--3 мм, длина достигает 1 м и более.

Трещины образуются следующим образом. В результате усадки корки затвердевающего слитка и теплового расширения изложницы между ними образуется зазор. Жидкий металл оказывается как бы в сосуде, стенками которого служит корка затвердевшего металла. Тонкая корка может не выдержать ферростатического давления жидкой стали; ее разрыв в продольном направлении представляет собой продольную трещину. Вероятность разрыва тем выше, чем выше температура стали и скорость разливки, так как в этих случаях из-за избытка тепла медленнее нарастает толщина корки затвердевшего металла. Обычно продольные трещины образуются по углам слитка.

Мерами борьбы с образованием продольных горячих трещин обычно служат: предотвращение перегрева стали, уменьшение скорости разливки, применение изложниц с вогнутыми и волнистыми стенками.

Продольные холодные наружные трещины. Они образуются в процессе охлаждения затвердевшего слитка на его гранях при температуре ниже 600 °С. Они возникают при слишком быстром охлаждении слитков в результате термических и фазовых напряжений.

Для предотвращения их образования следует медленнее проводить охлаждение слитков. Наиболее действенное средство против образования термических трещин -- посадка слитков в нагревательные колодцы в горячем состоянии.

Плены. Они обычно образуются при разливке сверху и преимущественно в нижней части слитка.

В результате удара струи металла о дно изложницы сталь разбрызгивается. Брызги и заплески застывают на стенках изложницы, причем поверхность их окисляется и поэтому они не растворяются в поднимающейся жидкой стали и не свариваются с основной массой слитка, образуя дефект поверхности слитка -- плены. Плены не свариваются с металлом и при прокатке, вследствие чего поверхность прокатанных заготовок приходится подвергать зачистке.

Для уменьшения разбрызгивания заполнение изложниц начинают медленно при не полностью открытом стопоре или затворе. С целью уменьшения пленообразования применяют также разливку через промежуточные ковши и воронки.

Подкорковые пузыри. В слитках спокойной стали иногда обнаруживаются газовые пузыри, расположенные у поверхности слитка. Причин возникновения этих подкорковых пузырей несколько. Одна из них -- излишне толстый слой смазки изложницы. В этом случае смазка не успевает выгореть до подхода жидкого металла и залитая металлом возгоняется. Возгоны задерживаются между кристаллами затвердевающего металла, образуя пузыри. Пузыри образуются и при слишком высоком (>0,5 %) содержании влаги в смазке в результате ее испарения, а также при разливке недостаточно раскисленной стали вследствие образования при ее кристаллизации пузырьков СО. Образуются подкорковые пузыри и в результате разбрызгивания стали при разливке сверху. Приставшие к стенкам капли металла (брызги) окисляются с поверхности. Попав затем в жидкую сталь окислы капель реагируют с углеродом стали, образуя пузырьки СО.

При прокатке слитков в местах расположения пузырей возникают волосовины -- мелкие тонкие трещины.

Рослость слитка спокойной стали и внутренние газовые пузыри. Причиной этого дефекта слитков спокойной стали является повышенное содержание в стали водорода. Во время кристаллизации избыточный водород выделяется из раствора и остается между кристаллами в виде пузырей, вызывая увеличение высоты ("рост") слитка. Этот дефект характерен для сталей с повышенным содержанием кремния.

Голенище. При чрезмерной окисленности кипящей стали кипение в процессе заполнения изложницы идет очень бурно, пузырьки СО сильно вспенивают металл. После окончания интенсивного кипения (при химическом закупоривании после ввода алюминия) сталь оседает, оставляя на стенках изложницы застывшую корку (голенище).

Рослость слитков кипящей стали. При недостаточной окисленности металла и вялом кипении в слитке остается много пузырей, в результате чего возрастает высота слитка, уменьшается плотность головной части и увеличивается головная обрезь при прокатке.

Литература

1. Металлургия стали./ Под ред. Явойского В.И. и Кряковского Ю.В. М.: Металлургия, 1984. - С.125-18

2. Баптизманский В.И. Теория кислородно-конвертерного процесса. М.: Металлургия, 1975. - С.14-4

3. Металлургия стали. Теория и технология плавки стали. Бигеев. А.М., Бигеев В.А. Магнитогорск: МГТУ, 2000. - С.342-352.

4. Дюдкин, Д.А. Современная технология производства стали. / Д.А. Дюдкин, В.В. Кисиленко. М.: Теплотехника, 200 - 528 с.

5. Металлургия стали / Явойский, В.И., Кряковский, Ю.В., Григорьев, В.П. и др. - М.: Металлургия, 1983. - 584с.

6. Кудрин, В.А. Теория и технология производства стали: Учебник для вузов.- М.: "Мир", ООО "Издательство АСТ", 2003. - 528 с.

7. Чалмерс, Б. Теория затвердевания. М.: Металлургия, 1968. - 280 с.

8. Колосов, М.И., Смирнов, Ю.Д. и др. Сменное оборудование для разливки стали. - Челябинск, 1961. - 320с.

9. Технология производства стали в современных конвертерных цехах / Колпаков, С.Ф., Старов, Р.В., Смоктий, В.В. и др. - М.: Металлургия, 1991. - 464с.

10. Развитие технологии непрерывной разливки ста¬ли. Лякишев, Н.П., Шалимов, А.Г. М.: ЭЛИЗ, 2002. - 208 с.

11. Емельянов, В.А. Тепловая работа машин непрерывного литья заготовок. - М.: Металлургия, 1988. - 143с.

12. Журавлев, В.А., Китаев, Е.М. Теплофизика формирования непрерывного слитка. - М.: Металлургия, 1974. - 216с.

13. Литвин, А.В., Мазур, В.Л., Темошенко, В.Л. Разработка литейно-прокатных комплексов для производства листовой стали, тонких слябов и лент за рубежом. Черная металлургия, 1990, №4. - С.23-31.

Размещено на Allbest.ru

...

Подобные документы

  • Макроструктура готового сортового проката, полученного из квадратных заготовок непрерывной разливки. Оборудование для разливки стали. Технология разливки стали в изложницы. Сифонная разливка стали, ее скоростной режим. Улучшение качества разливки стали.

    курсовая работа [1,8 M], добавлен 26.05.2015

  • Развитие и современный уровень металлургического производства. Особенности разливки стали, способы изготовления стальных отливок. Разливка стали в изложницы, затвердевание и строение стального слитка. Особенности и недостатки непрерывной разливки стали.

    курсовая работа [2,1 M], добавлен 22.10.2009

  • Кристаллизация стального слитка. Строение механически закупоренных слитков кипящей стали. Преимущества и недостатки использования полуспокойной стали по сравнению с кипящей. Футеровка сталеразливочных ковшей. Влияние скорости разливки на качество стали.

    курс лекций [4,7 M], добавлен 30.05.2014

  • Анализ мирового опыта производства трансформаторной стали. Технология выплавки трансформаторной стали в кислородных конвертерах. Ковшевая обработка трансформаторной стали. Конструкция и оборудование МНЛЗ. Непрерывная разливка трансформаторной стали.

    дипломная работа [5,6 M], добавлен 31.05.2010

  • Исследование классической разливки стали в изложницы на сталеплавильном производстве. Изучение блочных, гильзовых и составных типов кристаллизаторов. Описания устройства для резки слитка на куски, работы секции охлаждения слябов из углеродистой стали.

    отчет по практике [2,3 M], добавлен 17.05.2011

  • Основные свойства стали и характеристика ее разливки, этапы и особенности. Факторы, влияющие на качество выплавки и критерии его повышения. Характеристика и требования к ковшам для разливки стали. Способы изготовления стальных отливок и их разновидности.

    курсовая работа [34,0 K], добавлен 21.10.2009

  • Зоны слитка, их различная структура и описание. Разлив стали в изложницы. Виды металлургических агрегатов: мартеновские печи, кислородные конвертора, электропечи. Типы стальных слитков, их химическая неоднородность, влияние степени раскисленности стали.

    контрольная работа [4,7 M], добавлен 12.08.2009

  • Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.

    реферат [121,3 K], добавлен 22.05.2008

  • История развития выплавки стали в дуговых электропечах. Технология плавки стали на свежей углеродистой шихте с окислением. Выплавка стали в двухванном сталеплавильном агрегате. Внеагрегатная обработка металла в цехе. Разливка стали на сортовых МНЛЗ.

    отчет по практике [86,2 K], добавлен 10.03.2011

  • Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа [1,5 M], добавлен 02.01.2005

  • Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.

    реферат [22,8 K], добавлен 24.12.2007

  • Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.

    курсовая работа [2,1 M], добавлен 11.08.2012

  • Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.

    контрольная работа [37,5 K], добавлен 24.05.2008

  • Механические свойства стали при повышенных температурах. Технология плавки стали в дуговой печи. Очистка металла от примесей. Интенсификация окислительных процессов. Подготовка печи к плавке, загрузка шихты, разливка стали. Расчет составляющих завалки.

    курсовая работа [123,5 K], добавлен 06.04.2015

  • Характеристика заданной марки стали и выбор сталеплавильного агрегата. Выплавка стали в кислородном конвертере. Материальный и тепловой баланс конвертерной операции. Внепечная обработка стали. Расчет раскисления и дегазации стали при вакуумной обработке.

    учебное пособие [536,2 K], добавлен 01.11.2012

  • Назначение и механические характеристики стали 45Г, выбор и краткая характеристика типа печного оборудования и процесса ее разливки. Технологический процесс и состав оборудования последних двух станов технологического потока производства рельса Р75.

    контрольная работа [4,0 M], добавлен 13.01.2011

  • Характеристика рельсовой стали - углеродистой легированной стали, которая легируется кремнием и марганцем. Химический состав и требования к качеству рельсовой стали. Технология производства. Анализ производства рельсовой стали с применением модификаторов.

    реферат [1022,5 K], добавлен 12.10.2016

  • Расчет технологических параметров непрерывной разливки стали на четырехручьевой МНЛЗ криволинейного типа. Параметры жидкого металла для непрерывной разливки. Расчет основных параметров систем охлаждения кристаллизатора и зоны вторичного охлаждения.

    курсовая работа [116,3 K], добавлен 31.05.2010

  • Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.

    лекция [605,2 K], добавлен 06.12.2008

  • История открытия нержавеющей стали. Описание легирующих элементов, придающих стали необходимые физико-механические свойства и коррозионную стойкость. Типы нержавеющей стали. Физические свойства, способы изготовления и применение различных марок стали.

    реферат [893,5 K], добавлен 23.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.