Способы повышения эффективности технологии низкотемпературной сепарации

Характеристика углеводородных газов, переработка конденсата. Совершенствование технологии низкотемпературной сепарации. Показатели, которым должны удовлетворять газы, транспортируемые по магистральным трубопроводам. Структура разделяемых стойких эмульсий.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 28.05.2015
Размер файла 249,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Институт природных ресурсов

Кафедра Геологии и разработки нефтяных месторождений

Специальность Разработка и эксплуатация нефтяных и газовых

месторождений

Курсовая работа

по дисциплине «Сбор и подготовка продукции газовых и газоконденсатных скважин»

Способы повышения эффективности технологии низкотемпературной сепарации

Студент С.С. Шух

Руководитель С.В. Фадеева

Томск-2015

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра ГРНМ

УТВЕРЖДАЮ Зав. Кафедрой О.С. Чернова

ЗАДАНИЕ

на выполнение курсовой работы

Студенту гр. З-2703 Шух С.С.

1. Тема курсовой работы способы повышения эффективности технологии низкотемпературной сепарации

2. Срок сдачи студентом готовой работы

3. Исходные данные к работе

тексты и графические материалы отчетов и научно-исследовательских работ, фондовая и периодическая литература, материалы периодической печати, учебники, пособия, монографии, материалы конференций, нормативные документы, электронные и интернет ресурсы.

4. Содержание текстового документа (перечень подлежащих разработке вопросов)

4.1 Введение

4.2 Теоретические основы процесса

4.3 Описание техники и технологии процесса

4.4 Заключение

4.5 Перечень использованных источников

5. Дата выдачи задания на выполнение квалификационной работы

15 февраля 2015 года.

Руководитель (С.В. Фадеева)

Задание принял к исполнению

Содержание

Введение

1. Общая характеристика углеводородных газов

2. Сепарация газа (низкотемпературная сепарация)

3. Совершенствование технологии НТС

Заключение

Список использованной литературы

Введение

Рост добычи газа, особенно на газоконденсатных месторождениях, вызывает развитие переработки газовых конденсатов, количество которых уже велико и продолжает возрастать с каждым днем.

Увеличение добычи природного газа принципиально изменит топливный баланс страны и улучшит экономические показатели развития экономики. В настоящее время совершенствуются технологии переработки природных газов.

1. Общая характеристика углеводородных газов

Углеводородные газы делятся на природные (естественные) и искусственные. К природным относятся так называемые "сухие" природные газы, попутные нефтяные и газы конденсатных месторождений.

К природным (попутным) газам могут быть отнесены также газы стабилизации нефти. Природные газы, их компоненты либо отдельные фракции используются в качестве топлива и химического сырья.

Любые смеси углеводородных газов могут быть сожжены в газогорелочных устройствах топок, печей и технологических агрегатов, в цилиндрах и камерах сгорания поршневых и турбинных двигателей внутреннего сгорания.

Однако перед сжиганием природные (и искусственные) углеводородные газы практически всегда подвергают разделению для:

а) выделения некоторых наиболее ценных компонентов;

б) удаления вредных либо балластных компонентов, затрудняющих транспортирование газов или ухудшающих процесс сгорания;

в) обеспечения оптимального транспортирования двух основных групп компонентов природных газов: тяжелых углеводородов в жидком и легких в газообразном видах.

"Сухие" природные газы почти целиком состоят из метана и содержат небольшие количества углеводородов С2-С4, азота, углекислоты и сероводорода. В месте добычи они всегда насыщены влагой.

Сероводород может вызвать коррозию магистрального газопровода при транспортировании газа, а продукты сгорания сероводорода - коррозию технологического оборудования, в котором сжигается газ.

Газы, содержащие H2S, не допускаются к использованию в бытовых приборах, так как продукты сгорания их вредны для человеческого организма.

Влага с предельными углеводородами до С4 при определенных (обычных для магистральных газопроводов) значениях концентраций, температур и давлений образует комплексные соединения - гидраты углеводородов вида СnН2n+2 т Н2О.

Гидраты, являющиеся твердыми ледообразными телами, иногда полностью заполняют проходные сечения трубопроводов.

Для транспортирования газа нежелательно присутствие больших концентраций балластных примесей - азота и углекислоты.

Поэтому "сухие" (метанистые) природные газы на головных сооружениях магистральных газопроводов подвергаются предварительному разделению - осушке, очистке от сероводорода и углекислоты, а иногда и от азота.

Газы газоконденсатных месторождений в условиях пласта (давление 100-500 am, температура 30-80° С) содержат иногда значительные количества углеводородов С5-С10.

При выходе газа на поверхность земли и снижении давления до обычных в магистральных газопроводах значений (50-60 am) имеет место понижение температуры за счет эффекта Джоуля-Томпсона на 30-50° С; при этом в результате так называемой "ретроградной конденсации" происходит выделение из газовой фазы тяжелых компонентов С5-С10.

В условиях относительно высоких давлений и низких температур в этих тяжелых компонентах растворяются легкие углеводороды C1-С4.

Образующаяся при этом жидкость (конденсат), содержащая всю гамму углеводородов C1 - С10 и богатая тяжелыми компонентами, иногда заливает целые участки магистрального газопровода, мешая его нормальной эксплуатации.

Разделение газов газоконденсатных месторождений с целью удаления тяжелых компонентов (одновременно удаляется влага) называется сепарацией.

Попутные нефтяные газы выделяются из нефти при давлениях 1-6 am (а иногда и под вакуумом). Для транспортирования на дальние расстояния их приходится сжимать до давлений 50-60 ат.

При изотермическом сжатии таких газов из них выделяются в виде конденсата компоненты С3-С8. Выделение этих компонентов необходимо по следующим соображениям:

1) углеводороды C3-С8 могут быть использованы после несложной переработки как моторное топливо;

углеводороды С3-С4 ("сжиженные углеводородные газы") широко используются как химическое сырье и для газоснабжения пунктов, удаленных от линий газопроводов;

для обеспечения возможности транспортирования по магистральным газопроводам углеводородов С1-С2 необходимо значительно уменьшить концентрацию углеводородов С3-С4 и практически полностью удалить углеводороды С5-С8.

Извлечение из попутных газов углеводородов С3-С8 и разделение их на фракции (либо индивидуальные компоненты) производится на газобензиновых заводах (ГБЗ). Иногда попутные нефтяные газы (при работе скважин под вакуумом) содержат значительные количества воздуха.

В этом случае оказывается целесообразным выделение из газа его балластных компонентов, в особенности если газ предназначается для транспортирования по магистральным газопроводам.

Как видно из изложенного, для использования природных и искусственных газов в качестве топлива (с транспортированием их по магистральным газопроводам) в большинстве случаев необходимо их предварительно разделять.

Разделение, имеющее целью удаление компонентов, концентрации которых в исходном газе невелики, называется очисткой, а по отношению к воде - осушкой.

Показатели, которым должны удовлетворять газы, транспортируемые по магистральным газопроводам, представлены в табл.1.

Использование углеводородных газов как химического сырья в большинстве случаев требует выделения из смесей не фракций, а индивидуальных углеводородов иногда очень высокой степени чистоты.

Это объясняется тем, что управлять химическими реакциями воздействием температур, давлений и времен контакта легче, если в качестве сырья использовать только одно исходное вещество достаточной степени чистоты.

Наиболее часто как химическое сырье используются следующие компоненты природных газов: метан, этан, пропан и н-бутан; парафины: изобутан и изопентан; углеводороды С9-С12 из конденсатов, сероводород и гелий.

Метан является исходным сырьем в производстве хлор - и фтор-производных, используемых для получения многих полимерных материалов. Этан является одним из лучших видов сырья для производства этилена, а также используется в производстве хлорпроизводных.

Применение этана или его смесей с метаном перспективно в производстве ацетилена. Пропан широко используется для получения этилена, этилена и пропилена, этилена и ацетилена методом пиролиза. н-Бутан является исходным сырьем для производства бутадиена и бутилена.

Изобутан применяется в производстве изобутилена и для хлорирования, сульфирования и др.; изобутилен полимеризуется в синтетический каучук - полиизобутилен, а также используется вместе с изобутаном в производстве изооктана - высокооктановой добавки к моторным топливам.

Изопентан служит добавкой к авиабензинам, так как он является высокооктановым топливом с высокими пусковыми характеристиками.

Кроме того, изопентан используется в производстве изопрена - сырья для получения полиизопренового каучука, амиловых спиртов, хлор - и сульфопроизводных. Все парафины изостроения легко алкилируются. Конденсаты газоконденсатных месторождений содержат фракции с температурами кипения до 300° С. Фракции до 200° С используются как растворители и моторное топливо, а фракции 200 - 300° С могут быть использованы в производстве моющих средств сульфохлорированием.

Таблица 1. Показатели, которые должны удовлетворять газы, транспортируемые по магистральным трубопроводам

Общепринятой схемы разделения углеводородных газов нет и не может быть.

В каждом индивидуальном случае в зависимости от состава исходного газа, степени извлечения и чистоты целевых компонентов, производительности установки и многих других факторов на основании технико-экономического анализа может быть выбрана оптимальная схема разделения.

Отдельные процессы в установках разделения углеводородных газов, а также отдельные аппараты этих установок рассчитывают методами последовательного приближения. Такие расчеты могут быть произведены только на вычислительных машинах. [1, с.10]

2. Сепарация газа (низкотемпературная сепарация)

При добыче нефти и газа вместе с этими продуктами на дневную поверхность извлекается целая гамма углеводородов. Среди последних имеются легко меняющие свое фазовое состояние. К таким углеводородам метанового ряда можно отнести углеводороды от С3 до С6.

Эта группа углеводородов при сравнительно небольших изменениях давлений и температур легко переходит из жидкого состояния в газообразное и наоборот.

Нестабильность указанных выше углеводородов вызывает в работе промыслов и газопроводов серьезные осложнения, так как в трубопроводах они могут сконденсироваться и образовать пробки.

Эти углеводороды, испаряясь в хранилищах, уносят с собой и более тяжелые фракции, вызывая потери и загазовывая территорию. Между тем углеводороды от С3 до С5 (и их изомеры) представляют для нефтехимической промышленности особую ценность.

Как известно, на нефтяных и газовых промыслах нефть от газа и газ от конденсата отделяют в сепараторах (трапах).

Сепарация газа и жидкости - важнейшая промысловая операция. По существу она является первой стадией подготовки газа к транспортировке.

Сепаратор должен включать следующие секции и оборудование:

главную сепарационную секцию для удаления капель жидкости из газа, высота которой должна быть достаточна для осаждения мельчайших капель жидкости под действием силы тяжести;

емкость для жидкости, предназначенную для улавливания больших порций жидкости, иногда поступающей из газопроводов;

приспособление для уменьшения турбулентности потока в самом аппарате для лучшего оседания капель жидкости; коагулятор для улавливания из газа мельчайших капель, которые слишком малы и не оседают под действием силы тяжести;

средства контроля давления и уровня жидкости.

Все сепарирующие устройства можно подразделить на собственно сепараторы и скрубберы. Скруббером можно назвать любое приспособление, предназначенное только для отделения жидкости от газа, не имеющее емкости для накопления жидкости, сепарационной секции для осаждения капель и не оборудованное средствами контроля давления и уровня жидкости.

Работа любого сепаратора основана на применении одного или нескольких принципов осаждения: за счет силы тяжести, центробежной силы, соударения, электростатических сил, ультразвука, фильтрации, коагуляции, адсорбции и термического воздействия.

Проблема усложняется тем, что частицы имеют различные размеры и могут быть твердыми и жидкими. Поэтому размеры сепараторов и их стоимость всегда определяются характеристикой обрабатываемого газа.

Размер частиц обычно определяется их диаметром, выраженным в микронах. Частицы, размером более 10 мкм можно легко отделить от газа в обычном сепараторе.

Более мелкие частицы отделить от газа очень трудно даже при использовании силы тяжести, соударения, центробежной силы и фильтрования.

Сепарацию, основанную на других принципах, использовать для газовых потоков высокого давления пока не удается.

Капли жидкости, попавшие в сепаратор, находятся в нестабильном состоянии. При соответствующем времени контакта происходит их коагуляция или испарение.

Время контакта обычно обратно пропорционально размерам капель, и прямо пропорционально количеству контактов между частицами.

На этом допущении основана сепарация - за счет соударения. По-существу, коагулятор частиц предназначен именно для того, чтобы соударение и сепарация произошли за приемлемый промежуток времени.

Такие свойства жидкости, как поверхностное натяжение, влияют на коагуляцию частиц и их осаждение, поэтому при проектировании сепараторов их необходимо учитывать.

Химические свойства веществ не имеют никакого значения для сепарации их частиц.

Например, разница в химических свойствах гликоля и нефти не влияет на их сепарацию, хотя физические характеристики этих веществ могут оказать существенное влияние на осаждение их частиц в сепараторе.

Многие промышленные коагуляторы основаны на нескольких принципах сепарации, поэтому очень трудно, а иногда невозможно определить эффективность каждого из них или их взаимное влияние.

Сепарация, распространенная у нас на промыслах, обычно проходит при сравнительно высоких (и, во всяком случае, положительных) температурах и носит в основном характер чистого газодинамического процесса, при котором от газа отделяются уже выделившиеся и сформировавшиеся при данном давлении и температуре частицы (глобулы) углеводородной жидкости.

Естественно, что такая "высокотемпературная" сепарация не даст значительного эффекта, так как углеводороды, находящиеся в газе в парообразном состоянии, не отделяются от него и поступают с ним в трубопроводы.

Поэтому, чтобы извлечь из газа все сравнительно легко конденсирующие компоненты, важно в сепараторах понизить температуру газа.

В этом случае в сепараторах будут проходить два процесса: термодинамический процесс выделения (конденсации) жидкости и газодинамический процесс отделения этой жидкости от газа.

Этот комплекс процессов и получил название "низкотемпературная сепарация". Низкотемпературная сепарация является наиболее эффективным процессом для выделения и отделения из сырого газа всех высококипящих компонентов.

Кроме того, сепарация газа при низкой температуре является отличным средством для дегидратации его, так как под действием сравнительно низких температур содержащиеся в газе пары воды конденсируются в капельную жидкость, переходя затем в кристаллогидраты, которые, как и жидкие углеводороды, в сепараторах отделяются от газа.

Дегидратации газа (осушка) совершенно необходима, потому что образующиеся кристаллогидраты, выпадая, могут перекрыть газопровод и прекратить транспорт газа.

Можно утверждать, что низкотемпературная сепарация является высокоэффективным комплексным процессом, освобождающим газ от воды и "выбивающим" из него высококипящие компоненты.

Универсальность и высокая эффективность низкотемпературной сепарации газа в сочетании с практически бесплатным холодом, получаемым на промыслах в результате использования энергии, заключенной в самих газовых потоках высокого (100-200 am) давления, делает этот процесс незаменимым почти на всех газодобывающих промыслах, где требуется осушить и обезжирить газ.

Продукция газоконденсатных месторождений, как видно по изотермам конденсации, содержит большое количество ценных жидких компонентов, которые при определенных условиях находятся в растворе с газом, и, если этот газ не подвергнуть обработке холодом, компоненты вместе с ним будут попросту сожжены как топливо. [2, с.12]

3. Совершенствование технологии НТС

Совершенствование технологии и оборудования подготовки газа. При добыче и подготовке газа к транспорту в местах с параметрами возможного гидратообразования (давление, температура, состав газа) предусматривают подачу метанола повышенной концентрации. Метанол может подаваться как в скважину, коллектор, шлейфы, т. е. до установок подготовки газа, так и перед теплообменниками или в теплообменники охлаждения газа, перед расширяющими устройствами. Вместе с газом на установки его подготовки поступает и углеводородный конденсат, который смешивается с водным раствором метанола, образуя эмульсии, которые необходимо разделять. Обычно эти эмульсии разделяют в гравитационных разделителях или в разделителях с применением тонкослойных модулей, в которых движущей силой является разность плотностей разделяемых жидкостей. При разнице плотностей менее 150 кг/м гравитационный метод разделения становится неэффективным. При наличии углеводородного газового конденсата повышенной плотности и значительного количества насыщенного водного раствора метанола повышенной концентрации плотности разделяемых жидкостей выравниваются и практически не разделяются гравитационным отстаиванием. Процесс разделения эмульсии (углеводородный конденсат - водные растворы метанола) усугубляется при наличии: механических примесей, продуктов коррозии, нерастворимых и растворимых солей. Указанные условия и примеси способствуют образованию стойких эмульсий. Эти явления наблюдаются при разделении углеводородного газового конденсата и водного раствора метанола на установках комплексной подготовки газа Заполярного месторождения (УКПГ-1), 000 «Ноябрь-скгаздобыча» и ПХГ.

Проведенные исследования различных эмульсий (жидкие углеводороды - водные растворы гликолей; жидкие углеводороды - водные растворы спиртов) в присутствии газовой фазы - диоксида углерода, примесей - продуктов коррозии углеродистых сталей показали, что указанные смеси при определенных условиях образуют стойкие эмульсии, которые не разделяются гравитационным способом по истечении 2 ч и более, а то и суток.

Стойкость эмульсии зависит от следующих условий:

· соотношения разделяемых жидких фаз (с выравниванием объемов фаз стойкость эмульсии повышается);

· вязкости разделяемых жидких фаз или их температуры (с повышением вязкости сплошной жидкой фазы или понижением температуры стойкость эмульсии повышается);количества растворенного в эмульсии газа (с возрастанием количества растворенного в эмульсии газа стойкость ее увеличивается);

· количества механических примесей и их дисперсности (с увеличением количества механических примесей и дисперсности, т. е. с уменьшением размера частиц, стойкость эмульсии повышается);

· состава механических примесей, их способности к адгезии к разделяемым жидким фазам.

Структура и матрица разделяемых стойких эмульсий (рис. 1) наглядно демонстрируют некоторые варианты состояния дисперсных фаз - это обычно газовый пузырек, вокруг которого расположены оболочки из разделяемых жидкостей, на которых за счет сил адгезии располагаются мелкодисперсные частицы механических примесей.

Известны способы разделения стойких эмульсий с помощью подогрева, в поле центробежных сил, с применением деэмульгаторов, коагуляторов, с помощью электрических полей, которые направлены на решение частных задач, например на снижение вязкости основного слоя смеси или на увеличение движущей силы, т.е. разности плотностей, на увеличение диаметра капель и т. д. Известен также микроволновый способ разрушения нефтяных эмульсий, продемонстрированный на НПЗ Exxonmobil, г. Тор-ране, шт. Калифорния. В данном способе эмульсии разрушаются микроволнами с помощью преобразователя с компьютерным управлением, при этом вырабатывается радиочастотная энергия, которая вводится в промежуточный слой, рециркулируемый через волновод. Способ основан на том, что микроволны, поглощаемые водой, возбуждают молекулы воды, усиливают их вращение и нагревают воду, заключенную в эмульсионной матрице. Предлагается комплексный способ разделения стойких эмульсий с применением термогенераторов, основанный на следующих принципах:

· уменьшении вязкости разделяемых сред;

· механическом разрушении матриц эмульсии с выделением из них газовой фазы;

· предварительном разделении жидких фаз в центробежном поле;

· тонкой фильтрации жидкости от механических примесей;

· увеличении разности плотностей разделяемых сред путем отпарки одной из легких фаз водного раствора;

· использовании энергии давления жидкости для ее нагрева.

Для эффективного разделения стойких эмульсий не решить комплекс вопросов:

· увеличить разность плотностей разделяемых сред;

· уменьшить вязкость по крайней мере основной фазы, в которой находится дисперсная фаза;

· дегазировать путем нагрева смеси газ из матриц эмульсии;

· разрушить стойкую оболочку из механических примесей в углеводородах (разрушить силы адгезии);

· разделить гравитационным способом оставшиеся углеводороды и водный раствор (воду);

· утилизировать газ дегазации и пары легких углеводородов;

· утилизировать энергию давления смеси;

· отделить механические (твердые) примеси от жидких фаз.

Для решения этой задачи ДОАО «ЦКБН» и 000 «Ямбург-газдобыча» предложена многофункциональная технология и оборудование нагрева, разрушения, разделения стойкой эмульсии с одновременной ее фильтрацией от примесей. Эта технология разделения основана на гидродинамическом нагреве смеси жидкости, предварительном разделении жидкостей, в том числе в центробежном поле, разрушении стойкой эмульсии ударным методом с одновременной ее фильтрацией (рис. 2).

Процесс осуществляется следующим образом. Сырой газ из скважин по шлейфам в присутствии жидких углеводородов, водометанольного раствора, солей и примесей подают на первичную сепарацию в сепаратор 1.Отсепарированную жидкость после дросселирования подают в дегазатор 2, из которого газ выветривания отводят на собственные нужды, а жидкую эмульсию (углеводородный конденсат и водный раствор метанола) подают в фазный разделитель 3. В разделителе смесь нагревают через стенку или прямым смешением до температуры испарения метанола теплоносителем, рециркулирующим по линиям 4 и 5 через теплогенератор 6 и (или) по линиям7, 8, при этом наиболее эффективным является метод нагрева эмульсии с использованием тепла, снимаемого теплоносителем с верха регенератора метанола 10. При нагреве отпаривают метанол и производят процесс разрушения стойкой эмульсии, при этом выделяют из глобул смеси жидкости газ, отделяют механические примеси и увеличивают движущую силу разделения углеводородного конденсата и водного раствора метанола, так как плотность последнего с увеличением количества отпариваемого метанола увеличивается и фактически происходит разделение фаз: углеводородный конденсат - вода, углеводородный конденсат - механические примеси. Разделенный конденсат отводится в качестве продукта, вода с примесями метанола подается в качестве сырья в регенератор метанола 10, механические примеси выводятся из разделителя 3. На схеме (см. рис. 2) также показаны линия метанола 9, линия углеводородного абсорбента 11 и блок осушки газа/2.

В качестве основного технологического аппарата по представленной схеме предлагается использовать теплогенератор, совмещенный с фазным разделителем. Теплогенератор прошел стендовые испытания для нагрева сред: воды, водных растворов гликолей. Схема испытательного стенда включает насос, соединенный с теплогенератором, снабженным разгонным и тормозным центробежным устройством, фильтр тонкой очистки (? 1 мкм), разделительную емкость. газ сепарация конденсат эмульсия

При рециркуляции смеси за счет периодического разгона и торможения жидкости происходит ее нагрев с уменьшением вязкости и выделением газовой фазы, которая собирается по оси закрученного потока. При вращении жидкости происходит одновременно разделение эмульсии в центробежном поле на углеводородную и водную фазы. После разгона жидкости при ударном торможении происходит разрушение матриц (глобул) стойкой эмульсии с выделением растворимого газа.

Рис. 1. Структура и матрица разделяемых стойких эмульсий:

1 - легкая жидкая фаза; 2 - промежуточная фаза; 3 - тяжелая жидкая фаза; 4 - углеводородная оболочка; 5 - газовая фаза; 6 - водная оболочка; 7 - механические примеси.

Рис. 2. Технологическая схема подготовки углеводородного газа

С испарением при нагреве легких фракций (метанола) разность плотностей между жидкими углеводородами и водным раствором увеличивается (Ар > 150 кг/мЗ ), что позволяет разделить их обычным гравитационным способом. На стенде был осуществлен вариант фильтрации части жидкости через металлокерамический самоочищающийся фильтр для отделения и отвода механических примесей.

Заключение

Низкотемпературная сепарация эффективна до тех пор, пока пластовое давление достаточно велико. По мере истощения залежи естественного снижения температуры газа за счет его штуцирования становится недостаточно. Возникает необходимость либо в применении искусственного холода, либо в сооружении абсорбционных и адсорбционных установок для извлечения из газа тяжелых углеводородов ибпаровиводы.

Список использованной литературы

1. Клименко А.П. Разделение природных углеводородных газов. К.: Техника, 1964. - 371с.

2. Арутюнов А.И. Низкотемпературная сепарация природного газа. М.: Гостоптехиздат, 1961. - 49с.

3. Гриценко А.И. Сбор и промысловая подготовка газа на се- верных месторождениях России / А.И. Гриценко, В.А. Истомин, А.Н. Кульков, Р.С. Сулейманов. - М.: Недра, 1999 - 474 с.

4. Ланчаков Г.А. Технологические процессы подготовки при- родного газа и методы расчета оборудования / Г.А. Ланчаков, А.Н. Кульков, Г.К. Зиберт. - М.: Недра, 2000 - 280 с.

5. Толстов В.А. Основные результаты испытаний сепараторов различных конструкций на объектахОАО «Газпром» и направления их дальнейшего совершенствования / В.А. Толстов // Газификация. Природный газ в качестве моторного топлива. Подготовка, перера- ботка и использование газа. - 2004. - № 3. - С. 36-51.

6. http://vesti-gas.ru/sites/default/files/attachments/265-281-sbornik-plasty-v53.pdf

7. http://www.myshared.ru/slide/742088/

Размещено на Allbest.ru

...

Подобные документы

  • Низкотемпературная сепарация газа, особенности данной технологии, используемое оборудование и материалы. Способ сепарации газожидкостной смеси, подготовка ее к транспорту. Основные факторы, влияющие на исследуемый процесс, его достоинства и недостатки.

    курсовая работа [246,8 K], добавлен 22.01.2015

  • Анализ общих сведений по Уренгойскому месторождению. Тектоника и стратиграфия. Газоносность валанжинского горизонта. Свойства газа и конденсата. Технологическая схема низкотемпературной сепарации газа. Расчет низкотемпературного сепаратора очистки газа.

    дипломная работа [1,7 M], добавлен 09.06.2014

  • Развитие переработки газовых конденсатов. Характеристика углеводородных газов, совершенствование технологии их переработки. Естественные и искусственные углеводородные газы. Сепарация газа (низкотемпературная) как важнейшая промысловая операция.

    реферат [232,2 K], добавлен 27.11.2009

  • Процесс и типичная схема установки низкотемпературной сепарации. Основные факторы, влияющие на процесс, основные недостатки и достоинства установок. Особенности функционирования жалюзийных, центробежных, сетчатые сепараторов и фильтров-сепараторов.

    реферат [663,9 K], добавлен 04.06.2011

  • Сведения об очистке природного газа. Применение пылеуловителей, сепараторов коалесцентных, "газ-жидкость", электростатического осаждения, центробежных и масляных скрубберов. Универсальная схема установки низкотемпературной сепарации природного газа.

    реферат [531,8 K], добавлен 27.11.2009

  • Основы высокочастотной плазменной обработки пористых тел. Создание технологии отмочно-зольных процессов производства кожи с применением потока низкотемпературной плазмы пониженного давления, с целью получения кожевенного полуфабриката из шкур индейки.

    дипломная работа [1,8 M], добавлен 06.02.2014

  • Характеристика принципа работы сепаратора, его предназначение. Использование тарельчатых сепараторов для улучшения эффективности управления процессом разделения различных жидкостей и твердых веществ. Специфика оборудования, используемого для сепарации.

    статья [142,0 K], добавлен 22.02.2018

  • Жидкие углеводороды, транспортируемые по морским трубопроводам или перевозимые танкерами. Комплексные объекты, обеспечивающие хранение, погрузку и разгрузку, транспортирование добываемой продукции. Виды терминалов, требования к танкерам-хранилищам.

    курсовая работа [2,8 M], добавлен 01.05.2015

  • Технологическое описание структурной схемы проекта по автоматизации процесса переработки предельных углеводородных газов. Изучение функциональной схемы автоматизации и обоснование выбора средств КИП установки. Математическая модель контура регулирования.

    контрольная работа [67,1 K], добавлен 13.06.2012

  • Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат [175,4 K], добавлен 11.02.2014

  • Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.

    презентация [3,6 M], добавлен 26.06.2014

  • Требования и основные характеристики сжиженных газов. Характеристика исходного сырья, реагентов и продуктов. Описание технологического процесса и технологической схемы ректификации сжиженных углеводородных газов. Определение температуры ввода сырья.

    курсовая работа [125,3 K], добавлен 19.02.2014

  • Переработка сырьевых материалов и получение продуктов, которые сопровождаются изменением химического состава веществ. Предмет и основные задачи химической технологии. Переработка углеводородов, устройство коксовой печи. Нагрузка печей угольной шихтой.

    отчет по практике [630,3 K], добавлен 29.01.2011

  • Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа [25,1 K], добавлен 02.05.2011

  • Условия и требования, которым должны удовлетворять параметры, относящиеся к критериям развития технических объектов. Характеристика, группы и формулы измерения функциональных, технологических, экономических и антропологических критериев развития ТО.

    реферат [35,5 K], добавлен 19.05.2017

  • Внедрение новых технологий по разрушению стойких водонефтяных эмульсий; механизмы формирования структуры межфазного слоя и особенности строения эмульгаторов. Использование неионогенных деэмульгаторов, их классификация, химические свойства, эффективность.

    статья [14,7 K], добавлен 23.06.2011

  • Описание принципиальной технологической схемы дожимной насосной станции. Принцип работы ДНС с установкой предварительного сброса воды. Отстойники для нефтяных эмульсий. Материальный баланс ступеней сепарации. Расчет материального баланса сброса воды.

    курсовая работа [482,1 K], добавлен 11.12.2011

  • Основные положения процесса ректификации. Устройство ректификационной колонны. Характеристики исходного сырья и продукции. Технология получения конденсата газового стабильного на установке стабилизации конденсата. Расчет температуры стабилизатора.

    дипломная работа [751,3 K], добавлен 13.10.2017

  • Система менеджмента качества Новокузнецкого алюминиевого завода. Образование газов при электролитическом производстве алюминия. Особенности технологии сухой очистки отходящих газов, типы реакторов, устройства для улавливания фторированного глинозема.

    отчет по практике [523,3 K], добавлен 19.07.2015

  • Общий процесс плазменной обработки материалов низкотемпературной плазмой, генерируемой дуговыми или высокочастотными плазматронами. Принцип действия плазменных горелок. Способы газовой стабилизации, теплоизоляции и сжатия дуги. Основные виды плазмотронов.

    реферат [679,7 K], добавлен 24.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.