Производство цемента и кирпича

Краткая история развития предприятий. Характеристики выпускаемой продукции в соответствии с требованиями нормативных документов. Источники снабжения сырьем. Технологическая схема производства и контроль качества продукции. Безопасность и охрана труда.

Рубрика Производство и технологии
Вид отчет по практике
Язык русский
Дата добавления 02.06.2015
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

БЕЛГОРОДСКИЙ ГОСУДАРСТВЕНННЫЙ ТЕХНОЛОГИЧЕСКИЙ

УНИВЕРСИТЕТ ИМ. В.Г.ШУХОВА

Кафедра общей химической технологии

ОТЧЕТ

об ознакомительной практике

на предприятиях ПСМ г. Белгорода

Выполнила: студентка группы ХТ-11

Хрипливец Л. В.

Принял: профессор Беседин Павел Васильевич

Белгород 2014

Содержание

1. Цементный завод

1.1 Краткая история развития предприятия

1.2 Характеристики выпускаемой продукции в соответствии с требованиями нормативных документов (ГОСТ или ТУ)

1.3 Источники снабжения сырьем

1.4 Технологическая схема производства

1.5 Подробное описание технологического процесса производства

1.6 Эскизы основного технологического оборудования, его технические характеристики, режимы работы

1.7 Технический контроль качества продукции

1.8 Техника безопасности и охрана труда

2. Завод керамического кирпича

2.1 Краткая история развития предприятия

2.2 Характеристики выпускаемой продукции в соответствии с требованиями нормативных документов (ГОСТ или ТУ)

2.3 Источники снабжения сырьем

2.4 Технологическая схема производства

2.5 Подробное описание технологического процесса производства

2.6 Технический контроль качества продукции

2.7 Техника безопасности и охрана труда

1. Цементный завод

сырье снабжение продукция

1.1 Краткая история развития предприятия

Рис. 1.1 Вид цементного завода

ЗАО «Белгородский цемент» было создано в 1992 году на базе Белгородского цементного завода, основанного в 1949 году. Завод располагает карьерами мела и глины, перерабатывающим оборудованием. В 1980-х годах были реконструированы вращающиеся печи для производства высокоактивного клинкера. Было освоено производство сульфатостойкого и быстротвердеющего цемента, цемента на основе клинкера нормированного состава, цемента для производства разнообразных сухих смесей.

Это предприятие было первым цементным заводом в СНГ, получившим в 1998 г. сертификат качества по стандарту DIN 1164. Высокое качество белгородского цемента позволило стать заводу производителю в один ряд с известнейшими мировыми производителями. За 60 лет с момента начала работы этого производства, потребители получили более 110 млн. т. цемента.

С 2005 года входит в состав холдинга «ЕВРОЦЕМЕНТ групп», является одним из лучших предприятий по производству цемента в России.

В 2006 году на белгородском заводе был открыт новый цех помола цемента с тремя цементными мельницами мощностью 1 млн. тонн.

С 2008 года был развернуто производство цемента по новейшему Госстандарту РФ - ГОСТ 31108-2003.

В 2009 г. завод по производству цемента получил от Федерального Агентства метрологии и технического регулирования паспорт завода высокого качества.

В конце 2010 года, продукция ЗАО «Белгородский цемент» получила высокие награды в конкурсе «100 лучших товаров России» по номинации «Промышленная группа товаров для населения».

1.2 Характеристики выпускаемой продукции в соответствии с требованиями нормативных документов (ГОСТ или ТУ)

Рис. 1.2 Продукция цементного завода

Цементная промышленность является одной из важнейших отраслей материального производства. Значение этой отрасли в народном хозяйстве определяется прежде всего ее неразрывной связью с ходом капитального строительства. Цемент - один из главнейших строительных материалов, предназначенных для изготовления бетонов, железобетонных изделий, а так же для скрепления отдельных деталей строительных конструкций, гидроизоляции и многих других целей.

Продукция цемента из Белгорода пользуется большим спросом в различных регионах России, странах СНГ, Западной и Восточной Европы. В настоящее время предприятие выпускает до 3,6 млн. тонн в год высококачественной продукции. Разведанные запасы мела и глины в собственных карьерах могут обеспечить работу завода в течение 150 лет.

ОАО «Белгородский цемент» предлагает цемент в различной упаковке с гарантированной стабильностью поставки и высоким уровнем обслуживания в бумажных мешках по 50 и 25 кг., в мягких контейнерах (биг-бег) по 1 тонне, в пакетах из термоусадочной пленки по технологии фирмы «Меллерс». Отгрузка производится навалом в хоппер-цементовозы и специализированные автоцементовозы.

Продукция «Белгородского цемента»:

Сертифицирована на соответствие ГОСТ 31108-2003, ГОСТ 10178-85, ТУ 5731-001-18074720-2012, а также на соответствие европейскому стандарту EN 197-1

Обладает стабильно высокими качественными характеристикам.

Соответствует европейским стандартам.

Виды цементов, выпускаемых заводом:

По ГОСТ 31108-2003:

ЦЕМ I 42,5Н - портландцемент класса 42,5 нормальнотвердеющий

ЦЕМ II/А-Ш 32,5Б - портландцемент с минеральными добавками до 20%, класса 32,5, быстротвердеющий

По ГОСТ 10178-85:

ПЦ 500-Д0-Н - портландцемент марки 500 на основе клинкера нормированного состава

По ТУ 5731-001-18074720-2012:

ПЦХ - портландцемент для асбестоцементных изделий

По EN 197-1:

СЕМ I 42,5N - портландцемент класса 42,5 нормальнотвердеющий

CEM II/А-S 32,5R - портландцемент с минеральными добавками до 20 %, класса 32,5, быстротвердеющий.

1.3 Источники снабжения сырьем

Сырьё добывается в собственных карьерах рядом с заводом. Для производства портландцемента в качестве сырьевых материалов применяют главным образом карбонатные и глинистые породы, а так же другие природные виды сырья и искусственные материалы, получаемы в виде промышленных отходов. Помимо основных сырьевых материалов в производстве портландцемента используют и различные корректирующие добавки.

Карбонатные породы могут быть представлены в виде известняка, мела, известняка-ракушечника, известнякового туфа и т. д. Во всех этих породах наряду с CaCO3 могут содержаться примеси глинистых веществ, доломита, кварца, гипса. Особенно хорошим сырьем является мел, т. к. он легко измельчается при добавлении воды.

В качестве глинистого сырья обычно используют глину или глинистый сланец.

1.4 Технологическая схема производства

Рис 1.3. Схема №1

1) Карьер.

В карьере добывают сырье для производства цемента: мел и глину. Самосвалами сырье доставляется к сырьевому цеху.

2) Мельница «гидрофол».

С самосвалов сырье ссыпается в приемный бункер и поступает в мельницу «Гидрофол». В мельнице сырье измельчается с добавлением воды. Полученная смесь называется шламом. Шлам перекачивается в вертикальный бассейн.

3) Шламбассейн.

Из вертикального бассейна шлам перекачивается в горизонтальный бассейн грубомолотого шлама. Горизонтальные шламбассейны оснащены специальным устройством для перемешивания шлама до получения однородной смеси.

4) Цех помола сырья.

Грубомолотый шлам подается в сырьевую мельницу, где измельчается до нормального состава.

5) Шламбассейн и питатель.

Из шламбассейна шлам нормального состава подается на питатель, дозирующий подачу шлама во вращающуюся печь для обжига клинкера.

6) Вращающаяся печь для обжига клинкера.

Шлам из бассейна через питатель поступает в печь обжига, где, благодаря химическим реакциям, при обжиге шлама, во вращающейся печи в зоне сжигания образуется клинкер. Далее клинкер, для снижения температуры, проходит через холодильник.

7) Склад силоса.

Охлажденный клинкер подается транспортером в склад клинкера или клинкерные силоса.

8) Цех помола цемента.

Клинкер, гипс и шлак подаются в цементную мельницу в определенных пропорциях, в зависимости от определенного сорта цемента. Мельница заполнена мелющими телами, которые измельчают подаваемое сырье до получения цемента.

9) Тарирование и отгрузка.

Готовый цемент из мельницы подается в цементные силоса -- хранилища. Из цементных силосов цемент отгружается в цементовозы, хопперы или фасуется в мешки.

1.5 Подробное описание технологического процесса производства

Портландцемент - гидравлическое вяжущее вещество, получаемое путем совместного тонкого измельчения портландцементного клинкера, гипса и некоторых добавок. Производство складывается из двух основных технологических процессов: получение клинкера и его помол с соответствующими добавками. Первый процесс наиболее энергоёмкий и ответственный, так как от качества клинкера зависят основные свойства цемента.

Существует несколько способов производства портландцемента: сухой, мокрый, полусухой и комбинированный. Мокрый способ привлекает простотой измельчения сырьевых материалов и их гомогенизации. Кроме того, он обеспечивает лучшие санитарно-гигиенические условия работы обслуживающего персонала и, несмотря на то, что этот способ отличается большой энергоемкостью, он получил наибольшее распространение.

Итак, сырье на завод доставляется обычно большегрузным автотранспортом, хотя возможно использование ленточных конвейеров или гидротранспорта. Иногда цементные заводы строят возле обширных залежей глины. Тогда глина дробится непосредственно на месте добычи и, перемешанная с водой поступает в глиноболтушку непосредственно по трубопроводам.

Твердые породы предварительно дробят в дробилках (двух- или трехстадийное дробление) до размеров кусков 8-10 мм. Мягкие породы (глину и мел) измельчают в дробилках до кусков размером 100 мм, а затем распускают в глиноболтушках - железобетонных круглых резервуарах диаметром до 10 и высотой 2,5-3,5 м, футерованных изнутри чугунными плитами. В центре болтушки вращается крестовина с прикрепленными к ней стальными граблями для измельчения глины.

Глину в болтушку подают небольшими порциями вместе с водой. Грабли разбивают большие куски на зерна размером не более 3-5 мм, которые легко распускаются в воде. Полученный шлам насосами перекачивается в расходные бункера сырьевой мельницы для помола с дробленым известняком. Если в качестве карбонатного сырья используется мел, то его предварительно (после дробления) вместе с глиной распускают в болтушках, а затем домалывают в мельницах. Крупные включения собираются на дне резервуара и периодически удаляются.

Качество цемента существенно зависит от химического состава сырьевой смеси, поступающей на обжиг. Однако из-за неоднородности сырья химический состав может изменяться. Поэтому необходимо постоянно следить за химическим составом шихты и корректировать его в процессе работы. Но контролировать состав путём непосредственного забора проб из печи невозможно. Контроль достигается использованием вертикальных и горизонтальных шламбассейнов. Шлам из мельницы подается сначала в первый вертикальный бассейн. Шлам другого состава поступает во второй вертикальный бассейн. Зная точный химический состав этих двух шламов, можно рассчитать состав требуемого шлама. Путем перекачивания нужных количеств шлама из этих бассейнов в третий получают готовый для обжига шлам. При перекачивании откорректированного шлама в вертикальный бассейн его тщательно перемешивают струями сжатого воздуха (аэрируют). Перед подачей в печь шлам из вертикального бассейна перекачивают в горизонтальный, где его перемешивают механическим способом.

Порционное корректирование состава шлама - довольно длительная и трудоемкая технологическая операция. К тому же этот процесс периодический. Более перспективен поточный способ приготовления сырьевого шлама.

Химический состав шлама постоянно проверяется автоматически работающими пробоотборниками и рентгеновским квантометром. Шламы из двух бассейнов смешиваются и попадают в третий - расходный, пройдя предварительно экспресс-анализ с помощью сложных электронных устройств.

Обжиг

Обжигают сырьевую смесь (шлам) во вращающихся печах различной длины и диаметра. Топливо в виде газа или каменноугольной пыли вдувается в печь с нижнего конца. Дымовые газы с температурой 150-200 С удаляются со стороны верхнего конца.

Рис.1.4 Одна из вращающихся печей для обжига шлама

По характеру процессов температурные зоны в печи называют:

1) до 200 градусов - испарения (сушка шлама);

2) 200-800 градусов - подогрева;

3) 800-1000 градусов - декарбонации;

4) 1000-1300 градусов - экзотермической реакции;

5) 1300-1450-1300 градусов - спекания;

6) 1300-1000 градусов - охлаждения.

В зоне 3 происходит процесс разложения CaCO3 по схеме:

CaCO3-->CaO + CO2

CaO в свою очередь вступает в соединения с элементами глинистого компонента CaO*Fe2O3; Cao*SiO2; CaO*Al2O3.

В зоне 4 происходит насыщение этих соединений до соответствующих клинкерных материалов. В зоне 5 образуется основная часть портландцементного клинкера - кальцевый силикат 3CaO*SiO2

Для утилизации теплоты отходящих газов и повышения степени теплообмена между материалом и горячими газами используют различного вида теплообменные устройства.

Влажность шлама, выходящего из фильтра-подогревателя, не должна быть ниже 33-35%, а температура газов в этой зоне - не более 200 градусов .

На расстоянии 1 м от фильтра-подогревателя устанавливает цепные завесы. Длина цепной зоны 40-50 м, масса цепей 170-225 т, поверхность цепей 3500-4500 м2 . Цепи обычно навешиваются двумя способами: свободно свисающими концами или гирляндами. Причем последний метод крепления эффективнее. Цепи аккумулируют теплоту газов и передают ее шламу, ускоряя тем самым процесс сушки. Из цепной зоны шлам выходит в виде гранул.

В зоне подогрева печи устанавливают металлические теплообменники. Применение таких теплообменных устройств увеличивает интенсивность подогрева материала, который разделяется на несколько мелких потоков. Открытая поверхность материала и скорость прогрева увеличивается, а температура газов снижается, что предохраняет цепи от преждевременного выгорания. Однако на этом участке печи резко возрастает пыление материала. Для снижения пылевыделения рекомендуется следить за влажностью материала которая не должна превышать 2-3%.

При использовании коротких печей целесообразнее применять запечные теплообменники: концентраторы шлама и распылительные сушилки. Концентраторы шлама увеличивают производительность печи до 25%, а расход теплоты снижают на 15-20%. Однако применение их сдерживается значительным пылевыделением, т. к. значительная часть шлама пересушивается и потоком горячего газа, что требует установки дополнительных фильтров. Распределительные сушилки из-за сложности работы форсунок, низкого коэффициента паронапряжения, громоздкости конструкции и сложности в эксплуатации не находят широкого распространения.

Клинкер, полученный на выходе из печи подлежит помолу в трубных мельницах открытого или замкнутого цикла. Тонкость помола характеризуется остатком на сите и составляет 8-12% для большинства цементов.

Хранят готовый цемент в цементных силосах - железобетонных ёмкостях диаметром 10-12 метров и высотой 20-25 м., вмещающие 2500-4000 т. цемента. Основной качественной характеристикой цемента является его прочность(марка).

Особенности производства

Производство быстротвердеющего портландцемента (БТЦ), особобыстротвердеющего портландцемента (ОБТЦ), сульфатостойкого портландцемента, пуццоланового портландцемента и других цементов отличается рядом особенностей. БТЦ и ОБТЦ отличаются от обычного портландцемента интенсивным набором прочности в первый период твердения. БТЦ марки 400 через 3 суток обеспечивает прочность при сжатии 25 МПа, а в возрасте 28 суток 40 МПа, БТЦ марки 500 соответственно 28 и 50 МПа.

Получают БТЦ совместным измельчением до удельной поверхности 3500-4000 см2/г портландцементного клинкера с содержанием СзS и СзА около 60-65 % и гипса, содержание которого в пересчете на S0з не должно превышать 3,5 %. Быстротвердеющий портландцемент получают из однородной по составу сырьевой смеси с пониженным содержанием вредных примесей. Использование БТЦ и ОБТЦ в производстве бетонных и железобетонных изделиях и конструкциях позволяет сократить время твердения бетона.

Сульфатостойкие цементы, образующие цементный камень, устойчивый к агрессивному действию вод, содержащих сульфатные анионы SО2-4..К этой группе цементов относят сульфатостойкий портландцемент (без добавок и с минеральными добавками), сульфатостойкий шлакопортландцемент, пуццолановый портландцемент. Получают сульфатостойкие цементы измельчением клинкера с содержанием СзА не более 5 %, Сз5 - 50 %, СзА+С4АР-22 % с добавками и без добавок. По ГОСТ 22266-76 (сизм.) сульфатостойкие цементы имеют марки 300, 400 и 500.

При изготовлении шлакопортландцемента в качестве активной минеральной добавки применяют гранулированный доменный шлак. Шлак можно вводить не только на стадии помола, но и при получении клинкера, заменяя часть глинистого компонента. Это снижает расход топлива, так как не требуются затраты теплоты на разложение глины.

Сырьевую смесь с использованием шлака можно получать как сухим, так и мокрым способом. Более распространен сухой способ, так как при мокром способе шлак быстро расслаивается вследствие выпадения в осадок частичек шлама. Смесь готовят путем совместного помола известняка и шлака в мельницах по замкнутому циклу, причем помол совмещают с сушкой. Если шлак имеет влажность более 10 %, то его предварительно сушат в сушильных барабанах при температуре не выше 600-700 С. Повышение температуры приводит к расстекловыванию шлака и снижению его активности. Получают шлакопортландцемент помолом в многокамерных мельницах клинкера, высушенного шлака и гипса. Количество кислых шлаков в шлакопортландцементе 30-40 %, основных - 50-60 %.

Быстротвердеющий шлакопортландцемент изготовляют более тонким измельчением обычной сырьевой смеси (до 4000-5000 см2/ г), используя для этого двустадийный помол: вначале измельчают клинкер, а затем клинкерный порошок, шлак и гипс.

Пуццолановый цемент получают совместным помолом клинкера, гипса и активной минеральной добавки (20-40 %). Добавки перед помолом дробят и сушат до влажности 1-2 %. Совместный помол производят в многокамерных трубных мельницах по открытому циклу так как большинство активных минеральных добавок менее прочны, чем клинкер. В случае использования плотной, твердой добавки помол ведут по замкнутому циклу.

1.6 Эскизы основного технологического оборудования, его технические характеристики, режимы работы

Рис. 1.5. Мельница "Гидрофол"

Рис. 1.6. Вращающаяся печь Вращающаяся печь: 1-откатная головка; 2-горелка; 3-барабан; 4-бандаж; 5-венцовая шестерня; 6-пыльная камера; 7-наклонная течка; 8-опорная станция; 9-опорно-упорная станция; 10-механизм привода.

Рис. 1.7. Шламбассейн (горизонтальный)

1.7 Технический контроль качества продукции

Качественный состав входящего сырья, сырьевых смесей, клинкера и готового цемента отслеживается непрерывно

Использование в лаборатории современного оборудования позволяет получать результаты испытаний в режиме реального времени, что дает возможность корректировать технологический процесс для выпуска продукции высокого качества

Высокое качество всех цементов «ЕВРОЦЕМЕНТ групп» подтверждается сертификатами добровольной системы сертификации

1.8 Техника безопасности и охрана труда

При большой насыщенности предприятий цементной промышленности сложными механизмами и установками по добыче и переработке сырья, обжигу сырьевых смесей и измельчению клинкера, перемещению, складированию и отгрузке огромных масс материалов, наличию большого количества электродвигателей особое внимание при проектировании заводов и их эксплуатации должно уделяться созданию благоприятных и безопасных условий для работы трудящихся Охрану труда следует осуществлять в полном соответствии с «Правилами по технике безопасности и производственной санитарии на предприятиях цементной промышленности».

Поступающие на предприятия рабочие должны допускаться к работе только после обучения их безопасным приемам работы и инструктажа по технике безопасности. Ежеквартально необходимо проводить дополнительный инструктаж и ежегодно повторное обучение по технике безопасности непосредственно на рабочем месте.

На действующих предприятиях необходимо оградить движущиеся части всех механизмов и двигателей, а также электроустановки, приямки, люки, площадки и т. п. Должны быть заземлены электродвигатели и электрическая аппаратура.

Установки по приготовлению угольной пыли должны работать под разрежением. Температура аэроугольной смеси при выходе из мельницы не должна превышать для тощих углей 100, подмосковных---80, длиннопламенных и бурых -- 70 °С. Нельзя подсушивать пыль до влажности ниже гигроскопической.

Обслуживание дробилок, мельниц, печей, силосов, транспортирующих и погрузочно-разгрузочных механизмов должно осуществляться в соответствии с правилами безопасной работы у каждой установки.

Большое внимание следует уделять обеспыливанию воздуха и отходящих газов печей и сушильных установок для создания нормальных санитарно-гигиенических условий труда. В соответствии с санитарными нормами проектирования промышленных предприятий концентрация в воздухе помещений цементной и остальных видов пыли не должна превышать 0,04 мг/м3.

Содержание в воздухе СО не допускается более 0,03, сероводорода -- более 0,02 мг/м3. В воздухе, выбрасываемом в атмосферу, концентрация пыли не должна быть более 0,06 г/м3. При нормальной эксплуатации пылеочистных систем содержание пыли в выбрасываемом воздухе составляет 0,04-- 0,06 г/м:!.

Для создания нормальных условий труда все помещения цементных заводов надо обеспечивать системами искусственной и естественной вентиляции. Этому в большой мере способствует герметизация тех мест, где происходит пылевыделение, а также отсос воздуха из бункеров, течек, дробильно-помольных механизмов, элеваторов и т. д.

Воздух, отбираемый из цементных мельниц, очищают с помощью рукавных или электрофильтров. Перед ними при значительной концентрации пыли в аспирируемом воздухе необходимо устанавливать циклоны. Важно не допускать просасывания через 1 м2 ткани фильтров более 60--70 м3 воздуха в 1 ч. Для очистки воздуха, отсасываемого из камер сырьевых мельниц, обычно устанавливают циклон и электрофильтр, соединенные последовательно. Воздух из сепаратора мельниц и головок элеваторов для очистки пропускается через рукавный фильтр.

Отходящие газы цементных печей необходимо очищать для предотвращения загрязнения окружающей среды. Для этого устанавливают электрофильтры. Если же отходящие газы содержат значительное количество пыли (более 25--30 г/м3), то их сначала пропускают через батарею циклонов.

Шум, возникающий при работе многих механизмов на цементных заводах, характеризуется зачастую высокой интенсивностью, превышающей допустимую норму (90 дБ). Особенно неблагоприятны в этом отношении условия работы персонала в помещениях молотковых дробилок, сырьевых и цементных мельниц, компрессоров, где уровень звукового давления достигает 95--105 дБ, а иногда и более. К числу мероприятий по снижению шума у рабочих мест относят применение демпфирующих прокладок между внутренней стенкой мельничных барабанов и бронефутеровочными плитами, замену в сырьевых шаровых мельницах стальных плит резиновыми. При этом звуковое давление снижается на 5--12 дБ. Укрытие мельниц и дробилок шумоизолирующими кожухами, облицовка источников шума звукопоглощающими материалами также дает хороший эффект (снижение на 10--12 дБ).

2. Завод керамического кирпича

2.1 Краткая история развития предприятия

ООО «Белкерамика» - это современное, динамично развивающиеся предприятие, производящее и поставляющее высококачественный керамический кирпич на российский рынок. Продукция завода производится из экологически чистого природного материала - глины, добываемой из собственных карьеров. Завод выпускает 30 млн. штук условного кирпича в год.

Промышленное предприятие представляет собой законченный комплекс по производству керамического кирпича, способом пластического формования, спроектированный фирмой «ALTA», Чешская Республика, и оснащенный оборудованием чешского производства. Комплекс смонтирован и эксплуатируется на трех пролетах производственных корпусов общей площадью 5000 кв. м.

Начало строительства завода - апрель 2003 года. Завод запущен в эксплуатацию в июле 2006 года.

Продукция ООО «Белкерамика» в 2007 году прошла комплексное исследование добровольной сертификации в строительстве «БелГТАСМ-СЕРТИФИКАЦИЯ», по результатам испытания выдан сертификат соответствия.

2.2 Характеристики выпускаемой продукции в соответствии с требованиями нормативных документов (ГОСТ или ТУ)

Кирпич применяется в строительстве для кладки наружных и внутренних стен и других элементов зданий и сооружений, а также для изготовления стеновых панелей и блоков.

В России основные размеры лицевого кирпича составляют: 250 х 120 х 65 мм для одинарного кирпича, 250 х 120 х 88 мм для полуторного и 250 х 120 х 138 мм для двойного. Важный параметр для строительного и лицевого кирпича - наличие пустот. Бывают кирпичи полнотелые, пустотелые (эффективные) и пустотелые поризованные (сверхэффективные, "теплая керамика"). У первых имеются сквозные отверстия (различной формы), благодаря которым они теплее, а значит, стены можно делать тоньше. Кроме того, пустотелые кирпичи легче, поэтому от них меньше нагрузка на фундамент. Следует отметить, что лицевой кирпич почти всегда является пустотелым. Наконец, самый "теплый" кирпич - поризованный. В нем, как и в изделии предыдущего типа, имеются сквозные отверстия, однако структура самого материала принципиально иная. В глину добавляют особые органические или минеральные компоненты, которые выгорают при обжиге, образуя мельчайшие замкнутые поры. В результате, сохранив все достоинства обычной керамики, поризованный кирпич существенно улучшил ее теплозащиту. Благодаря этому стены возводятся значительно быстрее, чем из обычного кирпича, и они становятся тоньше. Предел прочности кирпича при сжатии определяет его марку. Она обозначается буквой "М" и цифрой, показывающей, какую нагрузку может выдержать 1 смизделия. Чаще всего встречаются кирпичи марок М-75, М-100, М-125, М-150, М-175, М-200, М-250, М-300. Кирпичи марок 75 и 100 подходят для стен 2 - 3х этажного дома, марок 125 и выше - для стен многоэтажных зданий. Марки кирпича относятся ко всем типам изделий, так что пустотелый лицевой кирпич марки 100 будет столь же прочен, как и полнотелый строительный той же марки. Еще один нюанс: предел прочности кладки на сжатие зависит не только от марки кирпича, но и от марки раствора, условий его твердения, а также от качества кладки. В условиях нашего изменчивого климата одна из важнейших характеристик для кирпича - морозостойкость. Она измеряется количеством циклов попеременного замораживания и оттаивания водонасыщенного изделия: чем больше циклов оно способно выдержать, не изменив своих потребительских свойств, тем дольше его срок эксплуатации. В технической документации морозостойкость обозначается буквой "F", а следующая за ней цифра говорит о количестве циклов, которые кирпич может выдержать. В Центральном регионе рекомендуется применять строительный кирпич с морозостойкостью не ниже 15 - 25 циклов, лицевой - не ниже 50 циклов.

Рис. 2.1. Кирпич керамический: 1-одинарный полнотелый. 2-одинарный пустотелый.

Продукция должна выпускаться в соответствии с требованиями ГОСТа 530-95:

1. Допускается изготовление кирпича с закруглёнными углами, радиусом закругления до 15 мм.

2. Пустоты в кирпиче должны располагаться перпендикулярно или параллельно постели и могут быть сквозными или несквозными.

3. Размер цилиндрических сквозных пустот по наименьшему диаметру должен быть не более 16 мм, ширина щелевидных пустот не более 12 мм. Диаметр не сквозных пустот не регламентируется.

4. Толщина наружных стенок кирпича не менее 12 мм.

5. Отклонение от установленных размеров и показателей внешнего вида кирпича не должны превышать на одном изделии следующих значений:

по длине 5 мм.

по ширине 4 мм.

по высоте 3 мм

6. Не прямолинейность рёбер и граней кирпича и камней, мм. (не более):

по постели 3;

по ложку 4.

7. Отбитости углов глубиной от 12 до 15 мм.

8.Трещины протяжённостью по постели полнотелого кирпича до 30 мм., пустотелых изделий не более чем до первого ряда пустот, штук:

на ложковых гранях -1;

на тычковых гранях -1.

9. Общее количество кирпича с отбитостями должно быть не более 5%.

10. Количество половняка в партии должно быть не более 5%. Половняком считают изделия, состоящие из парных половинок или имеющие трещины, протяженностью по постели полнотелого кирпича более 30 мм., пустотелых изделий - более, чем до первого ряда пустот (на кирпиче во всю толщину).

11. Водопоглощение кирпича, высушенного до постоянной массы, должно быть для полнотелого кирпича не менее 8%, для пустотелых изделия не менее 6%.

12. Кирпич в насыщенном водой состоянии должен выдерживать без каких либо признаков видимых повреждений (расслоение, шелушение, растрескивание) не менее 25 циклов попеременного замораживания и оттаивания.

13. Предел прочности при сжатии для всех видов кирпича, средний для 5 образцов:

для марки 75:...................................................... 7,7 МПа;

для марки 100:................................................... 10 МПа;

для марки 150:.................................................... 15 МПа.

При изгибе:

марки 75:............................................................. 1,4 МПа;

марки 100:........................................................... 1,6 МПа;

марки 150:........................................................... 2,1 МПа.

14. Кирпич высшей категории качества должен удовлетворять требованиям:

марка по прочности не менее 100;

морозостойкость не менее (Мрз.) 25 циклов;

общее количество кирпича с отбитостями, превышающими допускаемые не более 3%

Для производства выбираем полнотелый и пустотелый керамический кирпич по ГОСТ 530-95.

2.3 Источники снабжения сырьем

В качестве сырья для производства керамического кирпича и керамических камней применяют:

· глинистые породы, встречающиеся в природе в плотном, рыхлом и пластическом состоянии, называемые в целом легкоплавкими глинами, а также трепельные и диатомитовые породы;

· органические и минеральные добавки, корректирующие свойства природного сырья (кварцевый песок, шлаки, шамот, опилки, уголь, зола и другие.);

· светложгущиеся огнеупорные и тугоплавкие глины, стекло, мел, отходы фарфорового производства, огнеупорного кирпича для получения офактуренного лицевого кирпича, изготавливаемого из легкоплавких глин.

Рис. 2.2. Сирье для изготовления кирпича

Основным сырьём для производства кирпича являются легкоплавкие глины - горные землистые породы, способные при затворении водой образовывать пластическое тесто, превращающееся после обжига при 800- 10000 С в камнеподобный материал. Легкоплавкие глины относятся к остаточным и осадочным породам.

Глинообразующие минералы, определяющие основные свойства глин, представляют собой в основном гидросиликаты глинозема, содержащие кремнезем и окислы железа, а также сульфаты, карбонаты и растворимые в воде соли различных металлов.

Для улучшения природных свойств глиняного сырья-уменьшения общей усадки, чувствительности к сушке и обжигу, улучшения формовочных свойств, широко применяют добавки.

2.4 Технологическая схема производства

Современный технологический процесс производства керамического кирпича отличается высокой степенью сложности, изготовление которого включает в себя следующие основные этапы (рисунок ниже):

Рис. 2.3. Технологический процесс производства керамического кирпича

2.5 Подробное описание технологического процесса производства

При производстве керамического кирпича основным материалом является глина - пластичный материал. Глина представляет собой горную породу, состоящую преимущественно из глинообразующих минералов - слоистых алюмосиликатов. Они отличаются большим сродством к воде и могут давать в ней тончайшие взвеси вплоть до коллоидных, не меняя своей основы. В техническом аспекте глина - землистая горная порода, способная при затворении водой образовывать пластичное тесто, которое после сушки обладает некоторой прочностью, а после обжига приобретает камнеподобные свойства.

Вещественный состав глины представлен глинистым веществом и примесями. Истинно глинистое вещество - наиболее дисперсная часть породы, оно состоит из комплекса глинообразующих минералов, придающих глине пластичность. Таких минералов сравнительно немного, и они довольно хорошо изучены. Все глинистые минералы обладают типичной слоистой структурой, похожей на структуру слюды.

При смешивании глины с водой последняя входит в межслоевые пространства глинистого минерала, и его слои получают возможность сдвигаться один относительно другого по водяной пленке и закрепляться в новом положении. Такая способность минералов объясняет важнейшее свойство глины - ее пластичность.

Керамический кирпич получается в результате обжига глины. Производство керамического кирпича это сложный технологический процесс. В технологии производства керамического кирпича можно выделить следующие основные этапы:

1. добыча, усреднение, транспортировка глины;

2. подготовка добавок;

3. обработка глины и подготовка пластичной массы;

4. прессование кирпича из пластичных масс;

5. сушка кирпича-сырца;

6. обжиг кирпича сырца.

Добыча, усреднение, транспортировка глины.

Добыча глины, как правило, ведется открытым способом, за исключением областей с суровым климатом, где используется закрытый способ. Для разработки карьера используются многоковшовые экскаваторы, бульдозеры, карьерные самосвалы.

В процессе добычи глины в карьере ее усредняют, т.е. делают ее однородной по структуре. В зависимости от расстояния до кирпичного завода, а также рельефа местности для транспортировки глины могут использоваться автотранспорт или рельсовый транспорт. Добытую на карьере глину отвозят на хранение в глинозапасник завода. Из глинозапасника глина подается в бункер глинорыхлителя, а после рыхления направляется на дозирование, осуществляемое ящичным питателем.

Подготовка добавок.

Она заключается в просеивании, измельчении, иногда в обезвоживании добавок. Для подготовки добавки используют специальные виды оборудования: дробилки, шаровые мельницы, вибрационные грохоты. Песок просеивают через сито с ячейками 3 мм.

Древесные опилки привозят автотранспортом, хранят в бункере, откуда подают на просеивание на сито-бурат. Частицы размером более 5 мм удаляют в отвал. После просеивания по элеватору опилки отправляют на хранение в бункер запаса, откуда они подаются на дозирование, осуществляемое ленточным питателем.

Брак обжига из бункера хранения дозируют, подают в щековую дробилку и дробят. Далее измельченный шамот транспортируют ленточным конвейером и элеватором на измельчение в молотковую дробилку. После измельчения в молотковой дробилке шамот просеивают на виброгрохоте. Фракцию с размером частиц более 5 мм отправляют на домол, а фракцию с размером частиц менее 5 мм отправляют на хранение в бункер запаса. Из бункера шамот подается на дозирование, осуществляемое ленточным питателем.

Угли измельчают в дробилках и просеивают через сито с ячейками 2-3 мм.

Пластифицирующие добавки готовят смешивая их с водой до требуемой концентрации.

Смешение компонентов (глина, опилки, шамот) осуществляют на ленточном конвейере. Данная смесь поступает в камневыделительные вальцы для удаления каменистых включений, после чего она транспортируется на измельчение и перемешивание в бегуны мокрого помола. Далее шихта поступает на помол в вальцы с гладкими валками.

Обработка глины и подготовка пластичной массы.

Прежде чем приступить к формовке из глины удаляются каменистые включения, разрушается ее природная структура, добивается однородность пластической массы по структуре и составу. Изменение свойств достигается методами естественной обработки, механической обработки, вводом добавок.

После помола шихта отправляется на перемешивание с пароувлажнением в глиносмеситель с фильтрующей решёткой, которая служит для удаления из глины остатков растительного происхождения. Переработанную массу отправляют на вылеживание в течение 7-10 дней в шихтозапасник. Здесь происходят различные физико-химические процессы, и свойства формовочной массы меняются. Масса усредняется по влажности, но также происходит её тиксотропное упрочнение.

Такую массу нельзя подавать сразу на формование. Поэтому вылежавшуюся шихту многоковшовыми экскаваторами подают по ленточному конвейеру на промин и измельчение в вальцы тонкого помола. После чего шихта вновь поступает по ленточному конвейеру на перемешивание и пароувлажнение в лопастной двухвальный смеситель.

Прессование кирпича из пластичных масс.

Готовую шихту транспортируют ленточным конвейером на формование бруса. Для формования используется ленточный вакуумный пресс. Вакуумированию массу подвергают для улучшения ее формовочных свойств. Обезвоздушивание глиняной массы способствует более прочному сцеплению глиняных частиц между собой. При удалении воздуха из глиняной массы ее пластичность значительно повышается. После вакуумирования влажность керамической массы снижается на 2-3%, а следовательно, уменьшается воздушная усадка.

Пластическая масса прессуется, выдавливается в виде бруска, нужного сечения, и разрезается на куски. Для этого применяются вакуумные и безвакуумные винтовые прессы. Для резки бруса, выходящего из пресса, используется резательные автоматы.

Формованный глиняный брус разрезается на отдельные кирпичи струнным резательным автоматом, затем сырец укладывается на рамки, которые подаются к горизонтальному ленточному конвейеру. Далее автомат-укладчик укладывает кирпич-сырец на сушильные вагонетки, транспортировка которых осуществляется с помощью электропередаточной тележки. Свежесформованный сырец надо транспортировать осторожно во избежание его деформации. Кроме того, надо стремиться к наиболее рациональной укладке изделий в сушилке.

Сушка кирпича-сырца.

Процесс сушки керамических изделий представляет собой превращение содержащейся в них воды из жидкого состояния в парообразное и последующее удаление ее в окружающую среду. При этом необходимым условием сушки является наличие внешнего источника тепла, нагревающего изделия. Наиболее ответственной является сушка высоковлажного полуфабриката изделий хозяйственной и строительной керамики, изготовленного пластическим формованием.

Находящаяся в керамических массах и изделиях вода делится на физическую и химически связанную. Физической называется та часть воды материала, которая не входит ни в какие соединения с ним. Физическая вода находится в изделии в жидком или парообразном состоянии и может быть удалена полностью при нагреве материала до 100--110°С. При этом керамическая масса становится непластичной, но с добавлением воды пластические свойства массы восстанавливаются.

Химически связанной водой называется вода, находящаяся в химическом соединении с отдельными элементами керамической массы, так например: Аl2Оз•2SiO2•nH20; Са(ОН)2 и др.

Удаление химически связанной воды происходит при более высоких температурах - от 500° и выше. При этом керамическая масса безвозвратно теряет свои пластические свойства.

Анализируя процессы, происходящие при сушке материалов, необходимо отметить следующее:

1) содержащаяся в материале вода при температуре 80--90оС испаряется. В этом случае имеет место поверхностное испарение или так называемая внешняя диффузия влаги;

2) при испарении влаги с поверхности материала в окружающую среду влага из внутренних слоев изделия перемещается к его поверхности. Происходит так называемая внутренняя диффузия влаги.

Если в процессе сушки замерять температуры материала и окружающей среды, то обнаруживается, что температура изделия ниже температуры воздуха. Следовательно, во время сушки поверхность твердого тела, имеющего относительно низкую температуру, соприкасается с газом, нагретым до более высокой температуры. Между ними происходит теплообмен. Поэтому процесс сушки можно рассматривать как комплекс параллельно протекающих явлений:

а) испарения влаги с поверхности материала;

б) внутренних перемещений (диффузии) влаги в материале;

в) теплообмена между материалом и окружающей газообразной средой.

При испарении влаги с поверхности изделий влажность поверхностных слоев по сравнению с внутренними слоями уменьшается и возникает так называемый перепад (градиент) влажности.

Внешним показателем процесса сушки является изменение веса материала во времени. Графическое изображение зависимости влажности материала от длительности сушки носит название кривой сушки. Характер кривой определяется влажностью и размерами изделия, способом его формования, а также температурой, влажностью и скоростью теплоносителя. Совокупность указанных факторов определяет режим сушки. Режимом сушки называется изменение интенсивности влагоотдачи изделия путем изменения температуры, относительной влажности и скорости движения теплоносителя.

Изменение режима сушки вызывает изменение интенсивности влагоотдачи изделия, которая определяется количеством влаги, испаряемой с единицы поверхности высушиваемого изделия в единицу времени.

Режим сушки регулируют, изменяя температуру или количество теплоносителя, подаваемого в сушилку.

Сушка зависит от параметров окружающей среды (температуры, влажности и скорости движения теплоносителя), формы связи влаги с материалом, состава, структуры, влажности и температуры полуфабриката. Распределение меняющихся во времени полей влажности и температуры в объеме изделия определяет возможность появления опасных напряжений и брака.

Если сушку проводят при малых перепадах температуры между полуфабрикатом и средой, малых скоростях и высокой влажности теплоносителя, то влажность полуфабриката медленно уменьшается от исходной, центр заготовки прогревается медленнее, чем поверхность. Это период прогрева полуфабриката.

На втором этапе (период постоянной скорости сушки) влажность заготовки меняется по линейному закону при постоянной температуре. После достижения критической влажности температура поверхности заготовки увеличивается, скорость сушки уменьшается, а влажность асимптоматически приближается к равновесной. Температура в объеме полуфабриката растет медленнее, чем на поверхности. Этот период называется периодом падающей скорости сушки.

При сушке испарение воды происходит диффузионным путем. Движущей силой является разность парциальных давлений пара у поверхности и в объеме теплоносителя. Уменьшение влажности во внешних слоях заготовки сопровождается появлением градиента влажности в ее объеме, что вызывает диффузию капельножидкой воды из объема заготовки к поверхности.

Величины критической влажности и усадки зависят от режима сушки. Наибольшую усадку имеют заготовки, высушенные в равновесных условиях. Чем выше температура и ниже влажность теплоносителя, тем меньше усадка. Рост градиента влажности в объеме заготовки увеличивает разницу между фактической и максимально возможной усадками. Эта разница (недопущенная усадка) вызывает появление механического напряжения. Если последнее превысит предел прочности материала, то в теле заготовки образуется трещина. Причиной появления трещин в период постоянной скорости сушки полуфабриката является перепад влажности между наружными и внутренними частями заготовки.

Кирпич - сырец содержит влагу. Процесс удаления влаги путем испарения называется сушкой. Сушку кирпича-сырца проводят в камерных сушилках. Камерные сушилки характеризуются переменным режимом сушки. Для сушки могут использоваться также туннельные сушилки. Кирпич-сырец поступает на сушку в туннельное сушило. Для сушки используется горячий воздух из туннельной печи, атмосферный воздух и рециркулят, а также дымовые газы из топки. Отработанный теплоноситель после очистки поступает в атмосферу. Для нормального протекания процесса сушки сырца, т. е. для того, чтобы изделия высыхали с максимальной равномерностью и без деформаций при минимальном расходе топлива и в минимальный срок, необходимо создать условия для интенсивной влагоотдачи с единицы поверхности изделия.

После завершения процесса сушки с помощью электропередаточной тележки осуществляется транспортировка высушенного кирпича из сушила. Сушильные вагонетки поступаю к автомату-перекладчику, который осуществляет садку полуфабриката на обжиговые вагонетки для последующего обжига в печи.

Обжиг кирпича сырца.

Обжигом называется высокотемпературная обработка кирпича-сырца, в результате которого он превращается в камнеподобный материал. Обжиг проводят в туннельных или кольцевых печах. При температуре до 150 градусов происходит досушка кирпича. При температурах 150-800 градусов кирпич теряет пластические свойства и из него удаляется вода, выгорают органические добавки. В интервале 300-1000 градусов происходит разложение карбонатов.

Обжиг проводят в туннельной печи при температуре 1000 о С. В качестве теплоносителя используются продукты сгорания газа. При обжиге за счет удаления влаги и сближения в результате этого частиц, вследствие фазовых и химических превращений, частичного получения жидкой фазы протекают структурообразующие процессы. Из печи забирается горячий воздух на сушку в туннельное сушило, а отработанные дымовые газы после очистки выбрасываются в атмосферу.

Процесс обжига изделий строительной керамики может быть условно разделен на четыре периода:

1) подогрев до 200°С и досушка - удаление физической воды из глины;

2) дальнейший нагрев до 700°С «на дыму» и удаление химически связанной воды из глины;

3) «взвар» - до температуры обжига 980-1000°С - созревание черепа;

4) «закал» - охлаждение, медленное до 500°С и быстрое от 500 до 50°С обожженных изделий.

К этим реакциям добавляется выгорание топлива из изделия, если это топливо было введено в глину при подготовке массы; количество вводимого топлива может достигать 70-80% от того количества, которое необходимо для обжига.

Такое производственное деление на периоды не вскрывает сущности реакций в глине при обжиге. При производственном обжиге глин никогда не достигается термодинамическое равновесие.

Можно отметить шесть главных видов реакций, протекающих в рядовых глинах при обжиге:

1) выделение гигроскопической воды из глинистых минералов и воды из аллофаноидов, если таковые присутствуют в глине;

2) окисление органических примесей;

3) выделение конституционной воды, т. е. дегидратация глинистых минералов и реакции в так называемых твердых фазах;

4) жидкофазные реакции и образование стекловидного расплава;

5) образование новых кристаллических фаз;

6) реакции декарбонизации и десульфуризации.

Первая группа реакций характеризуется небольшим эндоэффектом, при котором образуется водяной пар, давлением которого может разорвать изделие («лопанец») при слишком быстром подъеме температуры. Эта реакция сопровождается падением температуропроводности глины.

Вторая группа реакций - окисление органических примесей - характеризуется экзоэффектом при 300--400°С. Часть этих примесей может остаться (при быстром подъеме температуры и недостаточном притоке и диффузии в толщу изделия кислорода воздуха) невыгоревшей, что обнаруживается по темной сердцевине в изломе изделия. При замедленном выгорании может произойти графитизация части углерода. Так как причиной ограничения действия кислорода воздуха на процесс выгорания углерода в глине выступает противоток СО и СОз, то при более быстром подъеме температуры влияние окислительной среды должно сокращаться, а влияние внутренней восстановительной среды -- увеличиваться, что зависит от пористости и размеров изделия и от концентрации углерода.

Глинистые минералы в процессе своей дегидратации действуют каталитически, содействуя горению углерода в глине, а выделяющаяся вода способствует выгоранию углерода по реакции:

С+Н2О=СО+Н2.

Наряду с этим может протекать отложение углерода в глине из газовой среды, содержащей 1-3% СО при 400 и выше 1000°С.

Скорость выгорания топлива по мере повышения температуры увеличивается, но только до стадии появления жидкой фазы в обжигаемой глине, после чего скорость выгорания резко снижается из-за ухудшения диффузии кислорода воздуха. Максимальное значение скорости выгорания топлива имеет место примерно при 780--800°С. Поэтому рекомендуется осуществлять выдержку в этом этапе обжига.

Третья группа реакций - дегидратация глинистых минералов - характеризуется эндоэффектом, который растягивается с 500 (450) до 600°С (700°С), а у некоторых каолиновых глин - до 900°С и также сопровождается падением температуропроводности.

Эндотермическая реакция, начинающаяся около 500°С и оканчивающаяся около 700°С, заключается в удалении из каолинита химически связанной (гидратной) воды:

Аl2O3 * 2SiO2 * 2H2O > Al2O3*2SiO2 + 2H2O.

Продукты разложения составляющих глины и керамические массы минералов (Аl2О3•2SiO2, SiO2, Аl2О3, CaO, MgO, Fe2О3 и .др. окислы) в процессе обжига взаимодействуют между собой при высоких температурах (1000°C и выше) и образуют легкоплавкие силикаты, плавление которых вызывает спекание и размягчение глин. Степень спекания глинистых материалов зависит от температуры и длительности обжига, от состава глинистого сырья, газовой среды, рода и количества плавней, а также от способа формования изделий.

Не менее важную роль играет и газовая среда в печи, которая влияет на процессы, протекающие при формировании черепка, и поэтому она также должна регламентироваться режимом обжига. Эта среда может быть окислительной, нейтральной и восстановительной.

Образование жидкой (стекловидной) фазы в гидрослюдистых глинах начинается по крайней мере с 700°С, но заметное развитие эти фазы получают лишь при температурах на 150-200°С выше. Появление стеклофазы содействует дальнейшему растворению в ней некоторой части минеральных составляющих глины и новому минералообразованию. Стеклофаза обеспечивает спекание и образование черепа. С физической стороны действие стеклофазы характеризуется усадкой изделия. В зависимости от степени развития стеклофазы, что регулируется выдержкой и созреванием черепа, можно сообщить ему ту или иную плотность (пористость). Именно в этом процессе и состоят операции выдержек - «взвар» и начала охлаждения - «закал», которые необходимо осуществлять: «взвар» - в пределах температур 980-1000°С и «закал» - до 800°С, а также длительностей для получения кирпича должного качества - ярко-красного (не алого) по цвету и звонкого при ударе. Кроме того, выдержка необходима для выравнивания температурного поля в печи.

Охлаждение обожженных изделий -- не менее ответственная операция. При 800 - 780°С череп изделия строительной керамики находится в пиропластическом состоянии и переходит в твердое состояние, поэтому необходимо замедлять охлаждение во избежание появления напряжений, которые могут разрядиться местными разрывами (трещинами). Считают опасным также участок 650- 500°С в связи с обратимым превращением б-в-кварц.

...

Подобные документы

  • Характеристика продукции, выпускаемой на Гостищевском кирпичном заводе. Доставка и складирование сырья и полуфабрикатов. Технологическая схема производства керамического кирпича и предложения по совершенствованию. Организация контроля и охрана труда.

    отчет по практике [34,8 K], добавлен 01.01.2010

  • Классификационные признаки и потребительские свойства цемента глиноземистого и высокоглиноземистого, области его применения. Основные стадии его производства. Технологическая схема поточного приготовления сырьевой смеси. Контроль качества продукции.

    реферат [312,2 K], добавлен 21.09.2015

  • Анализ существующих технологий производства изделия, номенклатура, характеристика, состав сырьевой смеси. Выбор и обоснование технологического способа производства. Контроль производства и качества выпускаемой продукции. Охрана труда на предприятии.

    курсовая работа [60,7 K], добавлен 30.04.2011

  • Исторические сведения о развитии минераловатного производства. Номенклатура выпускаемой продукции в России и за рубежом. Технологическая схема изготовления полужестких плит. Расчет складов сырья и готовой продукции. Контроль качества готовой продукции.

    курсовая работа [489,7 K], добавлен 18.05.2012

  • Основные характеристики силикатного кирпича, силикатных стеновых камней и блоков. Выбор и обоснование способа и технологической схемы производства материалов. Контроль качества продукции и технологического процесса. Охрана труда и окружающей среды.

    курсовая работа [139,7 K], добавлен 24.05.2015

  • Технологическая линия сухого способа производства цемента ЗАО "Невьянский цементник". Конструкция центробежного сепаратора. Помол горячего клинкера. Месторождения цементного сырья. Контроль, ассортимент выпускаемой продукции. Линия упаковки в мешки.

    отчет по практике [3,0 M], добавлен 15.10.2014

  • История развития предприятия и народнохозяйственное значение производимой продукции. Сырьевые материалы для производства клинкера. Минералогический состав глин. Контроль качества помола цемента и обжига клинкера. Обслуживание дробилок, мельниц и печей.

    отчет по практике [810,7 K], добавлен 12.10.2016

  • Общая характеристика производства керамического кирпича, используемые сырьевые материалы. Виды продукции, выпускаемой ООО "Кирпичный завод "Ажемак". Технология, последовательность и стадии производства керамического кирпича, параметры процесса обжига.

    реферат [116,2 K], добавлен 30.03.2012

  • Режим работы цеха. Номенклатура изделий, характеристика сырья. Расчет состава керамической шихты. Технологическая схема производства кирпича, ее описание. Ведомость оборудования, материальный баланс цеха. Техника безопасности, охрана труда и среды.

    курсовая работа [743,4 K], добавлен 18.04.2013

  • Общая зарактеристика ОАО "Тульский кирпичный завод". Перечень выпускаемой продукции. Описание технологии производства керамического кирпича, характеристика оборудования. Фактическое состояние условий труда на рабочих местах по фактору травмобезопасности.

    отчет по практике [2,9 M], добавлен 22.12.2009

  • История развития ООО "УРСА Серпухов". Общая характеристика предприятия как одного из самых известных брендов строительных материалов. Ассортимент продукции, технологическая схема производства. Требования, предъявляемые к сырью, контроль качества.

    отчет по практике [579,7 K], добавлен 09.08.2015

  • Ассортимент выпускаемой продукции, применяемого сырья на заводах керамической промышленности. Производство керамического кирпича по методу пластического формования. Расчет материального баланса цеха формования, сушки, обжига и склада готовой продукции.

    курсовая работа [1,0 M], добавлен 06.12.2010

  • Технологическая схема производства керамического кирпича, ассортимент и характеристика выпускаемой продукции, химический состав сырьевых материалов, шихты. Перечень оборудования, необходимого для технологических процессов цеха формования, сушки и обжига.

    курсовая работа [873,5 K], добавлен 09.06.2015

  • Характеристика технологического оборудования, нормативных документов, ассортимента выпускаемой продукции предприятия ООО "Фабрика мороженного САМ-ПО". Анализ технологического процесса производства. Экспертиза качества сырья и готовой продукции (изделий).

    отчет по практике [64,1 K], добавлен 29.09.2011

  • Технологическая схема, методы и этапы производства бетонной тротуарной плитки. Цехи и склады, входящие в состав предприятия. Процесс формирования бетонного раствора в готовые изделия. Контроль качества продукции. Охрана труда и техника безопасности.

    курсовая работа [38,2 K], добавлен 19.02.2011

  • Организационная структура предприятия. Изучение общих вопросов проектирования, разработки и постановки продукции на производство. Входной контроль качества сырья, материалов. Охрана труда и промэкология. Изучение технологического процесса пошива обуви.

    курсовая работа [49,2 K], добавлен 22.05.2016

  • Роль биохимических и физико-химических процессов в формировании качества готовой продукции. Технологические схемы производства с указанием основного оборудования. Требования к качеству к готовой продукции. Схема взаимосвязей операций и видов брака.

    курсовая работа [59,4 K], добавлен 31.01.2009

  • Структура управления СОАО "БАХУС". Технология производства спирта и водки. Розлив, упаковка и хранение готовой продукции. Технологическое оборудование для транспортировки сырья и готовой продукции, контроль качества. Охрана труда и окружающей среды.

    отчет по практике [3,4 M], добавлен 27.10.2009

  • Горно-эксплуатационные условия месторождения глин. Основные свойства сырья и вспомогательных материалов. Номенклатура выпускаемой продукции. Технология производства лицевого керамического кирпича методом полусухого прессования. Обжиг спрессованного сырца.

    курсовая работа [455,3 K], добавлен 18.10.2013

  • Определение основных требований к сырью для производства керамического кирпича. Состав и физико-химические свойства самой продукции, особенности управления качеством при ее производстве. Технологический контроль при производстве кирпича керамического.

    курсовая работа [44,4 K], добавлен 28.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.