Защита металлов от коррозии

Изучение самопроизвольного разрушения металлов в результате взаимодействия с окружающей средой. Исследование электрохимической защиты судов от коррозии. Применение гальванических процессов. Методика катодного и анодного методов поляризационной обработки.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 18.05.2015
Размер файла 226,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Вступление

1. Электрохимическая зашита судов от коррозии

1.1 Методы защиты металлов от коррозии

2. Катодная защита металлов

3. Анодная защита. Использование пассивности в практике защиты от коррозии

Выводы

Список использованных источников

Вступление

Коррозия -- это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление».

Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материалов и способом их нанесения.

Образуются продукты коррозии: химические соединения, содержащие металл в окисленной форме.

В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин «коррозия» употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении алюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.

Следовательно, термин «коррозия» имеет не столько научное, сколько инженерное значение. Правильнее было бы употреблять термин «окисление», независимо от того вредно или полезно оно для нашей практики.

Коррозия является естественным процессом, обусловленным термодинамической нестойкостью металлов в условиях службы. Естественно поэтому, что изучение коррозии и разработка методов защиты металлов от нее представляют несомненный теоретический интерес и имеют большое народнохозяйственное значение.

1. Электрохимическая защита судов от коррозии

Судно как оборудование которое используется в агрессивной среде, имеет острою необходимость в защите от разрушающей силы коррозии.

Современная защита металлов от коррозии базируется на следующих методах: повышение химического сопротивления конструкционных материалов, изоляция поверхности металла от агрессивной среды, понижение агрессивности производственной среды, снижение коррозии наложением внешнего тока (электрохимическая защита). Эти методы можно разделить на две группы. Первые два метода обычно реализуются до начала производственной эксплуатации металлоизделия (выбор конструкционных материалов и их сочетаний еще на стадии проектирования и изготовления изделия, нанесение на него гальванических и иных защитных покрытий). Последние два метода, напротив, могут быть осуществлены только в ходе эксплуатации металлоизделия (пропускание тока для достижения защитного потенциала, введение в технологическую среду специальных добавок-ингибиторов) и не связаны с какой-либо предварительной обработкой до начала использования. При применении первых двух методов не могут быть изменены состав сталей и природа защитных покрытий данного металлоизделия при непрерывной его работе в условиях меняющейся агрессивности среды. Вторая группа методов позволяет при необходимости создавать новые режимы защиты, обеспечивающие наименьшую коррозию изделия при изменении условий их эксплуатации.

Электрохимическая защита основана на том, что, сдвигая потенциал металла пропусканием внешнего тока, можно изменять скорость его коррозии. Принцип этого вида защиты иллюстрирует диаграмма (рис. 1.1)

Проекция точки пересечения кривой ионизации металла с катодной кривой восстановления деполяризатора на ось абсцисс дает ток коррозии iкор при отсутствии какого-либо внешнего воздействия на эту коррозионную систему, а проекция указанной точки на ось ординат - величину установившегося в этих условиях потенциала коррозии Екор. При пропускании через корродирующий металл внешнего катодного тока потенциал его сдвигается в отрицательную сторону и принимает новое значение. Скорость коррозии металла, определяемая соответствующим током на прямой ионизации металла при этом новом значении потенциала, равна .

Рисунок 1.1 Диаграмма электрохимической защиты от коррозии.

Из диаграммы видно, что это состояние достигается при пропускании внешнего тока величиной. Причем часть этого тока идет на подавление анодной реакции ионизации металла (то есть его коррозии), а другая часть - на ускорение катодного процесса . Увеличение внешнего катодного тока до величины iзащ , обеспечивающей достижение равновесного потенциала EА корродирующего металла, полностью подавляет коррозионный процесс. Согласно теории, в общем случае ток полный защиты iзащ в условиях коррозии с водородной деполяризацией iзащ = iкор. Обычно iзащ iкор для кислых сред. В этих условиях основная часть пропускаемого внешнего тока идет на ускорение выделения водорода. Для кислых сред такой метод защиты малоэффективен и даже несколько рискован, так как, во-первых, значительная часть тока уходит не на подавление коррозии, а на выделение водорода, а во-вторых, интенсивное выделение водорода на поверхности металла может привести к его наводороживанию (растворению водорода в металле) и как следствие этого - ухудшению его механических свойств, отслаиванию защитных покрытий и т.д.

Однако для наиболее распространенного вида коррозии металлов с кислородной деполяризацией в условиях ограниченного доступа кислорода наложение внешнего катодного тока эффективно для предотвращения коррозии. Этот способ также эффективен при коррозии металлов, когда отсутствует поляризация анодных участков. В обоих случаях iзащ iкор.

1.1 Методы защиты металлов от коррозии

В зависимости от характера коррозии и условий ее протекания применяются различные методы защиты. Выбор того или иного способа определяется его эффективностью в данном конкретном случае, а также экономической целесообразностью. Любой метод защиты изменяет ход коррозионного процесса, либо уменьшая скорость, либо прекращая его полностью. Коррозионные диаграммы, наиболее полно характеризующие коррозионный процесс, должны отражать и те изменения в ходе протекания, какие наблюдаются в условиях защиты. Коррозионные диаграммы можно использовать, поэтому при разработке возможных путей предохранения металлов от коррозии. Они служат основой для выяснения принципиальных особенностей того или иного метода. В связи с этим при рассмотрении существующих методов защиты поляризационные диаграммы будут использованы в их несколько упрощенном виде (4). На таких диаграммах постулируется линейная зависимость между плотностью и потенциалом каждой частной реакции. Это упрощение оказывается вполне допустимым при качественной оценке особенностей большинства методов

Эффективность защиты выражают через коэффициент торможения г или степень защиты Z. Коэффициент торможения показывает, во сколько раз уменьшается скорость коррозии в результате применения данного способа защиты

где и - скорость коррозии до и после защиты. Степень защиты указывает, насколько полно удалось подавить коррозию благодаря применению этого метода: электрохимический защита судно коррозия

или

2. Катодная защита металлов

Из всех методов защиты основанных на изменении электрохимических свойств металла под действием поляризующего тока, наибольшее распространение получила защита металлов при наложении на них катодной поляризации (катодная защита). При смещении потенциала металла в сторону более электроотрицательных значений (по сравнению с величиной стационарного потенциала коррозии) скорость катодной реакции увеличивается, а скорость анодной падает. Если при стационарном потенциале соблюдалось равенство

,

то при более отрицательном значении это равенство нарушается:

причем

.

Рисунок. 2.1. Поляризационная диаграмма коррозионного процесса.

Уменьшение скорости анодной реакции при катодной поляризации эквивалентно уменьшению скорости коррозии. Коэффициент торможения при выбранном потенциале j/ будет равен двум.

===2,

а степень защиты достигает 50%

==.

Внешний ток , необходимый для смещения потенциала до значения , представляет собой разницу между катодным и анодным токами

(его величина на рис.2.1 выражена прямой ав). По мере увеличения внешнего тока потенциал смещается в более отрицательную сторону, и скорость коррозии должна непрерывно падать. Когда потенциал корродирующего металла достигает равновесного потенциала анодного процесса , скорость коррозии делается равной нулю (), коэффициент торможения - бесконечности, а степень защиты 100%. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током . Его величине на рис.4 соответствует отрезок cd. Величина защитного тока не зависит от особенностей протекания данной анодной реакции, в частности от величины сопровождающей ее поляризации, а целиком определяется катодной поляризационной кривой. Так, например, при переходе от водородной деполяризации к кислородной сила защитного тока уменьшается и становится равной предельному диффузному току.

Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью, и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии сравнительно невелик. Катодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника (катодная защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы). Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют “жертвенным анодом”.

Катодная защита обычно связана с защитой черных металлов, так как из них изготавливается подавляющая часть объектов работающих под землей и при погружении в воду, например трубопроводы, свайные основания, пирсы, эстакады, суда и др. В качестве материала для расходуемых анодов-протекторов во всем мире широко применяется магний. Обычно он используется в виде сплавов с содержанием 6% алюминия, 3% цинка и 0,2% марганца; эти добавки предотвращают образование пленок, которые снижают скорость растворения металла. Выход защитного тока всегда меньше 100%, так как магний корродирует и на нем выделяется водород. Применяется также алюминий, легированный 5% цинка, но разность потенциалов с железом для сплава значительно меньше, чем для магниевого сплава. Она близка к разности потенциалов для металлического цинка, который также применяется для защиты при условии, что путем соответствующего легирования на анодах предотвращается пленкообразование, связанное с обычным для цинка загрязнением примесями железа Выбор материала для анодов - сложная задача. В почвах или других средах низкой проводимости необходима большая разность потенциалов, поскольку падение iR между электродами весьма велико, в то время как в средах высокой проводимости возможна более экономичная для использования малая разность потенциалов. Важными переменными являются расположение электродов, рассеивающая способность среды, т. е. ее способность обеспечить одинаковую плотность тока на всех участках защищаемой поверхности, а также поляризационные характеристики электродов. Если электроды погружены в почву, которая по каким - либо причинам неприемлема, например агрессивна по отношению к анодам, то обычно практикуется окружать последние ложем из нейтрального пористого проводящего материала, называемого засыпкой.

Применение для катодной защиты метода приложения тока облегчает регулирование системы и часто дешевле, чем использование анодов - протекторов, которые, конечно, нуждаются в регулярных заменах.

На практике катодная защита редко применяется без дополнительных мероприятий. Требуемый для полной защиты ток обычно бывает чрезмерно велик, и помимо дорогостоящих электрических установок для его обеспечения следует иметь в виду, что такой ток часто будет вызывать вредный побочный эффект, например чрезмерное защелачивание. Поэтому катодная защита применяется в сочетании с некоторыми видами покрытий. Требуемый при этом ток мал и служит только для защиты обнаженных участков поверхности металла.

3. Анодная защита. Использование пассивности в практике защиты от коррозии

Многие металлы находятся в пассивном состоянии в некоторых агрессивных средах. Хром, никель, титан, цирконий легко переходят в пассивное состояние и устойчиво его сохраняют. Часто легирование металла, менее склонного к пассивации, металлом, пассивирующем легче, приводит к образованию достаточно хорошо пассивирующихся сплавов. Примером могут служить разновидности сплавов FeCr, представляющие собой различные нержавеющие и кислотоупорные стали, стойкие, например, в пресной воде, атмосфере, азотной кислоте и т.д. Для практического использования пассивности нужно такое сочетание свойств металла и среды, при котором последняя обеспечивает значение стационарного потенциала, лежащего в области . Подобное использование пассивности в технике защиты от коррозии известно давно и имеет огромное практическое значение.

Но в последнее время возникло новое направление защиты металлов в таких окислителях, которые сами по себе не способны вызывать пассивность. Известно, что смещение потенциала активного металла в отрицательную сторону должно уменьшить скорость коррозии. Если потенциал становится отрицательнее равновесного в данной среде, то скорость коррозии должна стать равной нулю (катодная защита, применение протекторов). Очевидно, что подобным же образом, но за счет анодной поляризации от внешнего источника электрической энергии можно перевести способный к этому металл в пассивное состояние и тем уменьшить скорость коррозии на несколько порядков. Расход электрической энергии не должен быть велик, так как сила тока в области вообще весьма мала.

Существуют требования, которым должна удовлетворять система, чтобы к ней можно было применить анодную защиту. Прежде всего, нужно надежно знать анодную поляризационную кривую для выбранного металла в данной агрессивной среде. Чем выше , тем большая сила тока потребуется для перевода металла в пассивное состояние; чем меньше , тем меньший расход энергии потребуется для поддержания пассивности; чем шире диапазон , тем большие колебания потенциала можно допустить, т.е. тем легче поддерживать металл в пассивном состоянии. Нужна уверенность в том, что в области металл корродирует равномерно. В противном случае, даже при малой величине , возможно образование язв и сквозного разъедания стенки изделия. Форма защищаемой поверхности может быть довольно сложной, что затрудняет поддержание одинакового значения потенциала на всей поверхности; в этом отношении большая величина особенно желательна. Конечно, требуется и достаточно хорошая электропроводность среды.

Применение анодной защиты целесообразно в сильно агрессивных средах, например в химической промышленности. При наличие поверхности раздела жидкость-газ необходимо иметь в виду, что анодная защита не может распространяться на поверхность металла в газовой среде, что впрочем типично и для катодной зашиты. Если газовая фаза тоже агрессивна или имеется неспокойная поверхность раздела, что приводит к разбрызгиванию жидкости и оседанию капель ее на металл выше поверхности раздела, если происходит периодическое смачивание стенки изделия в определенной зоне, то приходится ставить вопрос об иных способах защиты поверхности выше постоянного уровня жидкости.

Анодная защита может осуществляться несколькими способами.

1. Простое наложение постоянной э.д.с. от постороннего источника электрической энергии. Положительный полюс подключается к защищаемому изделию, а около его поверхности помещают катоды сравнительно малого размера. Они размещаются в таком количестве и на таком расстоянии от защищаемой поверхности, чтобы обеспечить по возможности равномерную анодную поляризацию изделия. Этот способ применяется в том случае, если достаточно велик и нет опасности, при некоторой неизбежной неравномерности распределения потенциала анода, активации или перепассивации, т.е. выхода за пределы .

Таким способом можно защищать изделия из титана или циркония в серной кислоте. Нужно только помнить, что для пассивации сначала потребуется пропускание тока большей силы, что связано с переводом потенциала за . Для начального периода целесообразно иметь дополнительный источник энергии. Следует учитывать также большую поляризацию катодов, плотность тока на которых велика вследствие их малых размеров. Однако, если область пассивного состояния велика, то изменение потенциала катода даже на несколько десятых вольта не представляет опасности.

Периодическое включение и выключение тока защиты, когда изделие уже занассивировано. При включение анодного тока потенциал изделия смещается в отрицательную сторону, причем может произойти депассивация. Но поскольку иногда это происходит довольно медленно, простая автоматика может обеспечить включение и выключение защитного тока в нужное время. Когда потенциал дойдет до величины , т.е. до начала перепассивации, ток выключается; когда потенциал сдвинется в отрицательную сторону до (начало активации), ток снова включается. Смещение потенциала в катодную сторону происходит тем медленнее, чем меньше . Чем ближе был потенциал к величине , тем медленнее он смещается в отрицательную сторону (в направлении ) при выключении тока. Например, для хрома в 0,1н. растворе H2SO4 при 750 С, если выключение тока произошло при =0,35 в, активация наступит через 2 ч; выключение тока при =0,6 в вызывает активацию через 5 ч; выключение же при =1,05в увеличивает срок начала активации более чем до 127 ч. Столь большое время, необходимое для депассивации, позволяет делать значительные перерывы в подаче тока. Тогда одной и той же установкой можно обслужить несколько объектов.

Зависимость времени запассивации от потенциала включения легко объяснима при помощи концепции фазового окисла (образуется более толстый слой окисла, растворение которого требует больше времени). Труднее объяснить это явление десорбцией пассивирующего кислорода. Конечно, с ростом положительного значения потенциала прочность связи в адсорбционном слое должна увеличиваться. Но при включении тока разряд двойного слоя происходит сравнительно быстро, хотя адсорбционный слой, возможно, сохраняется долго.

3. Если область пассивного состояния () мала, то необходимо применение потенциостата, поддерживающего заданную величину потенциала (относительно некоторого электрода сравнения) в узких границах. Потенциостат должен быть способен давать большую силу тока.

В настоящее время уже имеется ряд установок для анодной защиты, осуществленных в промышленном масштабе. Защищаются изделия и из обычной углеродистой стали. При анодной защите не только увеличивается срок службы аппаратуры, но также уменьшается загрязнение агрессивной среды продуктами коррозии. Например, в олеуме углеродистая сталь корродирует очень медленно и в этом смысле не нуждается в защите. Но в сосудах для хранения этого продукта происходит загрязнение его железом. Так, без анодной защиты в одной из промышленных установок содержание железа в олеуме составляло ? 0,12 %. После наложения защиты концентрация железа снизилась до ? 0,004 %, что соответствует его содержанию в исходном продукте. Загрязнение продуктов химической промышленности примесями соединений металлов, являющееся следствием коррозии аппаратуры, во многих случаях весьма нежелательно и даже недопустимо.

Однако, использование анодной защиты связано со значительными трудностями. В то время как катодная защита может употребляться для защиты многих металлов, погруженных в любую электропроводящую среду, например твердую или жидкую, анодная защита применяется только для защиты целых секций химических установок, которые изготовлены из металла, способного пассивироваться в рабочей среде. Именно это и ограничивает ее применение. Кроме того, анодная защита потенциально опасна, поскольку при перерывах подачи тока без немедленного восстановления защиты на рассматриваемом участке начнется очень быстрое растворение, так как разрыв в пленке образует путь с низким сопротивлением в условиях анодной поляризации металла.

Использование анодной защиты требует тщательного проектирования химической установки. Последняя должна иметь такую систему контроля, чтобы любая потеря защиты немедленно привлекала внимание оператора. Для этого может быть достаточным только локальное повышение анодного тока, однако в наихудшем случае может потребоваться немедленное опорожнение всей установки.

Анодная защита не обеспечивает стойкости в присутствии агрессивных ионов. Так, хлоридные ионы разрушают пассивную пленку, а потому их концентрация должна поддерживаться низкой, за исключением защиты титана, который может пассивироваться в хлористоводородной кислоте. В условиях анодной защиты имеет место хорошая рассеивающая способность электролитов и поэтому для поддержания ее установленной защиты требуется сравнительно небольшое количество электродов. Однако при проектировании установок анодной защиты следует учитывать, что в условиях, предшествующих пассивации, рассеивающая способность хуже.

Анодная защита потребляет очень мало энергии и может применяться для защиты обычных конструкционных металлов, способных пассивироваться, например углеродистой и нержавеющей стали, во многих средах. Эта защита легко подвергается контролю и измерениям и не требует дорогостоящей обработки поверхности металла, так как использует самопроизвольный эффект реакции между стенками емкостей и их содержимым. Способ изящен, и его применение, по-видимому, будет расширяться, как только будут преодолены сложности измерения и контроля

Выводы

Коррозия приводит ежегодно к миллиардным убыткам, и решение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики. Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери. Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Список использованных источников

1. Жук Н.П.: [текст] /Курс теории коррозии и защиты металлов, 1976, 472с.

2. Кравцов В.В.: [текст] /Коррозия конструкционных материалов и способы защиты, 1982, 80 с.

3. Красноярский В.В.: [текст] / Коррозия и защита металлов, 1969, 302 с.

4. Улиг Г.Г., Реви Р.У.: [текст] / Коррозия и борьба с ней. Введение в коррозионную науку и технику. 1989. 456 с.

5. Семенова И.В., Флорианович Г.М., Хорошилов А.В.: [текст] / Коррозия и защита от коррозии. 2002. 335 с.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.

    контрольная работа [422,9 K], добавлен 21.04.2015

  • Катодные включения в атмосфере. Влажность воздуха при атмосферной коррозии. Примеси в атмосфере (газы). Особенности процесса морской коррозии. Защита металлов и сплавов от атмосферной коррозии. Применение контактных и летучих (парофазных) ингибиторов.

    реферат [40,2 K], добавлен 01.12.2014

  • Качественные и количественные методы исследования коррозии металлов и ее оценки. Определение характера и интенсивности коррозионного процесса с помощью качественного метода с применением индикаторов. Измерение скорости коррозии металла весовым методом.

    лабораторная работа [18,1 K], добавлен 12.01.2010

  • Химический состав чугуна, характеристика его элементов. Влияние значения марганцевого эквивалента на эксплуатационную стойкость чугунных изделий. Процесс кристаллизации металлов и сплавов. Способы защиты металлов от коррозии. Область применения прокатки.

    контрольная работа [30,5 K], добавлен 12.08.2009

  • Анализ причин коррозии трубопроводов, происходящей как снаружи под воздействием почвенного электролита, так и внутри, вследствие примесей влаги, сероводорода и солей, содержащихся в транспортируемом углеводородном сырье. Способы электрохимической защиты.

    курсовая работа [4,7 M], добавлен 21.06.2010

  • Классификация, особенности и механизм возникновения влажной атмосферной коррозии. Конденсация влаги на поверхности корродирующего металла. Влажность воздуха как один из главных факторов образования коррозии. Методы защиты от влажной атмосферной коррозии.

    реферат [1,1 M], добавлен 21.02.2013

  • Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.

    презентация [734,6 K], добавлен 09.04.2015

  • Метод защиты подземных сооружений от электрохимической коррозии. Трансформаторные подстанции выше 1 кВ. Станции катодной защиты инверторного типа. Контрольно-измерительные пункты. Анодное заземление. Техническое обслуживание и ремонт воздушных линий.

    курсовая работа [3,0 M], добавлен 22.01.2014

  • Понятия химической коррозии, жаростойкости и жаропрочности. Теории легирования для повышения жаростойкости. Уменьшение дефектности образующегося оксида, образование защитного оксида легирующего элемента, образование высокозащитных двойных оксидов.

    реферат [27,1 K], добавлен 22.01.2015

  • Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.

    реферат [50,7 K], добавлен 19.12.2012

  • Основные компоненты современного ядерного реактора. Общая характеристика коррозионно-стойких материалов: нержавеющих сталей, металлокерамических материалов, конструкционных электротехнических сплавов. Эффективность методов защиты металлов от коррозии.

    курсовая работа [616,4 K], добавлен 26.10.2010

  • Основные правила выполнения изображений на чертежах. Последовательность составления эскиза детали. Правила проставления на сборочном чертеже габаритных, монтажных, установочных и эксплуатационных размеров. Способы защиты от коррозии металлов и сплавов.

    контрольная работа [2,7 M], добавлен 03.07.2015

  • Определение причин щелевой коррозии в металлической конструкции. Паяные и сварные соединения. Применение механических методов для удаления остатков флюса, проведение пескоструйной обработки. Использование термически обрабатываемых алюминиевых сплавов.

    контрольная работа [321,8 K], добавлен 09.03.2016

  • Рассмотрение механизма протекторной защиты от коррозии, ее преимуществ и недостатков. Построение схемы протекторной защиты. Определение параметров катодной защиты трубопровода, покрытого асфальтобитумной изоляцией с армированием из стекловолокна.

    контрольная работа [235,4 K], добавлен 11.02.2016

  • История развития электрохимического метода обработки металлов. Характеристика методов размерной электрохимической обработки. Теоритические основы электрохимического процесса формообразования. Особенности рабочих процессов физико-химических методов.

    реферат [1,4 M], добавлен 21.01.2011

  • Факторы, оказывающие негативное воздействие на состояние погружных металлических конструкций. Электрохимический метод предотвращения коррозии глубинно-насосного оборудования. Защита от коррозии с помощью ингибирования. Применение станций катодной защиты.

    курсовая работа [969,5 K], добавлен 11.09.2014

  • Газовая коррозия как процесс разрушения материалов в газовых средах при высоких температурах в отсутствии влаги. Общая характеристика распространенных причин катастрофической коррозии. Знакомство с графиком зависимости коррозионного тока от времени.

    контрольная работа [116,1 K], добавлен 01.02.2016

  • Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.

    презентация [2,4 M], добавлен 19.02.2015

  • Классификация методов лабораторных коррозионных испытаний, способы удаления продуктов коррозии после их проведения. Растворы и режимы обработки для химического и электрохимического методов. Составление протокола (отчета) по удалению продуктов коррозии.

    курсовая работа [769,0 K], добавлен 06.03.2012

  • Контроль за выполнением очистных и окрасочных работ, а также оценка качества работ требованиям стандартов. Коррозия металлов и защита их от коррозии. Защитные свойства лакокрасочных покрытий и оценка степени разрушения ранее окрашенной поверхности.

    реферат [28,6 K], добавлен 30.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.