Материалы и сплавы для аэрокосмической промышленности
Сплавы алюминия, применяемые в авиастроении. Производство, свойства и применение магния. Маркировка и химический состав магниевых сплавов. Гомогенизирующий и рекристаллизационный отжиг. Классификация и виды термической обработки титановых сплавов.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 02.06.2015 |
Размер файла | 31,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской федерации
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
РЕФЕРАТ
По дисциплине: «Материалы: прошлое, настоящее и будущее»
Тема: «Материалы и сплавы для аэрокосмической промышленности»
Выполняла
Студентка 1 курса
Химического факультета
Дневного отделения
Группы №1
Воронеж 2014
Введение
Аэрокосмическая промышленность: осуществляет производство авиатехники и авионики, выпуск приборов и оборудования для космических спутников связи и разведки.
Последние разработки аэрокосмической промышленности позволили получить новые материалы и усовершенствовать аэрокосмическое оборудование.
В аэрокосмической промышленности для производства авиатехники и авионики, используют цветные металлы и сплавы.
1. ПРИМЕНЕНИЕ ЦВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ
алюминий отжиг магний титановый
В авиационной технике широко используются цветные металлы и сплавы.
В технике к цветным относят все нежелезные металлы. На их основе создано большое число сплавов, обладающих широким диапазоном свойств, соответствующих требованиям к авиационным материалам. К ним относятся: значительная механическая прочность, высокий предел выносливости в сочетании с малой плотностью, все это говорит о том, что цветные металлы имеют свойства, которые делают их применение в технике незаменимым. Например, медь и алюминий обладают высокой электро- и теплопроводностью . Сплавы магния, алюминия и титана обладают малой плотностью, высокой удельной прочностью .
Из цветных металлов и сплавов наибольшее распространение получили сплавы алюминия и меди. Из года в год возрастает интерес к титану и его сплавам, которые широко применяются в авиа- и ракетостроении.
Как правило, такие металлы, как Al, Ti и другие в чистом виде в авиатехнике применяют крайне редко. На основе каждого металла создают, большое число сплавов, обладающих самым широким спектром свойств. Цветные металлы и их сплавы широко применяют для армирования.
В авиастроении широко применяют алюминиевые сплавы, а также сплавы магния, титана, меди. Находят применение бериллиевые сплавы, сплавы никеля и некоторые тугоплавкие сплавы.
ь Алюминиевые сплавы, применяются в связи с их сравнительно высокой прочностью при малой плотности, высокой коррозионной стойкостью в некоторых агрессивных средах и высокими механическими свойствами при низких температурах.
ь Сплавы магния, имеют высокую удельную прочность, пластичны и жаропрочны.
ь Сплавы титана сочетают высокую прочность с хорошей пластичностью, они жаропрочны и обладают высокой коррозионной стойкостью.
ь Сплавы меди, обладают высокими антикоррозийными свойствами, хорошо сопротивляются износу и имеют высокие технические и механические характеристики.
Практически весь каркас самолета или вертолета, во многих случаях корпус авиадвигателя, корпуса большинства агрегатов различных систем, многие трубопроводы изготовлены из цветных сплавов. На самолетах новых поколений многие силовые элементы авиационных конструкций будут изготавливать только из высокопрочных алюминиевых сплавов.
Цветные сплавы систематизируют как по технологическим свойствам, так и по механическим характеристикам.
Цветные металлы, на основе которых создают сплавы, чаще всего разделяют на:
· легкие, обладающие малой плотностью (например, Al, Mg);
· тяжелые (например, Си, Рв);
· тугоплавкие (W, Мо и другие);
· благородные (например, Au, Pt).
Сплавы, полученные на основе перечисленных металлов, могут быть разделены на группы по функциональному назначению:
a) Антифрикционными называют сплавы, обеспечивающие в подвижных соединениях низкий коэффициент трения. Это повышает срок службы машины. Кроме того, антифрикционные сплавы обладают высокой износостойкостью.
b) Жаропрочные сплавы относятся к материалам, обладающим способностью сопротивляться деформированию и разрушению под воздействием механических нагрузок при высокой температуре. Кроме того, жаропрочные сплавы обладают высоким сопротивлением ползучести.
c) Жаростойкими называют сплавы, способные сопротивляться воздействию газовой среды при высоких температурах.
d) Конструкционные сплавы служат для изготовления самых разнообразных деталей самолетов, вертолетов и авиадвигателей. В авиатехнике могут использоваться только те материалы, которые сочетают в себе качества, обеспечивающие выносливость, прочность, надежность и долговечность при низкой плотности и малых затратах на изготовление.
e) Коррозионностойкие сплавы способны сопротивляться коррозионному воздействию окружающей среды и не подвергаться внезапному разрушению из-за высокой скорости коррозионных повреждений. Цветные сплавы по технологическому исполнению могут быть разделены на следующие группы: деформируемые, литейные, спеченные и др. Такое деление позволяет представить себе, как получить детали из этих сплавов, например штамповкой, ковкой или литьем.
Большую группу цветных металлов и сплавов на их основе составляют проводниковые материалы, обеспечивающие наименьшее электрическое сопротивление. В этой группе металлов используют чистую медь с суммарным содержанием примесей 0,01 %, чистый и технический алюминий с содержанием примесей 0,02 - 0,5%. Цветные сплавы на основе Sn, Рв, Zn, Ag используют для изготовления припоев.
2. АЛЮМИНИЙ И ЕГО СПЛАВЫ
Алюминий - серебристо-белый металл. Он не имеет полимерных превращений и кристаллизуется в решетке гранецентрированного куба.
Широкое применение алюминия обусловлено его малой плотностью (2,7 г/см3), высокой пластичностью, т.е. способностью обрабатываться давлением, высокой коррозионной стойкостью. Она получается за счет того, что алюминий быстро покрывается окисной пленкой (Al2O3), предотвращая проникновение агрессивных веществ к основному металлу. Кроме того, алюминий обладает хорошей тепло- и электропроводностью.
Но распространенности в земной коре алюминий занимает первое место среди конструкционных металлов. В земной коре содержится около 7,5 % Аl, в то время как железа - всего 5,1 %. Алюминий входит в состав всех глин, полевого шпата, боксита и других горных пород.
1. Сплавы на основе алюминия.
Вследствие большого разнообразия свойств алюминиевые сплавы получили весьма широкое распространение, особенно в авиастроении. Все алюминиевые сплавы разделяют на деформируемые, литейные, спеченные порошковые.
Деформируемые алюминиевые сплавы обладают хорошей пластичностью. Из них изготавливают прутки, трубы, листы, профили различных сечений, проволоку, поковки, штамповки. Для изготовления деталей и полуфабрикатов применяют различные методы обработки давлением: прессование, ковку, горячую штамповку, гибку, прокатку, волочение. Пластическую деформацию используют также для упрочнения алюминиевых сплавов, поскольку при этом возникает анизотропия свойств.
Все алюминиевые сплавы можно сваривать различными способами. При этом в местах сварки устраняется анизотропия свойств, чтo необходимо учитывать. Все деформируемые алюминиевые сплавы разделяют на упрочняемые и неупрочняемые термической обработкой (старением).
По химическому составу деформируемые алюминиевые сплавы разделяют на группы, которые строят по наличию основных элементов, входящих в химический состав сплавов. Наиболее употребительна группа сплавов AI - Си - Mg (дуралюмины). Высокопрочные сплавы имеют в основе Аl - Zn - Mg - Си. Сплавы для ковки, штамповки содержат Аl - Mg - Si - Си. Широко применяют сплавы Al - Мп и Al - Mg. Деформируемые алюминиевые сплавы маркируют буквой Д, высокопрочные - буквой В, ковочные - АК.
Литейные алюминиевые сплавы выделены в отдельный класс сплавов, поскольку их объединяет наличие основных свойств: жидко-текучесть, объемная и литейная усадка, склонность к образованию усадочных трещин и ликвации.
Среди литейных алюминиевых сплавов наиболее широко распространены силумины системы Аl - Si. Для литья деталей сложной формы, кроме силуминов, применяют сплавы на основе Аl - Си - Mg, Al - Си и др. Эти сплавы отличаются от соответствующих по составу деформируемых сплавов более высоким содержанием меди и магния, а также тугоплавких добавок: титана, никеля, железа, хрома и др.
Такие сплавы могут быть использованы как жаропрочные. Как правило, отливки из этих сплавов подвергают термической обработке. Маркируют литейные алюминиевые сплавы буквами AЛ.
Имеются два класса алюминиевых сплавов, разделяемых по признаку влияния термообработки на неупрочняемые и упрочняемые термообработкой. Эти сплавы широко применяются в авиастроении.
Неупрочняемые термообработкой алюминиевые сплавы создают на основе систем Аl - Mg и Аl - Мn. В структуре этих сплавов растворимость компонентов в алюминии не изменяется и фазовые превращения при нагревании и выдержке не происходят.
Упрочняемые термообработкой алюминиевые сплавы - наиболее широко распространенный класс сплавов.
2. Термообработка алюминиевых сплавов.
Она позволяет получить большое разнообразие структур. В этом случае можно добиться значительного упрочнения, что и обеспечило самое широкое применение термообработки алюминиевых сплавов. Физический смысл термообработки сплавов алюминия состоит в том, что при этом изменяется и концентрация твердого раствора легирующих элементов в алюминии, При этом меняется фазовый состав, что повышает прочность сплайн при сохранении достаточной пластичности. Рассмотрим это положение на конкретном примере. В сплаве системы Аl - Си образуется интерметаллическое соединение CuAI2. Если этот сплав нагреть до 500 - 540°С, то частицы СuАl2растворятся в алюминии. При быстром охлаждении фаза СuАl2 не успевает выделиться из твердого раствора и остается в нем, в результате чего получается упрочнение сплава (закалка). Фазовые изменения в алюминиевых сплавах могут происходить не только при нагреве, но и при комнатной температуре. Для алюминиевых сплавов наиболее широкое распространение получили следующие виды термообработки: отжиг, закалка и старение.
Отжиг применяют для улучшения пластичности. При этом получается более равновесное фазовое состояние. В зависимости от поставленной цели отжиг разделяют на три вида:
A) Гомогенизирующий отжиг.
Проводят, как правило, для устранения неоднородностей структуры сплава. Температура нагрева при этом 450 - 520°С. Время выдержки при этой температуре 4 - 40 ч. После этого сплав охлаждают.
B) Рекристаллизационный отжиг.
Выполняют для обеспечения высокой пластичности и снижения прочности деталей после пластической деформации. Алюминиевые сплавы нагревают до 300-500°С, соответствующих температуре окончания первичной рекристаллизации. Длительность такого отжига 0,5 - 2 ч.
С) Отжиг для разупрочнения.
Применяют для снижения прочности перед последующей обработкой давлением, например штамповкой.
Закалка может быть применена только для тех сплавов, которые в твердом состоянии могут претерпевать фазовые превращения. Цель закалки - получить в сплаве предельно неравномерную структуру - пресыщенный твердый раствор с максимальным содержанием легирующих элементов. Такая структура обеспечивает возможность дальнейшего упрочнения старением. Сразу после закалки алюминиевые сплавы не становятся более прочными. Они приобретают заданные характеристики прочности после завершения процесса старения, т.е. после окончания фазовых превращений в твердом состоянии.
Таким образом, если в сплаве находятся только компоненты, не растворимые в твердом алюминии, его закалка невозможна.
Закалка алюминиевых сплавов заключается в нагреве их до температуры, при которой легирующие элементы частично или полностью растворяются в алюминии. При этой температуре сплав выдерживают, а затем быстро охлаждают до весьма низкой температуры (10 - 20 °С). Выдержка нужна для прохождения процесса растворения. Кик правило, охлаждение алюминиевых сплавов производят в воде.
Алюминиевые сплавы могут подвергаться процессам старения при нагреве (обычно 100 - 200 °С) или при комнатной температуре. Старение с нагревом называют искусственным старением. Старение при комнатной температуре называют естественным старением.
Состояние алюминиевых сплавов сразу после закалки называют свежезакаленным. Поскольку при этом существенное повышение прочности еще не началось, деталь или заготовку можно легко обрабатывать (например, гнуть) в течение нескольких часов. Затем твердость и прочность возрастают. В самолетостроительном производстве это свойство используется очень широко.
3. Сплавы алюминия, применяемые в авиастроении.
В авиастроении наиболее широко применяют деформируемые алюминиевые сплавы - дуралюмины Д1, Д16, Д18. Цифры после буквы Д обозначают номер I марки и никакой другой информации не содержат. Эти сплавы относятся к системе Аl - Си - Mg. Из этих сплавов изготавливают прессованные прутки, листы, профили, плиты и поставляют в промышленные предприятия.
Дуралюмин Д1 - наиболее старый сплав, предложенный еще в 1906 г. немецким исследователем А. Вильмом- относится к сплавам повышенной прочности. Дуралюмин Д16 относится к сплавам повышенной прочности. Он отличается от Д1 более высоким содержанием магния. Дуралюмины повышенной жаропрочности - Д19, ВАД-1, ВД-17. В них больший процент содержания Mg, Мп. Кроме того, в сплав ВАД-1 введены Ti и Zг.
Дуралюмины повышенной пластичности (Д18 и В65) отличаются пониженным содержанием Си и Mg, Это и придает им большую пластичность. Вот почему заклепки для авиационных конструкций изготавливают часто из дуралюмина В65 или Д18.
Изделия из дуралюмина обычно подвергают закалке и последующему естественному старению. При этом необходимо жестко соблюдать рекомендованную температуру нагрева дуралюминов под закалку. Например, нагрев под закалку должен соответствовать температуре 505 'С (Д1, Д19, ВАД-1) или 500°С (Д16, ВД17, Д18) с допуском всего 5°С. Если осуществить нагрев до более высоких температур, то произойдет оплавление легкоплавких структурных составляющих, которые при охлаждении дадут усадку, что приведет к растрескиванию. Брак при этом получается неисправимым. При закалке дуралюминов необходимо обеспечить высокую скорость охлаждения, так как могут произойти фазовые изменения за период переноса детали из печи в охлаждающую ванну, наполненную холодной водой.
Все дуралюмины интенсивно упрочняются при естественном старении. Для сплавов Д1 и Д16 максимальная прочность достигается через 4 суток, а для сплава ВАД1 через 10 суток. Алюминиевые сплавы подвергают различным видам термической обработки.
Приведем некоторые буквенные обозначения, которые ставятся после обозначения марки сплава. Буква А, поставленная сразу после марки, обозначает, что полуфабрикат плакирован. Плакирование представляет собой покрытие с помощью прокатки фольгой из технического алюминия. За очень короткое время он покрывается пленкой окисла Аl2O3 и предотвращает проникновение веществ окружающей среды к основному металлу.
Далее, как правило, ставят вид термообработки: Т - твердый, закаленный и естественно состаренный; Т1 - закаленный и искусственно состаренный; М - мягкий; МО - мягкий, отожженный; Н - нагартованный, т.е. пластически деформированный для упрочнения после закалки и естественного старения. Режимы закалки и старения обозначаются после буквы Т: Т1, Т2,..., Т7, например лист Д16АТ. Этот лист плакирован, закален и естественно состарен.
Все дуралюмины отличаются пониженной коррозионной стойкостью. Вот почему их всегда защищают либо плакировкой, либо анодированием.
Промышленностью выпускаются высокопрочные алюминиевые сплавы.
Наиболее широко применяют сплавы В95 и В96. Прочность у сплава В95 ?b = 550 МПа, В-96 имеет ?b = 630 МПа, Д16 - ?b = 440 МПа. Сплавы В95 и В96 относятся к системе Аl - Си - Mg. Кроме указанных компонентов, в сплав В95 добавлен Zn, а в сплав В96 - еще Сг.
Алюминиевые сплавы, применяющиеся для ковки и штамповки и отличающиеся высокой пластичностью при температурах обработки 450 - 475°С, подвергают закалке и старению. Наиболее характерными представителями этой группы являются сплавы АК6 и АК8 (алюминий ковкий № 6 или 8). Они относятся к системе Аl - Mg - Si - Си. В сплаве АК8 содержится значительно больше меди, чем в АК6. Вот почему для АК8 ?b = 440 МПа, в то время как для АК6 ?b = 380 МПа.
Сплав АК4-1, получающий в настоящее время широкое распространение, относится к деформируемым алюминиевым сплавам. Однако он обладает еще и свойством жаропрочности, т.е. способностью работать при температурах до 300°С без существенных изменений механических свойств. Жаропрочность этого сплава достигается за счет добавки в сплав Fe, Ni, Ti.
Широко применяют деформируемые алюминиевые сплавы, не упрочняемые термической обработкой. К ним относятся сплавы систем Аl - Mg (АМг) и Аl - Мn(АМц). В сплавах АМц содержится 1 - 1,6% марганца. В сплавах АМг содержится 2 - 6 % магния. Содержание Mg обозначено в марке сплава, например АМгб (6 % Mg). Эта группа сплавов обладает прекрасными технологическими свойствами. Они хорошо деформируются и свариваются.
Деформируемые алюминиевые сплавы - основа самолетостроения и вертолетостроения. Из них изготавливают каркас самолета, вертолета, многие элементы управления, большое число агрегатов, отдельные узлы авиадвигателей. Эти сплавы применяют также в космической технике.
Литейные алюминиевые сплавы обладают тем преимуществом, что без дорогостоящей, с большими отходами механической обработки можно получить детали самой сложной пространственной формы.
В авиастроении широко применяют сплавы Ал-9 системы Al-Si-Mg N Л л-19 системы Al-Cu-Mn-Ti. Временное сопротивление сплава Ал-19 достигает 360 МПа. Он обладает устойчивостью против коррозии, Юрошими показателями выносливости.
В настоящее время производят группу сложнолегированных литейных алюминиевых сплавов (Ал-20, Ал-21 и др.) системы Al-Cu-Mg с небольшими добавками Ni, Сг, Fe,Ti. Их используют как жаропрочные сплавы для работы при температурах 300 - 350 °С.
Широкое распространение получили спеченные алюминиевые сплавы (САС) и спеченные алюминиевые пудры (САП).
САС - сплавы, спеченные из легированного алюминиевого порошка. Такой порошок может быть изготовлен из легированных алюминиевых сплавов. Порошковые сплавы САС-1 и САС-2 применяют В приборостроении и других отраслях промышленности.
CAП - пудры, представляющие собой спеченный алюминий с равномерно распределенными в нем частицами окиси алюминия AI2O3. САП имеет более высокие показатели прочности, жаропрочности и жаростойкости, чем чистый алюминий. Изделия из САП применяют в некоторых узлах самолетов и энергетических атомных установках.
3. МЕДЬ И ЕЕ СПЛАВЫ
Медь - один из первых металлов, с которыми познакомился человек. Хотя в земной коре меди немного (до 0,01%), однако известны ее богатые месторождения, в которых встречаются даже самородки. Медь и ее сплавы обладают многими ценными свойствами, что определило ее широкое применение.
Медь - металл красновато-розового цвета с кристаллической структурой в виде ГЦК. По электропроводности медь занимает второе место после серебра. Поэтому она - важнейший материал для изготовления электропроводников (провода, шины, кабеля и т.п.). Медь имеет также высокую теплопроводность, в связи с чем ее широко используют в теплообменниках (радиаторы, холодильники и т.п.). Медь и ее сплавы хорошо свариваются всеми видами сварки и легко поддаются пайке. На основе меди получены сплавы с очень ценными свойствами. Однако медь относится к тяжелым металлам, ее плотность 8,94 г/см3. Чистая медь обладает небольшой прочностью и высокой пластичностью. Медь отлично обрабатывается, давлением, но плохо - резанием и имеет плохие литейные свойства, поскольку дает большую усадку. Чистую медь и ее малолегированные сплавы широко используют в электротехнике и других видах производства.
1. Сплавы на основе меди.
Медь имеет кристаллическую решетку ГЦК, в ней не обнаружено полиморфных превращений. Она находит широкое применение в промышленности и обозначается буквой М. Наиболее высокую чистоту, имеет медь MB (медь высокой очистки), в ней содержится всего до 0,01 % примесей. Еще меньше примесей (до 0,005 %) в меди МЭ, получаемой электронно-лучевой плавкой.
Широко применяют сплавы меди с различными элементами. Наиболее распространены следующие легирующие элементы для меди: цинк, алюминий, олово, железо, кремний, марганец, бериллий, никель. Большая часть этих элементов образует с медью твердые растворы.
Медные сплавы разделяют на деформируемые и литейные. Они могут быть термически упрочняемыми и неупрочняемыми. В промышленности это деление применяют редко. Как правило, медные сплавы делят на латуни, бронзы и медно-никелевые сплавы.
Латунями называют сплавы меди, в которых главным легирующим |элементом является цинк. Их маркируют буквой ЛI и цифрами, характеризующими среднее содержание легирующих элементов. Например, Латунь Л196 содержит около 96% Си и 4% Zn. Если латунь легирована, кроме цинка, другими элементами, то после буквы Л ставят условное Обозначение легирующих элементов: С - свинец, О - олово, Ж - железо, А - алюминий, К - кремний, Мц - марганец, Н - никель, Ф - фосфор, Б - бериллий, X - хром. Цифры, поставленные после букв, обозначают процентное содержание соответствующего элемента. Например, латунь ЛАЖ60-1-1 содержит 60% Си, 1% Al, 1% Fe, остальное цинк (38%).
Все латуни хорошо свариваются и паяются, обладают высокими литейными свойствами, легко обрабатываются резанием. Латунь применяют для трубок теплообменников (например, радиаторов), различных деталей арматуры (например, штуцеры), трубопроводов. Легированные латуни применяют также для изготовления деталей приборов, различных патрубков. Вследствие высокой коррозионной стойкости из латуни изготавливают детали, работающие в морской воде.
Бронзы представляют собой все сплавы меди, кроме латуней и медно-никелевых сплавов. По основным легирующим элементам бронзы подразделяют на оловянные, бериллиевые, свинцовые, кремнистые и т.п. Бронзы маркируют буквами Бр. Легирующие элементы обозначают так же, как и для латуни. Например, в бронзе БрАЖН 10-4-4 содержится 10% Аl, 4% Fe и 4% Ni, остальное Сu. Бронзы разделяют также по технологическим признакам на литейные и деформируемые.
По областям применения они могут подразделяться на жаропрочные, антифрикционные. В обозначениях марок бронз эти свойства не отражаются. Выделяют также группу конструкционных бронз.
Из бронз в авиастроении изготавливают самые разнообразные детали, работающие на трение, пружинящие детали приборов, различные направляющие, шестерни, гайки, втулки, детали подшипник - скольжения.
2. Наиболее широко применяемые бронзы и латуни.
· Бронзы оловянно-фосфористые БрОФб, 5-0,15; Бр0Ф7-0,2 хорошо обрабатываются резанием и давлением, паяются и свариваются. Применяют эти бронзы для изготовления деталей приборов, подшипников, работающих н небольших нагрузках.
· Бронза оловянно-свинцово-цинковая БрОЦС5-5-5 весьма коррозионностойка в атмосферных условиях и пресной воде, хорошо обрабатывается резанием. Ее применяют для изготовления различии» втулок, прокладок и других деталей.
· Конструкционная алюминиевожелезная бронза БрАЖ9-4 обладав высокой коррозионной стойкостью, хорошо обрабатывается давлением» Такую бронзу широко применяют для изготовления шестерен, ниппелей, гаек, шайб и других деталей.
· Бронза алюминиевожелезоникелевая БрАЖН10-4-4 обладает высокой коррозионной стойкостью в атмосферных условиях и морской воде. Ее используют для изготовления шестерен, гаек, втулок и других деталей, работающих при высоких температурах.
· Бронза алюминиевожелезомарганцовистая БпАЖМц10-3-1,5 также обладает высокой коррозионной стойкостью. Из нее изготавливают гайки, направляющие ниппели, шестерни и другие детали.
Существует группа жаропрочных бронз. К ним относится кремнисто-никелевая бронза БрКН1-3. Она идет на изготовление деталей, работающих при высоких температурах
В последние годы большое распространение получили бериллиевые бронзы, обладающие высокими износостойкостью, прочностными показателями и высоким пределом выносливости. Они могут работать при температуре от - 299 до +250 °С. Широкое применение бериллиевых бронз ограничивается высокой стоимостью и токсичностью бериллия. Бериллиевые бронзы БрБ2 и др. применяют для изготовления особо ответственных плоских пружин, мембран, трубок и других деталей приборов, работающих при знакопеременных температурах и знакопеременных нагрузках. Их используют также для изготовления нагруженных деталей подшипников.
Кроме бронз, в авиастроении используются некоторые марки латуней. Широко применяют латунь Л96, обладающую высокой коррозионной стойкостью. Из нее изготавливают трубопроводы, радиаторные трубки.
Латунь Л68 имеет меньшую коррозионную стойкость, но хорошо обрабатывается давлением.
Большое распространение получила латунь свинцовая ЛC59-1. Она коррозионностойка даже в морской воде. Ее применяют для изготовления труб шпилек, ниппелей, втулок. Трубопроводы для топлива и коррозионно-активных жидкостей изготавливают из оловянных латуней Л70-1 и Л62-1.
Весьма коррозионностойка латунь алюминиево-железная ЛАЖ1-1. Она служит для изготовления деталей, работающих в контакте с пресной и морской водой и для изготовления фасонных деталей приборов.
4. Титан и его сплавы
Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.
Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно - давлением, сваривается в защитной атмосфере. Широкое распространение получило вакуумное литье, в том числе вакуумно-дуговой переплав с расходуемым электродом.
Аллотропические модификации титана: низкотемпературная и высокотемпературная.
Различают две основные группы легирующих элементов в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °C): б-стабилизаторы (элементы, расширяющие область существования б-фазы и повышающие температуру превращения - А1, Оа, С) и в-стабилизаторы (элементы, суживающие б-область и снижающие температуру полиморфного превращения, - V, Мо, Сг).
Легирующие элементы делятся на две основные группы:
1) Элементы с большой (в пределе - неограниченной) растворимостью в титане;
2) Ограниченной растворимостью в титане. Элементы с ограниченной растворимостью вместе с титаном могут образовывать интерметаллиды, силициды и фазы внедрения.
Легирующие элементы влияют на эксплуатационные свойства титана (Ре, А1, Мп, Сг), повышают его прочность, но снижают эластичность и вязкость; А1, Zr увеличивают жаропрочность, а Мо, Zr, Та - коррозионную стойкость.
1. Классификация титановых сплавов.
Структура промышленных сплавов титана - это твердые растворы легирующих элементов в б- и в-модификациях титана.
Виды термической обработки титановых сплавов.
A. Рекристаллизационный (простой) отжиг холоднодеформированных сплавов (650-850 °C).
B. Изотермический отжиг (нагрев до 780-980 °C с последующим охлаждением в печи до 530-680 °C, выдержка при этой температуре и охлаждение на воздухе), обеспечивающий высокую пластичность и термическую стабильность сплавов.
C. Двойной ступенчатый отжиг (отличается от изотермического тем, что переход от первой ступени ко второй осуществляется охлаждением сплава на воздухе с последующим повторным нагревом до температуры второй ступени), приводящий к упрочнению сплава и снижению пластичности за счет частичного протекания процессов закалки и старения.
D. Неполный отжиг при 500-680 °C с целью снятия возникающих при механической обработке остаточных напряжений.
E. Упрочняющая термическая обработка. Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала, а также снижающим его плотность.
2. Литейные титановые сплавы.
По сравнению с деформируемыми литейные сплавы имеют меньшую прочность, пластичность и выносливость, но более дешевы. Сложность литья титановых сплавов обусловлена активным взаимодействием титана с газами и формовочными материалами. Литейные сплавы ВТ5Л, ВТ14Л и ВТЗ-1Л по составу в основном совпадают с аналогичными деформируемыми сплавами (в то же время сплав ВТ14Л дополнительно содержит железо и хром).
Высокими технологическими свойствами обладает сплав ВТ5Л: он пластичен, не склонен к образованию трещин при литье, хорошо сваривается. Фасонные отливки из сплава ВТ5Л работают при температурах до 400 °C. Недостатком сплава является его невысокая прочность (800 МПа). двухфазный литейный сплав ВТ14Л подвергают отжигу при 850 °C вместо упрочняющей термической обработки, резко снижающей пластичность отливок.
3. Порошковые сплавы титана.
Применение методов порошковой металлургии для производства титановых сплавов позволяет при тех же эксплуатационных свойствах, что и у литого или деформируемого материала, добиться снижения до 50 % стоимости и времени изготовления изделий. Титановый порошковый сплав ВТ6, полученный горячим изостатическим прессованием (ГИП), обладает теми же механическими свойствами, что и деформируемый сплав после отжига. Закаленному и состаренному деформируемому сплаву ВТ6 порошковый сплав уступает в прочности, но превосходит в пластичности.
4. Применение сплавов титана.
Обшивки самолетов, морских судов, подводных лодок; корпусов ракет и двигателей; дисков и лопаток стационарных турбин и компрессоров авиационных двигателей; гребных винтов; баллонов для сжиженных газов; емкостей для агрессивных химических сред.
5. МАГНИЙ И ЕГО СПЛАВЫ
Магний - самый легкий из технических цветных металлов, его плотность 1,740 кг/м3, температура плавления 650°С. Технически чистый магний непрочный, малопластичный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, торий, церий, цинк, цирконий и подвергают термообработке.
1. Производство магния.
Для производства магния используют преимущественно карналлит (MgCl2•КСl•6Н2О), магнезит (MgCO3), доломит (CaCО3•MgCО3) и отходы ряда производств, например титанового. Карналлит подвергают обогащению, в процессе которого отделяют КСl и нерастворимые примеси путем перевода в водный раствор MgCl2 и КCl. После получения в вакуумкристаллизаторах искусственного карналлита, его обезвоживают и электролитическим путем получают из него магний, который затем подвергают рафинированию. Технически чистый магний (первичный) содержит 99,8-99,9% магния (ГОСТ 804-72). Маркировка и химический состав магниевых сплавов, для фасонного литья и слитков, предназначенных для обработки давлением, приведены в ГОСТ 2581-78.
2. Свойства и применение магния.
В зависимости от способа получения изделий магниевые сплавы делят на литейные и деформируемые.
A) Литейные магниевые сплавы (ГОСТ 2856-68) .
Применяют для изготовления деталей литьем. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Отливки из магниевых сплавов иногда подвергают закалке с последующим старением. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной промышленности: картеры, корпуса приборов, фермы шасси и т. п.
B) Деформируемые магниевые сплавы (ГОСТ 14957-76).
Они предназначены для изготовления полуфабрикатов (листов, прутков, профилей) обработкой давлением. Их маркируют буквами МА и цифрами, обозначающими порядковый номер сплава, например МА5. Сплавы МА применяют для изготовления различных деталей в авиационной промышленности. Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.
Список использованной литературы
1. Колачев Б.А., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов. - М.: Металлургия, 1981.
2. Материалы будущего: Пер. с нем./ Под ред. А. Неймана. - Л.: Химия, 1985
Размещено на Allbest.ur
...Подобные документы
Свойства алюминиево-магниевых, алюминиево-марганцевых и алюминиево-медных сплавов, их применение в промышленности. Характеристики порошковых сплавов алюминия и методы их получения в металлургии. Технологическая схема изготовления гранулированных сплавов.
реферат [28,2 K], добавлен 04.12.2011Достоинства алюминия и его сплавов. Малый удельный вес как основное свойство алюминия. Сплавы, упрочняемые термической обработкой. Сплавы для ковки и штамповки. Литейные алюминиевые сплавы. Получение алюминия. Физико-химические основы процесса Байера.
курсовая работа [2,7 M], добавлен 05.03.2015Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.
презентация [40,6 K], добавлен 29.09.2013Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Алюминий и его сплавы. Характеристика и классификация алюминиевых сплавов. Деформируемые, литейные и специальные алюминиевые сплавы. Литые композиционные материалы на основе алюминиевого сплава для машиностроения. Состав промышленных дюралюминов.
курсовая работа [2,8 M], добавлен 15.01.2014Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий.
автореферат [1,3 M], добавлен 27.06.2013Характеристика алюминия и его сплавов. Технологический процесс производства алюминия и использование "толлинга" в производстве. Состояние алюминиевой промышленности и мировой рынок алюминия в конце 2007 - начале 2008 гг. Применение алюминия и его сплавов.
контрольная работа [6,2 M], добавлен 14.08.2009Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.
реферат [146,1 K], добавлен 02.04.2018Общие положения, классификация и области применения сплавов на основе интерметаллидов. Материалы с эффектом памяти формы. Сплавы на основе алюминидов титана. Сплавы на основе алюминидов никеля. Области использования сплавов на основе интерметаллидов.
курсовая работа [1,1 M], добавлен 02.06.2014Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.
контрольная работа [780,1 K], добавлен 13.01.2010Система алюминий-магний (Al-Mg) как одна из самых перспективных при разработке свариваемых сплавов, основные недостатки и преимущества данной группы. Сплавы алюминия с прочими элементами, их основные характеристики. Области применения алюминиевых сплавов.
контрольная работа [24,6 K], добавлен 21.01.2015Свойства металлов и сплавов. Двойные сплавы. Металлы применяемые в полиграфии. Технические требования к типографским сплавам. Важнейшие свойства типографских сплавов. Металлы для изготовления типографских сплавов. Диаграммы состояния компонентов.
реферат [32,5 K], добавлен 03.11.2008Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.
курсовая работа [62,1 K], добавлен 05.02.2007Твердые сплавы и сверхтвердые композиционные материалы: инструментальные, конструкционные, жаростойкие; их свойства и применение. Совершенствование технологии сплавов, современные разработки получения безвольфрамовых минералокерамических соединений.
реферат [964,1 K], добавлен 01.02.2011Основные методы и виды гальванических покрытий на алюминий и его сплавы. Анализ схемы предварительной подготовки алюминия, а также его сплавов. Цинкатный и станнатный растворы. Непосредственное нанесение гальванических покрытий на алюминий и сплавы.
реферат [26,8 K], добавлен 14.08.2011Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.
контрольная работа [347,8 K], добавлен 17.08.2009Двухкарбидные твердые сплавы. Основные свойства и классификация твердых сплавов. Метод порошковой металлургии. Спекание изделий в печах. Защита поверхности изделия от окисления. Сплавы на основе высокотвердых и тугоплавких карбидов вольфрама и титана.
контрольная работа [17,9 K], добавлен 28.01.2011Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.
учебное пособие [4,8 M], добавлен 13.11.2013Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.
курсовая работа [1,6 M], добавлен 17.10.2009Основные физические и химические свойства золота, его устойчивость к различным воздействиям. Применение золотых сплавов, понятие пробы и цвета золота. Золочение металлов. Специфика золотых сплавов, применяемых в ювелирной промышленности и стоматологии.
презентация [2,5 M], добавлен 30.01.2012