Метрология, стандартизация и сертификация

Методика обработки результатов прямых и косвенных видов измерений. Погрешности результата косвенного вида измерений для наиболее распространенных уравнений связи. Методика построения функциональных схем систем автоматизации технологических процессов.

Рубрика Производство и технологии
Вид методичка
Язык русский
Дата добавления 17.05.2015
Размер файла 479,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

22

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Уфимский государственный нефтяной технический университет

Кафедра автоматизации технологических процессов и производств

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

Учебно - методическое пособие по выполнению

расчётно - графической работы по обработке результатов измерений

для студентов специальности 220301 дневной и заочной форм обучения (АГ и АГЗ)

Уфа 2011

Методическое пособие посвящено выполнению расчётов по обработке результатов многократных прямых и косвенных видов измерений физических величин, методике расчёта характеристик погрешностей и определения класса точности средств измерений, а также методика построения функциональных схем систем автоматизации технологических процессов. Для облегчения выполнения расчётно - графических работ в приложении приведены все необходимые табличные данные, а также основная рекомендуемая литература. Пособие предназначено для студентов дневной и заочной форм обучения по дисциплине «Метрология, стандартизация и сертификация», может быть рекомендовано при выполнении экспериментальной и расчётной части курсовых и дипломных проектов, связанных с расчётом погрешностей средств измерений.

Составитель Шаловников Э.А., доц., канд.техн.наук

Рецензент Ишинбаев Н.А., доц., канд.техн.наук

© Уфимский государственный нефтяной технический университет, 2011

Содержание

1. Методика обработки результатов прямых видов измерений

1.1 Обработка результатов прямых равноточных измерений

1.2 Варианты заданий к разделу 1.1

1.3 Свойства математического ожидания и дисперсии

1.4 Обработка результатов прямых неравноточных измерений

2. Методика обработки результатов косвенных видов измерений

2.1 Общий случай

2.2 Частный случай

2.3 Критерий ничтожных частных погрешностей

2.4 Погрешности результата косвенного вида измерений для наиболее распространенных уравнений связи

2.5 Варианты заданий к разделу 2

3. Методика расчета статистических характеристик погрешности СИ в эксплуатации, определение класса точности

4. Методика построения функциональных схем систем автоматизации технологических процессов

4.1 Виды и типы схем автоматизации

4.2 Функциональные схемы автоматизации (ФСА)

4.3 Графические условные обозначения приборов и средств автоматизации

4.4 Буквенные условные обозначения приборов и средств автоматизации

4.5 Примеры условных обозначений приборов и средств автоматизации

4.6 Варианты заданий к разделу 4

Список использованных источников

Приложение

1. Методика обработки результатов прямых видов измерений

измерение погрешность автоматизация технологический

К прямым видам относятся измерения, результаты которых получаются из опытных данных одного измерения. Прямые виды измерений бывают равноточные и неравноточные.

1.1 Обработка результатов прямых равноточных видов измерений

Результаты равноточных измерений получаются при многократных измерениях одного и того же истинного значения измеряемой физической величины (ФВ), одним и тем же средством измерения, одним наблюдателем, при неизменных условиях измерения. Результат измерения при этом равен

, (1.1)

где - истинное значение;

и - соответственно случайная и систематическая составляющие i - го результата.

Обычно величина известная и в результат измерения вносится поправка

, (1.2)

т.е. получается исправленный результат

. (1.3)

Задача обработки результатов найти оценку (приближенная характеристика) истинного значения

=. (1.4)

Для оценки результата измерений, являющегося случайной величиной находят его характеристики: оценку математического ожидания - среднее значение, вокруг которого группируются все результаты и оценку среднего квадратического отклонения (с. к. о.) , которая является мерой рассеяния результатов относительно центра группирования.

А Точечная оценка

При обработке результатов измерений необходимо воспользоваться свойствами математического ожидания и дисперсии.

Оценка называется точечной, если ее значения можно представить на числовой оси геометрически в виде точки.

1 Исправленный ряд результатов ранжируется

.

2 Находится среднее арифметическое (оценка математического ожидания )

(1.5)

3 Проверяется правильность вычислений

(1.6)

.

4 Определяется оценка среднего квадратического отклонения (с. к. о.)

а) Оценка с. к. о. отдельного результата наблюдения (формула Бесселя)

(1.7)

Полученные точечные оценки по формулам (1.5) и (1.7) являются случайными, т.к. при повторных измерениях получим другую группу результатов, а для нее другие значения и . Поэтому для оценки полученного результата измерения величины необходимо оценить с. к. о. среднего арифметического .

б) Оценка с. к. о. среднего арифметического

(1.8)

В полученной группе результатов измерений один или два наблюдения (обычно это крайние результаты в ряде) могут резко отличаться от остальных. Поэтому их следует проверить на наличие в них грубых погрешностей с целью их исключения из ряда измерений, т.к. они могут сильно искажать , , закон распределения и доверительный интервал.

Б Критерии грубых погрешностей
Задача решается статистическими методами, основанными на том, что распределение, к которому относится рассматриваемая группа наблюдений, можно считать нормальным. Cуществуют разные критерии. Рассмотрим один из них.
5 Критерий Грабса или - критерий.
Определяются расчетные значения
(1.9)
и сравниваются с табличными (Таблица П3.shs)
tГ = f (q; k), (1.10)
где q = (1 - pД) - уровень значимости, %
pД - принятая доверительная вероятность, %
k = (n - 1) - число степеней свободы,
n - число результатов измерений.
Обычно уровень значимости берется равным 5% или 10%.
Если выполняется критерий
ti tГ, (1.11)
то в результате Xi грубых погрешностей нет и расчет продолжается.

Если критерий (1.11) не выполняется, то результат - как промах отбрасывается и расчеты по п.1 - п.4 повторяют при новом числе наблюдений

n/ = n - 1.

6 Записываются результаты точечной оценки

=, ,

Следует отметить, что величины используются при оценке погрешности окончательного результата измерения, а - при оценке погрешности метода измерения.

Точечные оценки результатов измерений указывают интервал значений измеряемой величины, внутри которого находится истинное значение

. (1.12)

Но т.к. и - величины случайные, то необходимо рассмотреть вопрос о точности и надежности этой оценки, т.е. проводится их интервальная вероятностная оценка.

В Интервальная оценка

При интервальной оценке определяется доверительный интервал, который накрывает истинное значение измеряемой величины (истинное значение оказывается внутри этого интервала) с заданной доверительной вероятностью pД

, (1.13)

где J (pД) = 2 - доверительный интервал;

()- доверительные границы.

7 Оценка доверительного интервала математического ожидания :

а) при нормальном законе распределения погрешностей

, (1.14)

где t = f (pД) - коэффициент стандартного нормального закона распределения находится по таблице функций Лапласа (Таблица П1.shs)

, (1.15)

Ф(t) = 0,5pД.

б) при распределении Стьюдента

, (1.16)

где tp = f(q; k) - коэффициент Стьюдента находится по таблице распределения Стьюдента (Таблица П4.shs).

При оценке доверительного интервала случайной погрешности по формулам(1.14) и (1.16) необходимо знать закон распределения случайных результатов. Приближенно это можно сделать по формуле Петерса

(1.17)

Если

, (1.18)

то опытное распределение считается нормальным. В противном случае пользуются распределением Стьюдента.

В практике измерений доверительную вероятность при оценке доверительного интервала принимают равной pД = 0.95.

8 Оценка доверительного интервала с. к. о.

(1.19)

Где

(1.20)

2В = f (k; qВ); 2Н = f (k; qН); qВ = 1- pВ; qН = 1- pН; pВ = (1 + pД)/2;

pН = (1 - pД)/2;

k = (n -1) - число степеней свободы ряда результатов измерений.

Значения 2 находят по таблице распределения Пирсона , а доверительная вероятность берётся равной 0.9 (Таблица П2.shs).

9 Записываются результаты измерения

, при pД = 0,95,

при pД = 0,9.

При расчёте погрешностей необходимо пользоваться следующими правилами округления:

1)погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2; и одной - если первая цифра равна 3 и более;

2)результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности;

3)округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним - двумя лишними знаками.

1.2 Варианты заданий к разделу 1.1 (результаты измерений исправлены)

1 Результаты измерения тока амперметром (А):

0.111; 0.085; 0.091; 0.101; 0.109; 0.086; 0.102; 0.111; 0.098; 0.085; 0.105; 0.112; 0.098; 0.113; 0.087; 0.109; 0.115; 0.099;0.099; 0.094;0.105

2 Результаты измерения напряжения вольтметром (В):

1.07; 0.99; 1.25; 0.89; 1.04; 1.13; 0.96; 1.03; 1.45; 1.04;1.05; 0.88; 1.03; 0.97; 1.15; 1.09; 0.89; 1.08; 1.07; 0.97

3 Результаты измерения длины детали (мм):

10.6; 9.6; 10.9; 11.6; 10.9; 11.7; 10.8; 10.9; 11.7; 10.3;12.7; 11.9; 11.8; 12.5; 10.5; 11.6; 10.1; 11.3; 10.7; 10.5

4 Результаты измерения диаметра детали (мм):

12.205; 12.208; 12.212; 12.209; 12.204; 12.206; 12.209; 12.210;12.203; 12.208; 12.206; 12.213; 12.205; 12.207; 12.208; 12.209;12.208; 12.207; 12.209

5 Результаты измерения среднего диаметра резьбового калибра (мм):

8.911; 8.913; 8.915; 8.917; 8.919; 8.921; 8.923; 8.927; 8.925;8.923; 8.921; 8.919; 8.917; 8.915; 8.913; 8.925

6 В результате измерений получена следующая совокупность:

20.15; 20.20; 20.23; 20.26; 20.17; 20.21; 20.25; 20.27; 20.19;20.21; 20.25; 20.28; 20.19; 20.23; 20.25; 20.30; 20.20; 20.23;20.26

7 Измерение температуры объекта дало результаты (0C):

119; 107; 111; 112; 129; 113; 106; 104; 106; 98.0; 123; 108; 93.0; 105; 106; 139; 108; 107; 93.0; 117

8 Рассчитать характеристики погрешности следующего ряда:

20.42; 20.43; 20.40; 20.43; 20.42; 20.43; 20.39; 20.30;20.40;20.43; 20.42; 20.41; 20.39; 20.39; 20.40

9 Результаты измерения объемного расхода жидкости (м3/с):

10.7; 11.8; 9.9; 10.8; 11.9; 10.8; 10.1; 10.9; 12.8; 12.7; 12.1;11.8; 12.2; 11.6; 12.4; 12.5; 11.4; 12.6; 13.1; 14.3; 11.9; 11.3;12.5

10 Результаты измерения длины металлического стержня (мм):

358.52; 358.51; 358.49; 358.48; 358.46; 358.45; 358.42; 358.59; 358.55; 358.53

11 Результаты измерения длины детали (см):

18.305; 18.306; 18.309; 18.308; 18.306; 18.309; 18.313; 18.308; 18.312; 18.310; 18.305; 18.307; 18.309; 18.303; 18.307; 18.309; 18.304; 18.308; 18.308; 18.310

12 Результаты измерения индуктивности (Гн):

10.13; 10.12; 10.08; 10.07; 10.40; 10.20; 10.17; 10.16; 10.15

13 Результаты измерения напряжения милливольтметром (мВ):

31.56; 31.82; 31.73; 31.68; 31.49; 31.73; 31.74; 31.72

14 Результаты измерения ёмкости конденсатора (мкФ):

2.151; 2.132; 2.113; 2.165; 2.144; 2.157; 2.150; 2.148; 2.135; 2.145; 2.139

15 Результаты измерения уровня жидкости (м):

7.15; 7.19; 7.27; 7.18; 7.13; 7.14; 7.21; 7.11; 7.17; 7.20; 7.16

16 Измерение объёма жидкости дало результаты (м3):

3.05; 3.121; 3.172; 3.009; 3.117; 3.120; 3.140; 3.150; 3.161; 3.092; 3.112

17 Обработать следующий ряд результатов измерений:

1.112; 1.007; 1.117; 1.210; 1.021; 1.110; 1.112; 1.092; 1.104; 1.075; 1.107

18 Результаты измерения расстояния между двумя пунктами (км):

9.150; 9.290; 9.370; 9.272; 9.197; 9.159; 9.162; 9.251; 9.302; 9.501; 9.117

19 Результаты измерения проводимости материала (сименс):

4.720; 4.851; 4.757; 4.804; 4.791; 4.651; 4.712; 4.751; 4.792; 4.698; 4.582

20 Результаты измерения сопротивления резистора (кОм):

8.821; 8.795; 7.695; 8.751; 8.821; 8.797; 8.781; 8.807; 8.789; 8.731; 8.605

21 Результаты измерения уровня жидкости в резервуаре (м):

6.125; 6.178; 6.131; 6.271; 6.251; 6.171; 6.373; 6.291; 6.222; 6.198; 6.201

22 При измерении массы вещества получены следующие результаты (кг):

4.480; 4.521; 4.617; 4.555; 4.498; 4.432; 4.510; 4.518; 4.612; 4.595; 4.606; 4.189; 4.805

23 При поверке рабочего манометра получены следующие результаты измерения давления (МПа):

36.28; 36.59; 36.30; 36.12; 38.21; 35.96; 35.85; 35.98; 36.01; 35.97; 36.05; 36.13; 36.02; 35.87; 33.89; 36.04

24 Многократные измерения сопротивления терморезистора (Ом):

459.6; 460.2; 463.1; 460.8; 457.0; 458.5; 459.8; 445.7; 461.2; 460.7; 458.8; 458.4; 449.6; 458.9

25 Результаты измерения влажности воздуха (%):

78.64; 78.04; 79.12; 80.56; 78.97; 79.02; 78.54; 78.91; 79.48; 78.00; 78.09; 72.18; 79.02; 78.13; 79.04

26 Результаты измерения массы алмаза (караты):

1.956; 1.978; 1.975; 1.967; 1.985; 1.977; 1.972; 1.969; 1.978; 1.982; 1.985; 1.991; 1.976

27 При калибровке резервуара получены следующие данные (м3):

65.45; 65.54; 62.48; 65.47; 65.52; 65.53; 65.49; 65.52; 65.61; 65.58; 65.49; 65.50; 65.47; 63.08; 65.55; 65.59

28 Результаты измерения диаметра резервуара (м):

5.0678; 5.0669; 5.0638; 5.0645; 5.0642; 5.0655; 5.0645; 5.0652; 5.0657; 5.0644; 5.0648; 5.0651; 5.0653; 5.0612; 5.0661; 5.0601

Примечания: 1) обработку результатов измерений необходимо провести с учётом свойств математического ожидания M(x) и дисперсии D(x) /1/;

2) номер варианта задания соответствует порядковому номеру фамилии студента в списке группы по зачётной ведомости.

1.3 Свойства математического ожидания и дисперсии

Математическое ожидание случайной величины - это среднее значение, вокруг которого группируются все результаты измерения.

Дисперсией случайной величины называется математическое ожидание квадрата отклонения этой величины от её математического ожидания

В связи с тем, что единица дисперсии (единица ФВ возведённая в квадрат) неудобна для применения, на практике при точечной оценке случайной величины используется среднее квадратическое отклонение (с. к. о.)

1 Если все значения случайной величины , не меняя их вероятности уменьшить (увеличить) на некоторое число a, то:

а) математическое ожидание уменьшится (увеличится) на это же число

б) дисперсия не изменится

2 Если все значения случайной величины , не меняя их вероятности, умножить на некоторый множитель b ( 1 или 1), то:

а) математическое ожидание умножится на этот же множитель

б) дисперсия D () умножится на квадрат этого множителя

3 а) математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых

б) дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых

4 а) математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий сомножителей

б) дисперсия постоянной величины a равна 0

Пример:

При измерении случайной величины с математическим ожиданием и дисперсией получен следующий исправленный ряд результатов

.

Каждый результат уменьшается на одно и то же постоянное число a и умножается на один и тот же постоянный множитель b. Получается случайная величина

для другого ряда результатов

По формулам раздела 1.1 находится математическое ожидание и дисперсия второго ряда.

Исходя из первого и второго свойств математического ожидания и дисперсии, определяются и для исходного ряда результатов измерений:

а) ;

б)

Величины a и b выбираются исходя из максимального уменьшения разрядов чисел первого ряда для получения второго ряда с целью упрощения вычислений.

1.4 Обработка результатов прямых неравноточных измерений

Результаты прямых неравноточных измерений получаются при повторных многократных измерениях одного и того же истинного значения измеряемой ФВ, разными наблюдателями, разными СИ, в разное время. При этом получается несколько серий таких результатов.

Проводится точечная оценка результатов серий:

Записываются результаты их точечной оценки:

После точечной оценки неравноточные измерения приводят к результатам

Для оценки наиболее вероятного значения ФВ по результатам неравноточных измерений вводится понятие “вес” для каждой серии результатов измерений в общей их совокупности, т. е. проводится оценка степени их доверия для получения значения измеряемой ФВ, наиболее близкого к истинному.

Таким образом, понятие “вес” отражает степень доверия к результату измерения. Чем больше степень доверия, тем больше число, выражающее этот “вес”.

Среднее взвешенное значение измеряемой ФВ, наиболее близкое к истинному её значению , определяется по формуле

(1.23)

где - средние значения для отдельных серий результатов, полученных тем или иным способом;

- “веса” соответствующих серий результатов.

“Веса” серий результатов можно определить следующими способами:

а) при известных и каждой серии результатов по формуле

(1.24)

б) при неизвестных

(1.25)

в) при (одинаковые в каждой серии результатов)

. (1.26)

Среднее квадратическое отклонение среднего взвешенного вычисляется по формуле

(1.27)

Окончательный результат записывается в виде

, при pД =,

где - абсолютная погрешность (доверительный интервал) среднего взвешенного .

Доверительный интервал определяется таким же образом, как и при равноточных измерениях (см. раздел 1.1):

- при нормальном законе распределения,

где t находится по таблице функций Лапласа ;

- при распределении Стьюдента,

где находится по таблице Стьюдента

.

2. Методика обработки косвенных видов измерений

При косвенных видах измерений значение искомой величины Y получают на основании прямых видов измерений величин , связанных с измеряемой известной функциональной зависимостью

, (2.1)

где - подлежащие прямым измерениям аргументы функции искомой величины Y.

2.1 Общий случай

В уравнениях связи аргументы представлены в виде результатов многократных прямых видов измерений

………………….;

(2.2)

………………….;

где - число результатов прямых видов измерений аргументов ;

- число аргументов в уравнении связи (2.1).

Исходя из уравнений связи (2.1) необходимо найти искомый результат Y.

1 На основании формул (1.5) и (1.8) раздела 1.1 проводится точечная оценка каждого аргумента, т. е. находятся значения и . Точечная оценка приводит к результатам

(2.3)

2 Исходя из уравнения связи (2.1) оценивается искомый результат

. (2.4)

3 Оценка дисперсии искомого результата

, (2.5)

где - частная производная аргумента , которая называется коэффициентом влияния.

Следует отметить, что при - такие коэффициенты влияния не учитываются.

Произведения частных производных уравнения связи на с. к. о. результатов измерения соответствующих аргументов называются частными погрешностями косвенного измерения

. (2.6)

Оценка коэффициента корреляции между каждой парой аргументов определяется по формуле

, (2.7)

где - наименьшее из чисел наблюдений nk и nl соответственно аргументов и .

Коэффициент корреляции определяет степень связи между случайными величинами. Возможные значения коэффициента корреляции лежат в интервале .

Коэффициент корреляции тогда и только тогда, когда между результатами наблюдений и существует линейная функциональная зависимость (погрешности измеряемых ФВ являются зависимыми).

Если , то погрешности измерения аргументов и некоррелированы (погрешности измеряемых ФВ являются независимыми). В этом случае формула (2.5) примет вид

. (2.8)

Формула (2.8) обычно справедлива, когда рассматриваемые аргументы и измеряют в разное время и для их измерения применяют разные по устройству средства измерений.

Корреляция между погрешностями аргументов чаще всего возникает в тех случаях, когда измерения выполняются одновременно и изменения влияющих величин (температуры воздуха, напряжения питания и т.п.), хотя и допустимые сами по себе, оказывают некоторое влияние на результаты наблюдений.

Критерием отсутствия корреляции между рассматриваемой парой аргументов и является выполнение неравенства

, (2.9)

где ; (2.10)

- коэффициент Стьюдента находится по табл. П-4;

- уровень значимости;

- принятая доверительная вероятность.

4 Оценка погрешности искомого результата:

а) Если число результатов, выполненных при измерении всех аргументов, превышает 25 - 30, то

(2.11)

где t = fД) - коэффициент стандартного нормального распределения находится по таблице П.1 функции Лапласа.

б) При меньшем числе наблюдений пользуются распределением Стьюдента (см. табл. П-4)

(2.12)

где tp=f(q; kэф) - коэффициент Стьюдента.

Эффективное число степеней свободы kэф определяется по формуле

(2.13)

где nj - число результатов прямых измерений аргумента .

При равном числе наблюдений всех аргументов, т.е. при n1= …= nm= n

(2.14)

Эффективное число степеней свободы обычно получается дробным, поэтому для отыскания величины tp данные табл. П-4 приходиться интерполировать.

Окончательный результат записывается в виде

, при . (2.15)

2.2 Частный случай

В уравнениях связи (2.1) значения аргументов заданы в виде

….; (2.16)

т. е. заданы своими доверительными интервалами

, (2.17)

где - коэффициент аргумента , зависящий от принятого закона распределения результатов измерения этого аргумента и принятой доверительной вероятности .

При отсутствии корреляционной зависимости между погрешностями измерений аргументов (коэффициент корреляции ) и при одинаковой доверительной вероятности всех аргументов () уравнения связи (2.1), оценка погрешности искомого результата будет иметь вид

. (2.18)

Формула (2.17) получена из равенства (2.8) путём умножения левой и правой частей его на коэффициент . Окончательный результат записывается аналогично (2.15).

2.3 Критерии ничтожных частных погрешностей

Оценка дисперсии косвенного результата измерения (2.8), с учётом частных погрешностей (2.6), может быть выражена через частные погрешности

. (2.19)

В соответствии с ГОСТом 8.011-72 “Показатели точности измерения и формы представления результатов измерения” погрешность результата округляется до одной, двух значащих цифр. Это соответствует 5% изменения погрешности результата. Следовательно, изменение левой части выражения (2.19) на 5% (0,05) не повлияет на округлённое значение , т. е. при округлении справедливо равенство

. (2.20)

Если имеется частная погрешность составляющая менее 5% от , то справедливо неравенство

. (2.21)

Решим неравенство (2.21) относительно

т. к. в соответствии с (2.19)

и после преобразований получим

Или

. (2.22)

Формула (2.22) в метрологии называется критерием ничтожных частных погрешностей, а сами погрешности, отвечающие неравенству (2.22) называются ничтожными или ничтожно малыми.

На основании ничтожных частных погрешностей (2.22) можно пренебречь целой группой частных погрешностей, если выполняется неравенство

, (2.23)

где - максимальная из всех частных погрешностей.

2.4 Погрешности результата косвенного вида измерений для наиболее распространённых уравнений связи

1.. (2.24)

2.. (2.25)

3.. (2.26)

4.. (2.27)

5 . (2.28)

6. (2.29)

Если в уравнениях связи (2.28) и (2.29) аргументы заданы своими доверительными интервалами (2.16) и (2.17), то уравнения погрешностей (2.28) и (2.29) соответственно примут вид

, (2.30)

. (2.31)

Примечания:

Во всех формулах для с. к. о. считается, что аргументы некоррелированы (независимы).

При возведении в степень значительно увеличивается погрешность результата, поэтому измерение величин, которые при дальнейших вычислениях возвышаются в степень, должно производится с особой точностью.

Величины, из которых при дальнейшей обработке извлекаются корни, могут измеряться с меньшей точностью, поскольку погрешность таких величин при обработке уменьшается.

2.5 Варианты заданий к разделу 2

Провести обработку косвенных видов измерений по заданным уравнениям связи в соответствии с данными таблицы 2.1.

Таблица 2.1

Уравнения связи

№ варианта

0

1

2

3

4

Уравнение связи

№ варианта

5

6

7

8

9

Уравнение связи

Примечание к табл. 2.1: № варианта уравнения связи соответствует последней цифре № зачётной книжки студента.

Варианты заданий аргументов для уравнений связи приведены в таблице 2.2

Таблица 2.2

Варианты заданий аргументов

Варианты

заданий

Номера аргументов

Варианты

заданий

Номера аргументов

1

1

12

15

15

5

2

2

13

16

16

6

3

3

14

17

17

7

4

4

15

18

18

8

5

5

16

19

19

9

6

6

17

20

20

10

7

7

18

21

21

11

8

8

19

22

22

4

9

9

20

23

23

14

10

10

21

24

24

15

11

11

22

25

25

16

12

12

2

26

26

17

13

13

3

27

27

12

14

14

4

28

28

13

Примечания к табл. 2.2:

1 № варианта задания соответствует порядковому номеру фамилии студента в зачетной ведомости.

2 № аргументов соответствует номерам вариантов заданий к разделу 1.1.

3. Методика расчёта статистических характеристик погрешностей СИ в эксплуатации. Определение класса точности

Для рабочих условий эксплуатации метрологические характеристики (МХ) конкретного экземпляра аналоговых средств измерений (СИ) и цифроаналоговых преобразователей (ЦАП) в соответствии с ГОСТ 8.009-84 /2/ погрешности нормируются комбинациями: систематическая (S), случайная составляющие и вариация (H), которые рассчитываются по результатам одной и той же серии наблюдений одного и того же действительного значения физической величины X0.

1 Оценка систематической составляющей погрешности СИ

- с учетом вариации

(3.1)

где и - средние значения погрешностей в точке результата X0, полученные экспериментально при медленных изменениях измеряемого параметра со стороны соответственно меньших и больших значений до значения X0

(3.2)

М i= XМi - X0; Бi = XБi - X0; (3.3)

где n- число результатов XМ (XБ),

- без учета вариации

(3.4)

где 2n - число наблюдений при определении .

2 Оценка среднего квадратического отклонения (с.к.о.) случайной составляющей погрешности СИ

- с учетом вариации

(3.5)

- без учета вариации

(3.6)

3 Оценка вариации

(3.7)

4 Наибольшее значение основной погрешности с вероятностью, близкой к единице, определяется по формуле

(3.8)

Предельное значение систематической составляющей основной погрешности нормируется всегда, т.к. реальные СИ не могут быть изготовлены идеально точно. В свою очередь, одной из случайной составляющей основной погрешности (H0 или ) можно пренебречь, если она менее 10% другой. Критерии нормирования в соответствии с двумя неравенствами приведены в табл. 3.1.

Таблица 3.1

Критерии нормирования составляющих случайной погрешности

Неравенства

NN0

левая часть

правая часть

1

0,9

0,1

0,1 и 0,9

2

0,1

0,3

Нормируются

и Ho

Примечания к таблице 3.1: H0 и - не нормируются, если:

1)не выполняется любое из вторых неравенств, при соблюдении соответствующих первых;

2)выполняется неравенство

.

5 Определение класса точности СИ.

При технических измерениях, когда не предусмотрено выделение и составляющих погрешности по ГОСТ 8.401-80 /3/ каждому СИ присваивается определенный класс точности (А).

Класс точности - это обобщенная МХ, определяющая различные свойства СИ и включает в себя систематическую и случайную составляющие погрешности.

В основу класса точности (А) заложены следующие положения:

1) в качестве норм служат пределы допускаемых погрешностей, включающие и ;

2)основная погрешность 0 и дополнительная C нормируются порознь.

Основная погрешность СИ формируется при нормальных условиях эксплуатации, когда влияющие величины (неинформативные параметры) равны нормам

,

где l - число влияющих величин.

Для аналоговых СИ класс точности нормируется пределом допускаемой основной приведенной погрешностью op

(3.9)

где N - предел измерения СИ

N = XВ - XН; (3.10)

XВ и XН - верхний и нижний пределы измерения СИ;

А - класс точности СИ выбирается из следующего ряда (ближайшее большее):

(1.0; 1.5; (1.6); 2.0; 2.5; (3,0); 4,0; 5.0; и 6.0)10n;

n = 1; 0; (-1); (-2).

Предельное значение основной погрешности op в выражении (3.9) вычисляется следующим образом:

а) если случайная составляющая основной погрешности несущественна

() - не нормируется)

, (3.11)

б) если существенна (- нормируется):

- при отсутствии вариации (Hо - не нормируется)

; (3.12)

- при наличии вариации (Hо - нормируется)

(3.13)

В формулах (3.12) и (3.13) коэффициент k зависит от принятой доверительной вероятности pД. При pД = 0,96; k = 2.

Таблица 3.2

Варианты заданий к разделу 3

№ вар.

P0, кг/см2

PМ, кг/см2

PБ, кг/см2

N, кг/см2

0

120.0

119.3; 119.7; 119.4;

119.6; 119.8

121.2; 120.8; 122.3;

121.0; 123.0

150.0

1

3.0

2.97; 2.89; 2.94;

2.96; 2.84

3.03; 3.01; 3.00;

3.02; 3.06

5.0

2

6.0

5.91; 5.93; 5.87;

5.93; 5.89

6.11; 6.09; 6.21;

6.15; 6.19

10.0

3

9.0

8.97; 8.79; 8.88;

8.85; 8.92

9.15; 9.07; 9.01;

9.14; 9.02

15.0

4

20.0

19.3; 19.7; 19.4;

19.6; 19.5

21.2; 20.8; 21.1;

21.0; 20.9

30.0

5

40.0

39.3; 39.0; 39.5;

38.9; 39.1

41.3; 40.9; 40.8;

41.0; 41.1

50.0

6

60.0

59.2; 59.4; 58.8;

58.9; 59.6

61.7; 61.5; 61.0;

60.8; 60.3

100

7

80.0

79.2; 79.6; 79.8;

78.9; 80.0

81.2; 81.0; 81.3;

80.9; 80.5

100

8

100.0

100.8; 99.7; 100.6;

99.8; 99.5

101.2; 100.5; 100.6;

100.9; 100.0

150.0

9

2.0

1.97; 1.89; 1.94;

1.96; 1.84

2.03; 2.01; 2.02;

2.04; 2.06

5.0

Примечания к табл. 3.1: 1 В таблице введены следующие обозначения:

P0 - действительные значения измеряемого давления; PМ и PБ - результаты измерений, полученные со стороны соответственно меньших и больших значений до значения P0; N - предел измерения СИ.

2 № варианта задания соответствует последней цифре № зачётной книжки студента.

4. Методика построения функциональных схем автоматизации технологических процессов

При разработке схем систем автоматизации применяют различные средства измерения, соединяемые между собой и с объектом управления по определенным схемам. Функциональные схемы отражают функционально - блочную структуру отдельных узлов автоматического контроля, сигнализации, управления и регулирования технологического процесса и определяют оснащение объекта управления приборами и средствами автоматизации. Построение функциональной схемы системы автоматизации заключается в размещении на технологической схеме и в соответствующих местах связанных между собой датчиков и вторичной аппаратуры (показывающей, регистрирующей или регулирующей).

4.1 Виды и типы схем автоматизации

При разработке схем автоматического управления и технологического контроля применяются различные приборы и средства автоматизации, соединяемые с объектом управления и между собой по определённым схемам. В зависимости от используемых приборов и средств автоматизации схемы автоматизации различаются по видам и типам. По видам подразделяются на:

1) электрические;

2) пневматические;

3) гидравлические;

4) комбинированные.

Наиболее распространённым видом являются электрические схемы.

По типам подразделяются на:

1) структурные - отражают укрупненную структуру систем управления и взаимосвязи между пунктами контроля и управлением объектов и отдельными должностными лицами;

2) функциональные - отражают функциональную структуру отдельных узлов автоматического контроля, управления и регулирования технологическими процессами, и определяют оснащение объектов управления приборами и средствами автоматизации;

3) принципиальные - определяют полный состав, входящих в отдельный узел автоматизации, элементов, модулей вспомогательной аппаратуры и связей между ними и дают детальное представление о принципе его работы;

4) монтажные - показывают соединения электрических и трубных проводок в пределах комплектных устройств, а также места их присоединения и ввода;

5) соединений - показывают внешние, электрические и трубные связи между измерительными устройствами и средствами получения измерительной информации с одной стороны, со щитами и пультами автоматизации - с другой стороны.

4.2 Функциональные схемы автоматизации (ФСА)

В основу условных обозначений по ГОСТ 21.404-85 положены буквенные обозначения в сочетании с простыми графическими обозначениями.

Функциональные схемы автоматизации представляют собой чертеж, на котором схематически условными обозначениями изображены:

- технологическое оборудование;

- коммуникации;

- органы управления и средств автоматизации (приборы, регуляторы, вычислительные устройства, элементы телемеханики), с указанием связей между технологическим оборудованием и элементами автоматики, а также связей между отдельными элементами автоматики.

Вспомогательные устройства (редуктор или фильтры для воздуха, источники питания, соединительные коробки) на функциональных схемах автоматизации не показывают.

ФСА технологической установки выполняют, как правило, на одном чертеже, на котором изображают аппаратуру всех систем контроля, регулирования, управления и сигнализации, относящуюся к данной технологической установке.

Для сложных технологических процессов с большим объемом автоматизации, схемы могут быть выполнены раздельно по видам технологического объекта контроля и управления.

Приборы и средства автоматизации имеют условные графические обозначения в сочетании с буквенными обозначениями (см. рис.4.1).

Все местные измерительные и преобразовательные приборы, установленные на технологическом объекте, изображаются на функциональных схемах автоматизации (ФСА) в виде окружностей или горизонтальных овалов. Если приборы размещаются на щитах и пультах в центральных или местных операторных помещениях, то внутри окружности или овала проводится горизонтальная разделительная линия. Если функция прибора, которому соответствует окружность, реализована в системе распределенного управления (например, в компьютеризированной системе), то окружность вписывается в квадрат.

Внутри окружности вписываются:

- в верхнюю её часть - функциональное обозначение (обозначения измеряемых, контролируемых, сигнализируемых или регулируемых параметров, выполняемые прибором функции или функциональные признаки преобразователей);

- в нижнюю её часть - цифровые позиционные обозначения приборов и устройств

Рисунок 4.1 Построение основных условных обозначений

Места подключения отборных устройств указываются с помощью тонких сплошных линий, соединяющий технологический аппарат с измерительным преобразователем или прибором, а точек измерения в виде окружности. При необходимости указания точного места расположения отборного устройства, измерительный преобразователь может помещаться в разрыве трубопровода.

Контуры технологического оборудования, трубопроводные коммуникации и прямоугольники, изображающие щиты и пульты на ФСА выполняются линиями толщиной 0,6 - 1,5 мм; приборы и ТСА - 0,5 - 0,6 мм ; линии связи - 0,2 - 0,3 мм.

Приборы и ТСА, встраиваемые в технологическое оборудование и коммуникации или механически связанные с ними, изображают на схеме в непосредственной близости от них. К таким ТСА относятся: отборные устройства; датчики, воспринимающие воздействия измеряемых и регулируемых величин (сужающие устройства, ротаметры, счётчики и т. п.); исполнительные механизмы; регулирующие и запорные органы.

Прямоугольники пультов и щитов располагают в такой последовательности, чтобы при размещении в их пределах обозначений приборов и ТСА обеспечивалась наибольшая простота и ясность схемы и минимум пересечений линий связи. В каждом прямоугольнике щитов и пультов с левой стороны указывают его наименование.

Приборы и ТСА, которые расположены вне щитов и не связаны непосредственно с технологическим оборудованием и трубопроводами, условно показывают в прямоугольнике «Приборы по месту».

Линии связи между датчиками и отборными устройствами, установленными на технологическом оборудовании и приборами, установленными по месту и на щите, выполняются с разрывами, которые обозначаются арабскими цифрами, при помощи которых устанавливаются эти связи. На линиях связи над верхним прямоугольником «Приборы по месту» указываются предельные рабочие значения измеряемых и регулируемых параметров (м3/ч, мм, МПа и т.д.).

Функциональные схемы автоматизации выполняются 2 способами:

1) упрощенным;

2) развернутым.

Упрощенный способ (рисунок 4.2) - применяется в основном для изображения приборов и технологических средств автоматизации (ТСА) на технологических схемах. При этом способе не показываются первичные измерительный преобразователи (ПИП) и вспомогательная аппаратура. Приборы и технические средства автоматизации, осуществляемые сложные функции (контроль, регулирование, сигнализацию) и выполненные в виде отдельных блоков изображают одним графическим обозначением.

Данный способ дает только общее представление о принятых решениях по автоматизации объекта. Чтение таких схем затрудненно, так как они отображают организацию пунктов контроля и управления объектом.

Рисунок 4.2 Упрощенный способ выполнения ФСА

Рисунок 4.3 Развернутый способ выполнения ФСА

Позиционное обозначение элементов схемы в каждом контуре регулирования и измерения выполняют арабскими цифрами, а исполнительные механизмы обозначения не имеют.

На данном рисунке показана ёмкость с узлом 1 автоматического регулирования расхода сырья. Первичный измерительный преобразователь (например, диафрагма) не показан.

Развернутый способ (рисунок 4.3) - применяют для выполнения функциональных схем автоматизации, когда каждый прибор или блок, входящий в единый измерительный регулирующий или управляющий комплект, показывают отдельным условным графическим изображением. Все комплекты аппаратуры контроля автоматизации имеют цифровое позиционное обозначение. На данном рисунке, регулирование расхода сырья осуществляется комплектом аппаратуры, состоящим из диафрагмы 1-1, бесшкального дифманометра 1-2, регистрирующего прибора для измерения расхода 1-3, снабженного станцией управления и регулятора 1-4 и исполнительного механизма 1-5. Таким образом, всему комплекту присвоен номер 1, а его составные элементы обозначены индексами от 1 до 5. Преимущество развёрнутого способа - большая наглядность, облегчающая чтение схемы.

4.3 Графические условные обозначения приборов и средств автоматизации

Ниже приведена сводная таблица 4.1 графических обозначений приборов, средств автоматизации и линий, соответствующие ГОСТ 21.404-85 (2003):

Таблица 4.1

Графические обозначения приборов, средств автоматизации и линий связи

Наименование

Обозначение

1

2

1 Прибор, устанавливаемый вне щита (по месту):

а) основное обозначение

б) допускаемое обозначение

2 Прибор, устанавливаемый на щите, пульте:

а) основное обозначение

б) допускаемое обозначение

3 Исполнительный механизм. Общее обозначение

4 Исполнительный механизм, который при прекращении подачи энергии или управляющего сигнала:

а) открывает регулирующий орган

б) закрывает регулирующий орган

в) оставляет регулирующий орган в неизменном положении

5 Исполнительный механизм с дополнительным ручным приводом.

Примечание. Обозначение может применяться с любым из дополнительных знаков, характеризующих положение регулирующего органа при прекращении подачи энергии или управляющего сигнала

6 Линия связи. Общее обозначение

7 Пересечение линий связи без соединения друг с другом

8 Пересечение линий связи с соединением между собой

Условные обозначения приборов, используемых на схемах, показаны на рисунке 4.4:

22

Размещено на http://www.allbest.ru/

Рисунок 4.4 Условные обозначения приборов: а) исполнительный механизм (общее обозначение)

Положение регулирующего органа при прекращении подачи энергии или управляющего сигнала не регламентируется; б) исполнительный механизм, открывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала; в) исполнительный механизм, закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала; г) исполнительный механизм, оставляющий регулирующий орган в неизменном положении при прекращении подачи энергии или управляющего сигнала; д) исполнительный механизм с дополнительным ручным приводом (обозначение может применяться в сочетании с любым из дополнительных знаков, характеризующих положение регулирующего органа при прекращении подачи энергии или управляющего сигнала; е) автоматическая защита из системы противоаварийной защиты; ж) технологическое отключение (включение) из системы управления; и) регулирующий орган (задвижка, клапан и т.д.); к) регулирующий клапан, открывающийся при прекращении подачи воздуха (нормально открытый); л) регулирующий клапан, закрывающийся при прекращении подачи воздуха (нормально закрытый); м) управляющий электропневматический клапан; н) отсекатель с приводом (запорный клапан); п) электрозадвижка; р) пневмоотсекатель; с) отборное устройство без постоянно подключенного прибора (служит для эпизодического подключения приборов во время наладки, снятия характеристик.

4.4 Буквенные условные обозначения приборов и средств автоматизации

Основные буквенные условные обозначения средств автоматизации строятся на основе латинского алфавита и состоят из букв трёх позиций (см. рисунок 4.1):

буква первой позиции - контролируемый, сигнализируемый или регулируемый параметр:

D - плотность;

Е - любая электрическая величина;

F - расход;

G - размер, положение, перемещение;

Н - ручное воздействие;

К - временная программа;

L - уровень;

М - влажность;

Р - давление, вакуум;

Q - величина, характеризующая качество (состав смеси, концентрация и т.д.);

R - радиоактивность;

S - скорость (линейная или угловая), частота;

Т - температура;

U - несколько разнородных измеряемых величин;

V - вязкость;

W - масса.

Примечание:

Буква Е используется для обозначения электрических величин и для расшифровки этой величины справа от условного изображения прибора указывается эта величина, например, «напряжение».

Буква Q используется для обозначения приборов качества и для расшифровки этой величины справа от условного изображения прибора указывается условное обозначение его качественной характеристики, например, pH - концентрация водородных ионов.

Буква R используется для обозначения радиоактивности и для расшифровки этой величины справа от условного изображения прибора указывается вид радиоактивности б, в, г.

Буква U может быть использована для обозначения прибора, измеряющего несколько разнородных величин. Расшифровка этих величин приводится около прибора или на поле чертежа. Для конкретизации измеряемой величины около изображения прибора (справа от него) необходимо указывать наименование или символ измеряемой величины, например, «Напряжение», «Ток», рН, О2 и т. д.

Для обозначения измеряемых величин, не предусмотренных данным стандартом, могут быть использованы резервные буквы В, N, О, Y, Z. При этом многократно применяемые величины следует обозначать одной и той же резервной буквой. Резервные буквенные обозначения должны быть расшифрованы на схеме. В одной и той же документации не допускается применение одной резервной буквы для обозначения разных величии.

буква второй позиции (необязательная) - уточнение измеряемой величины:

D, d - разность, перепад;

F, f - соотношение, доля, дробь;

Q,q - суммирование, интегрирование;

J - автоматическое переключение, обегание.

Примечание:

Чтобы не путать с обозначениями измеряемых величин используются строчные буквы d, f, q буквы третьей позиции (несколько букв) - выполняемые прибором функции;

А - сигнализация;

С - регулирование, управление;

I - показание,

R - регистрация,

S - включение, отключение, переключение (обозначает контактное устройство прибора).

Примечание:

Порядок расположения буквенных обозначений выполняемых прибором функций, если их несколько, следующий I R C S A.

Букву S не следует применять для обозначения функции регулирования (в том числе позиционного).

Буквы A и S используется для обозначения сигнализаторов и переключателей, поэтому при необходимости справа от их графического обозначения при необходимости указываются сигнализируемые или блокировочные параметры: H - верхний предел; L - нижний предел.

Дополнительные буквенные условные обозначения функциональных признаков приборов:

Е - первичный измерительный преобразователь (чувствительный элемент);

Т - промежуточное преобразование параметра, передача сигналов на расстояние;

Y - вычислительные функции;

К - станция управления (переключение управления с ручного на автоматическое и обратно, управление по программе, коррекция).

Порядок построения условных обозначений с применением дополнительных букв следующий: в графическом условном обозначении прибора на первом месте ставится буква, обозначающая измеряемую величину; на втором -- функциональный признак прибора.

Примечание:

Буква Е применяется для обозначения чувствительных элементов, т. е. устройств, выполняющих первичное преобразование, например, термометров термоэлектрических (термопар), термометров сопротивления, сужающих устройств расходомеров.

Буква Т обозначает промежуточное преобразование -- дистанционную передачу сигнала. Ее рекомендуется применять для обозначения приборов с дистанционной передачей показаний, например, бесшкальных манометров (дифманометров), манометрических термометров с дистанционной передачей и других подобных приборов.

Буква Y рекомендуется для построения обозначений преобразователей сигналов и вычислительных устройств.

Буква K применяется для обозначения приборов, имеющих станцию управления, т. е. переключатель для выбора вида управления (автоматическое, ручное) и устройство для дистанционного управления, в приборе может быть предусмотрен «задатчик».

Буквенные условные обозначения промежуточного преобразования T и вычислительных функций Y приведены в таблице 4.2.

Таблица 4.2

Функции преобразования и вычисления

Обозначения

Характеристика

E

P

G

A

D

Для T

Энергия сигнала:

- электрическая;

- пневматическая;

- гидравлическая.

Формы сигнала:

- аналоговая;

- дискретная.

?

K

x

:

fn

vn

lg

dx/dt

?

x(-1)

max

min

Для Y:

Операция, выполняемая вычислительным устройством:

- суммирование;

- умножение сигнала на постоянный коэффициент K;

- перемножение двух и более сигналов друг на друга;

- деление сигналов друг на друга;

- возведение величины сигнала в степень n;

- извлечение из величины сигнала корня степени n;

- логарифмирование;

- дифференцирование;

- интегрирование;

- изменение знака сигнала;

- ограничение верхнего значения сигнала;

- ограничение нижнего значения сигнала;

Bi

Bo

Связь с вычислительным комплексом:

- передача сигнала на ЭВМ;

- вывод информации с ЭВМ.

4.5 Примеры условных обозначений приборов и средств автоматизации (в скобках указаны примеры типов приборов)

...

Первичный измерительный преобразователь для измерения температуры, установленный по месту (например, термоэлектрический преобразователь (термопара), термомометр сопротивления, термобаллон манометрического термометра, датчик пирометра и т.д.). Пример: термоэлектрический термометр ТХА _ 0515 градуировки ХА; датчик Метран-201-ТХА гр. ХА.

Прибор для измерения температуры показывающий (термометры ртутный, манометрический и т.д.), установленный по месту.

Прибор для измерения температуры показывающий, установленный на щите (милливольтметр, логометр, потенциометр, мост автоматический (типа КСМ и др) и т.д.).

Прибор для измерения температуры бесшкальный с дистанционной передачей показаний, установленный по месту. Пример: Преобразователь термоЭДС в стандартный токовый сигнал 0…5 мА, гр. ХА, марка Ш-72.

Прибор для измерения температуры одноточечный регистрирующий, установленный на щите (милливольтметр самопишущий, логометр, потенциометр и т.д.).

Прибор для измерения температуры с автоматическим обегающим устройством регистрирующий, установленный на щите (термометр манометрический, милливольтметр, потенциометр, мост и т.д.). Пример: автоматический электронный потенциометр ТСП-4 градуировки ХА (для термопар ТХА).


Подобные документы

  • Выбор магнитоэлектрического вольтметра или амперметра со стандартными пределами измерения и классом точности. Расчет доверительных границ суммарной погрешности результата измерения, случайной погрешности при обработке результатов косвенных измерений.

    контрольная работа [2,3 M], добавлен 19.06.2012

  • Определение термина "единство измерений". Особенности теоретической, законодательной и прикладной метрологии. Основные физические величины и воспроизводимость результатов измерений. Сертификация системы качества и Российская система аккредитации.

    презентация [712,9 K], добавлен 21.03.2019

  • Основные термины и определения в области метрологии. Классификация измерений: прямое, косвенное, совокупное и др. Классификация средств и методов измерений. Погрешности средств измерений. Примеры обозначения класса точности. Виды измерительных приборов.

    презентация [189,5 K], добавлен 18.03.2019

  • Метрология и ее значение в деятельности человеческого общества. Структура государственной метрологической службы России. Физические величины и единицы их измерения. Погрешности результатов и средств измерений. Назначение и принципы юстировочных устройств.

    методичка [1,3 M], добавлен 11.04.2014

  • Метрология, история ее возникновения и связь с другими предметами. Единство измерений. Погрешности и пути их ликвидации. Систематические и случайные погрешности. Средства измерения и их государственная поверка. Цели и задачи государственной поверки.

    реферат [76,3 K], добавлен 14.01.2012

  • Методика и основные этапы обработки исправленных результатов прямых равнорассеянных наблюдений, механизм и значение проведения проверки нормальности их распределения. Результаты наблюдений многократных прямых измерений, их анализ и формирование выводов.

    курсовая работа [96,7 K], добавлен 06.04.2015

  • Определение значения мощности электрического тока в результате косвенных измерений путем оценки величины сопротивления, напряжения и погрешностей. Оценка стоимости аккредитации базового органа по сертификации продукции и испытательной лаборатории.

    курсовая работа [80,9 K], добавлен 15.02.2011

  • Обработка результатов прямых равноточных и косвенных измерений. Нормирование метрологических характеристик средств измерений классами точности. Методика расчёта статистических характеристик погрешностей в эксплуатации. Определение класса точности.

    курсовая работа [1,2 M], добавлен 16.06.2019

  • Назначение и цели измерительного эксперимента, характеристика этапов проведения. Понятие и формулы расчёта относительной, приведенной, систематической, случайной погрешности, грубой ошибки. Обработка результатов прямых, косвенных и совокупных измерений.

    реферат [199,9 K], добавлен 10.08.2014

  • Обработка результатов прямых и косвенных измерений с использованием ГОСТ 8.207-76. Оценка среднего квадратического отклонения, определение абсолютной погрешности и анормальных результатов измерений. Электромагнитный логометр, его достоинства и недостатки.

    курсовая работа [938,3 K], добавлен 28.01.2015

  • Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.

    реферат [356,6 K], добавлен 26.07.2014

  • Исследование приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Методы прямых измерений: оценки, противопоставления, полного замещения. Сертификат пожарной безопасности. Добровольная сертификация.

    контрольная работа [926,7 K], добавлен 07.01.2015

  • Регламентация и контроль со стороны государства ряда положений метрологии. Государственная система обеспечения единства измерений. Субъекты метрологии. Управление тремя государственными справочными службами. Добровольная и обязательная сертификация.

    контрольная работа [24,3 K], добавлен 21.01.2009

  • Расчет результатов прямых измерений. Выявление грубых ошибок. Расчет коэффициентов корреляции результатов наблюдений. Расчет среднего значения величины косвенного измерения. Расчет абсолютных коэффициентов влияния. Предельные инструментальные погрешности.

    курсовая работа [125,4 K], добавлен 08.01.2013

  • Обработка результатов измерений, содержащих случайные погрешности. Структура документа по стандартизации, определение подлинности товара по штриховому коду. Порядок проведения сертификации на продукцию. Основные понятия теории метрологической надежности.

    контрольная работа [288,8 K], добавлен 15.02.2012

  • Динамическая, систематическая и случайная погрешности средств измерений. Причины возникновения систематических составляющих погрешности. Формы подтверждения соответствия требованиям безопасности в РФ. Подготовка к сертификации бензина, дизельного топлива.

    контрольная работа [37,4 K], добавлен 20.02.2014

  • Основы теории обработки результатов измерений. Влияние корреляции на суммарную погрешность измерения тока косвенным методом, путём прямых измерений напряжения и силы тока. Алгоритм расчёта суммарной погрешности потребляемой мощности переменного тока.

    курсовая работа [132,9 K], добавлен 17.03.2015

  • Основной постулат метрологии. Шкалы измерений, их определения. Государственный метрологический контроль и надзор. Технические условия на пищевые продукты. Порядок сертификации зерна и продуктов его переработки. Направления развития общественного питания.

    контрольная работа [38,4 K], добавлен 16.01.2015

  • Оценка погрешностей результатов прямых равноточных, неравноточных и косвенных измерений. Расчет погрешности измерительного канала. Выбор средства контроля, отвечающего требованиям к точности контроля. Назначение класса точности измерительного канала.

    курсовая работа [1002,1 K], добавлен 09.07.2015

  • Понятие и определение метрологии. Классификация измерений и основы сертификации. Стандартизация, категории и виды стандартов. Основные виды нормативных документов по стандартизации. Определение подлинности товара по штрих-коду международного стандарта.

    контрольная работа [202,1 K], добавлен 05.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.