Технология нанесений покрытий на таблетки

Цели покрытия таблеток оболочками, их виды: прессованные, пленочные, водорастворимые, кишечно-растворимые и др. Определение механической прочности и распадаемости таблеток, условия их хранения, фасовка и упаковка. Технология и методы капсулирования.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 17.06.2015
Размер файла 864,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Цели покрытия таблеток оболочками

2. Прессованные покрытия

3. Пленочные покрытия

4. Водорастворимые и растворимые в желудке покрытия

5. Кишечно-растворимые покрытия

6. Не растворимые покрытия

7. Способы нанесения пленочных покрытий

8. Контроль качества таблеток

9. Определение распадаемости таблеток

10. Определение механической прочности таблеток

11. Фасовка, упаковка и маркировка таблеток

12. Условия хранения таблеток

13. Пути совершенствования таблеток

14. Гранулы

15. Технология капсулирования

16. Автоматы для наполнения капсул

17. Методы касулирования

18. Контроль качества производства желатиновых капсул

19. Факторы, влияющие на биологическую доступность биологически активных веществ в желатиновых капсулах

Список литературы

Введение

В настоящее время невозможно представить профилактику и терапию большинства заболеваний без таблетированных лекарственных препаратов. Их технология постоянно развивается и совершенствуется. Благодаря введению специальных компонентов (вспомогательных веществ) и применению определенных технологических приемов, таблетки из традиционно оральных, растворяющихся преимущественно в желудке, теперь могут быть кишечнорастворимыми, с быстрым или, наоборот, пролонгированным действием, растворяющимися в заданном отделе желудочно-кишечного тракта. Для обеспечения этих свойств широко используются пленочные оболочки, наносимые на поверхность таблеточных ядер.

На фармацевтическом рынке представлен, широкий спектр готовых пленкообразующих композиций для производства как защитных, так и кишечнорастворимых оболочек. Однако, в зависимости от фармакологического действия, технологических свойств таблеток возникает необходимость изменения пленкообразующей композиции, введения в се состав различных вспомогательных веществ (пластификаторов, эмульгаторов, пигментов и др.), что в свою очередь может оказывать влияние на профиль высвобождения действующих веществ из таблеток. Помимо этого, на биодоступность таблеток оказывает влияние и технология нанесения пленочных покрытий.

Современные исследования в области разработок составов и технологии пленочных покрытий не учитывают весь комплекс технологических факторов, влияющих на качество покрытия - свойств таблеток-ядер, пленкообразующих композиций и технологию их нанесения.

Таким образом, разработка новых составов пленочных покрытий и технологии их нанесения с учетом оценки влияния качества покрытия на высвобождение действующих веществ из таблеток является актуальной в настоящее время.

1. Цели покрытия таблеток оболочками

После проведения процесса таблетирования готовая таблетка чаще всего нуждается в покрытии. В современной фармацевтической индустрии возрастает значение покрытия таблеток. Необходимость высококачественного покрытия является главным фактором, ужесточающим требования к высокопроизводительной надежной технологии покрытия.

Покрытие таблеток оболочками имеет многостороннее значение и следующие цели:

1. защита таблеток от экстремальных факторов внешней среды (ударов, истирания и др.);

2. защита от воздействий окружающей среды (свет, влага, кислород и углекислота воздуха);

3. маскировка неприятного вкуса и запаха биологически активных веществ, содержащихся в таблетках;

4. защита от окрашивающей способности биологически активных веществ, содержащихся в таблетках;

5. защита содержащихся в таблетках биологически активных веществ от кислой реакции желудочного сока;

6. защита слизистой рта, пищевода и желудка от раздражающего действия биологически активных веществ;

7. пролонгирование терапевтического действия биологически активных веществ в таблетках;

8. преодоление несовместимости различных веществ, находящихся в одной таблетке, путем введения их в состав оболочки и ядра;

9. улучшение товарного вида таблеток и удобства их применения.

При покрытии таблеток оболочками применяют различные вспомогательные вещества, условно подразделяющиеся на следующие группы: адгезивы, обеспечивающие прилипание материалов покрытия к ядру и друг к другу (сахарный сироп, КМЦ, МЦ и др.); структурные вещества, создающие каркасы (сахар, магния оксид, кальция оксид, тальк, магния карбонат основной); пластификаторы, которые придают покрытиям свойства пластичности (растительные масла, МЦ, КМЦ, твины и др.); гидрофобизаторы, придающие покрытиям свойства влагостойкости (аэросил, шеллак, полиакриловые смолы); красители, служащие для улучшения внешнего вида или для обозначения терапевтической группы веществ (тропеолин, тартразин, кислотный красный 2С, индигокармин и др.); корригенты, придающие покрытию приятный вкус (сахар, лимонная кислота, какао, ванилин и др.) [19].

Применяется более 50 наименований пленкообразователей.

Таблеточные покрытия в зависимости от их состава и способа нанесения разделяют на следующие группы:

1. Прессованные (или сухие) покрытия.

2. Пленочные покрытия.

3. Дражированные покрытия (нанесение сахарной оболочки).

2. Прессованные покрытия

Главным преимуществом данного метода покрытия является исключение использования в технологии растворителей. Поэтому прессованные покрытия рациональны для таблеток гигроскопичных и чувствительных к воздействию влаги веществ.

Для пролонгации эффекта действующего вещества его вводят в состав как ядра, так и покрытия. Покрытие быстро распадается в желудке (начальная доза), а ядро (таблетка) распадается постепенно, поддерживая определенную постоянную концентрацию вещества в организме. Этот метод позволяет преодолеть несовместимость находящихся в одной таблетке различных веществ, вводя их в состав оболочки и ядра.

Рис. 2.12. Таблеточная машина «Драйкота»: 1 - бункер с гранулятом; 2 - ротор; 3 - пуансон; 4 - ролик; 5 - регулировочный винт; 6 - бункер с массой для оболочки; 7, 8 - передатчики; 9 - емкость для готовых таблеток

На первом роторе обычным способом прессуются таблетки-ядра двояковыпуклой формы, которые с помощью специально транспортирующего устройства передаются на второй ротор, где происходит нанесение покрытия. Схема нанесения покрытия прессованием выглядит следующим образом. Сначала происходит заполнение гнезда матрицы порцией гранулята, необходимого для образования нижней части (половины) покрытия, затем на гранулят по специальным направлениям с первого ротора подается таблетка-ядро, на которую наноситься покрытие. После фиксации таблетки точно по центру гнезда матрицы нижний пуансон несколько опускается, после чего происходит отпускание верхнего пуансона, который слегка впрессовывает таблетку-ядро в находящуюся под ней порцию гранулята, или создает над таблеткойпространство для заполнения второй порции гранулята. После подачи этой порции происходит окончательное формирование покрытия путем прессования, осуществляемого одновременно верхним и нижним пуансоном. На заключительной стадии осуществляется выталкивание таблетки, покрытые оболочкой.

Производительность машины 10 500 табл./час.

3. Пленочные покрытия

Пленочным покрытием называется тонкая (порядка 0,05-0,2 мм) оболочка, образующая на таблетке после высыхания нанесенного на ее поверхность раствора пленкообразующего вещества. Пленочные покрытия имеют следующие преимущества:

1. Возможность избирательной растворимости таблеток в желудке или кишечнике.

2. Регулирование скорости адсорбции биологически активных веществ.

3. Возможность совмещения в одной таблетке несовместимых биологически активных веществ.

4. Сохранение физических, химических и механических свойств ядер таблеток при нанесении пленочных покрытий.

5. Сохранение первоначальных геометрических параметров таблеток, их формы, маркировки, фирменных обозначений.

6. Уменьшение массы объема пленочного покрытия по сравнению с дражировочным.

7. Возможность автоматизации процесса покрытия, интенсификации производства и сокращения производственных площадей.

В зависимости от растворимости пленочные покрытия разделяют на следующие группы:

а) водорастворимые;

б) растворимые в желудочном соке;

в) кишечно-растворимые;

г) нерастворимые.

4. Водорастворимые и растворимые в желудке покрытия

Водорастворимые покрытия улучшают внешний вид таблеток, корригируют их вкус и запах, защищают от механических повреждений. Покрытия, растворимые в желудке, предохраняют таблетки от воздействия влаги воздуха; они разрушаются в организме в течение 10-30 мин.

Для получения водорастворимых покрытий полиэтиленоксид и поливинилпирролидон наносят на таблетки в виде 20-30%-х растворов в 50-90%-м этиловом или изопропиловом спирте, метилцеллюлозу и натриевую соль карбоксиметилцеллюлозы - в виде 4-7%-х водных растворов.

Покрытия, растворимые в желудочном соке: бензиламино- и диэтиламинобензилцеллюлоза, п-аминобензоат, сахароза, глюкоза, фруктоза, маннит, винилпиридин, зеин и желатин.

5. Кишечно-растворимые покрытия

Кишечно-растворимые покрытия защищают биологически активное вещество, содержащееся в таблетке, от действия кислой реакции желудочного сока, предохраняет слизистую желудка от раздражающего действия некоторых активных веществ, локализируют биологически активное вещество в кишечнике, пролонгируя в определенной степени его действие. Кишечно-растворимые покрытия обладают также более выраженным, чем у перечисленных выше групп покрытий, влагозащитным эффектом.

Для получения кишечно-растворимых покрытий в качестве пленкообразователей используются высокомолекулярные соединения со свойствами полиэлектролитов с большим числом карбоксильных групп. Применяются природные вещества: шеллак, карнаубский воск, казеин, кератин, парафин, церезин, спермацет, цетиловый спирт, - а также синтетические продукты: стеариновая кислота в сочетании с жирами и желчными кислотами, бутилстеарат, фталаты декстрина, моносукцинаты метилцеллюлозы.

Чаще всего для получения кишечно-растворимых покрытий используют ацетилфталилцеллюлозу как вещество, наиболее устойчивое к воздействию желудочного сока. Перечисленные пленкообразователи наносят на таблетки в виде растворов в этиловом, изопропиловом спирте, ацетоне или в смесях указанных растворителей. Для получения окрашенных оболочек в растворы добавляют пигменты и красители.

Кишечно-растворимые покрытия выдерживают (2-4 ч и более) воздействия желудочного сока, что позволяет таким таблеткам в неизмененном виде пройти через желудок; в кишечном же соке они распадаются в течение 1 ч, обеспечивая высвобождение биологически активного вещества в кишечнике.

6. Нерастворимые покрытия

Основное назначение покрытий данного типа - защита таблетки от механического повреждения и от воздействия атмосферной влаги, устранение неприятного запаха и вкуса биологически активного вещества, пролонгирование его действия. К покрытиям относят этилцеллюлозу, монолаурат полиэтиленсорбита, поверхностно-активные вещества и др.

Механизм высвобождения биологически активного вещества из таблеток с нерастворимыми оболочками заключается в следующем. После поступления таблетки в желудочно-кишечный тракт пищеварительные соки проникают в нее сквозь микропоры оболочки и вызывают или растворение содержимого таблетки, или ее набухание. В первом случае растворенные вещества диффундируют через пленку в обратном направлении - в сторону желудочно-кишечного тракта под влиянием разности концентраций, во втором случае происходит разрыв оболочки за счет увеличения объема таблетки, после чего биологически активное вещество высвобождается обычным образом.

Требования к пленкообразующим веществам:

1. Полная безвредность для организма.

2. Хорошая растворимость в широко доступных органических растворителях.

3. Хорошие пленкообразующие свойства.

4. Химическая индифферентность.

5. Устойчивость при длительном хранении (сохранение прочности, эластичности и растворимости).

6. Доступность [4].

7. Способы нанесения пленочных покрытий

Существует 3 способа нанесения пленочных покрытий на таблетки:

ь Погружение таблеток в раствор пленкообразующего вещества.

ь Наслаивание в дражировочном котле.

ь Получение покрытия во взвешенном слое.

Первый способ основан на погружении таблеток поочередно, то одной, то другой стороной в покрывающий раствор. Таблетки фиксируются с помощью вакуума на металлическом перфорированном листе специальной машины, производительность которой составляет 5-8 тыс. покрытых оболочками таблеток в час. Этот способ достаточно сложен и пригоден лишь для нанесения на таблетки вязких, но не слишком клейких растворов. В настоящее время в связи с недостаточно высокой производительностью он применяется редко.

Наиболее широко применяется способ нанесения пленочных покрытий в дражировочном котле. Этот способ недорог, применим для растворов практически любой вязкости, отличается высокой производительностью. Для нанесения покрытия двояковыпуклые таблетки помещают в дражировочный котел, в период работы он вращается со скоростью 20-25 об/мин. Перед началом процесса покрытия с поверхности таблеток сильной воздушной струей удаляется пыль. Покрывающий раствор вводят в котел путем периодического разбрызгивания с помощью установленных у отверстия котла форсунок. Для сушки оболочек таблетки обдувают в котле воздушной струей.

Для нанесения покрытия в псевдоожиженном слое используется установка, конструкция которой почти не отличается от установки типа СГ, применяемой для получения гранулята. Форсунки для разбрызгивания покрывающего раствора устанавливаются в нижней или верхней части рабочей камеры аппарата. Определенное количество таблеток помещают в рабочую камеру, включают вентилятор (компрессор), и под действием образующегося воздушного потока масса таблеток переводится в псевдоожиженное состояние, после чего с определенной скоростью в камеру подается покрывающий раствор. Скорость поступления раствора определяется его вязкостью, скорость движения воздуха в аппарате - размером камеры и количеством находящихся в ней таблеток. Продолжительность процесса нанесения покрытия зависит от необходимой толщины оболочки и колеблется от 15 до 45 мин. После прекращения пульверизации раствора скорость движения воздуха слегка увеличивают, при этом образование пленочной оболочки происходит наиболее эффективно, процесс сушки покрытия значительно сокращается по сравнению с остальными способами.

Пленочное покрытие незначительно увеличивает массу таблеток. Благодаря применению летучих органических растворителей, исключается длительная стадия сушки оболочек. Продолжительность процесса нанесения пленочного покрытия составляет 2-4 ч.

Пленочные покрытия можно наносить не только на таблетки, но и на гранулы или на частицы порошкообразного материала.

Основным недостатком нанесения пленочных покрытий в промышленных масштабах является значительное увеличение концентрации паров зачастую ядовитых и огнеопасных органических растворителей в помещениях цехов, что требует принятия соответствующих мер противопожарной безопасности, установке мощности приточно-вытяжной вентиляции и защиты органов дыхания находящихся в этих помещениях работников.

В производстве для нанесения пленочных покрытий на основе органических растворителей применяют установки УПТ-25 и УЗЦ-25 (рис. 2.13).

Рис. 2.13. Принципиальная схема установки для покрытия таблеток типа УЗЦ-25: 1 - водоохлаждающая установка, 2 - конденсатор растворителя, 3 - система трубопроводов, 4 - привод дражировочного котла, 5 - местный отсос, 6 - дражировочный котел, 7 - блок приготовления покрывающего раствора, 8 - пульт управления, 9 - кожух дражировочного котла, 10 - покрываемые таблетки, 11 - распылитель,12 - калорифер, 13 - вентилятор, 14 - сборник растворителя.

Установка замкнутого цикла УЗЦ-25 способна улавливать пары растворителей, регенерировать их и снова пускать в производство. На этой установке производят таблеткиПАСК - Na (натриевая соль парааминосалициловой кислоты) с пленочным кишечнорастворимым покрытием.

Установка работает следующим образом. В дражировочный котел 6, вращающийся от привода 4, загружаются подлежащие покрытию таблетки. Система изолируется. В блоке 7, имеющем два аппарата с мешалкой, готовится покрывающий раствор. Система трубопроводов 3 заполняется азотом. На пульте управления 8 задаются параметры ведения процесса - температура осушающего воздуха, время распыления раствора; на дозирующем насосе задается расход раствора. Вентилятором 13 азот подается в калорифер 12, где нагревается до заданной температуры, затем, входя в котел 6, омывает перемешиваемые таблетки 10, на которые с помощью распылителя 11 наносится покрывающий раствор. Азот с парами растворителя поступает в конденсатор 2, где растворитель конденсируется и собирается в сборнике 14. При необходимости кконденсатору подключается водоохлаждающая установка 1. Осушенный азот вновь поступает на вентилятор. Этот цикл повторяется многократно до полного покрытиятаблеток. По окончании покрытия производится разгерметизация кожуха дражировочного котла 9, для чего предварительно из системы с помощью вакуума удаляется азот с парами растворителя. Котел открывается, и остаток паро-газовой смеси удаляется из него местным отсосом 5. Покрытые таблетки выгружаются путем наклона котла.

8. Контроль качества таблеток

Одно из основных условий промышленного производства таблеток - соответствие готовой продукции требованиям действующей нормативно-технической документации. Качество выпускаемых таблеток определяется различными показателями, подразделяющимися на группы:

1. органолептические;

2. физические;

3. химические;

4. бактериологические;

5. биологические.

При определении качества таблеток по их внешнему виду (органолептическим свойствам) учитывают следующие факторы:

· условия прессования;

· адгезионные и когезионные свойства таблетируемой массы, ее влажность;

· гранулометрический состав;

· поверхность и точность пресс-инструмента;

· способ покрытия и др.

К физическим показателям качества относятся геометрические (форма таблетки, отношение толщины таблетки к ее диаметру и т. д.) и собственно физические показатели (масса таблетки, отклонения от заданной величины массы, показатели прочности, пористости, объемной плотности), а также показатели внешнего вида -- окрашенность, пятнистость, целостность, наличие знаков или надписей, отсутствие металлических включений и т. д.

К химическим показателям относятся: распадаемость, растворимость и постоянство химического состава, активность биологически активного вещества, срок годности таблеток, их стабильность при хранении и т. д.

К бактериологическим показателям качества относятся обсемененность таблеток микроорганизмами, спорами и бактериями непатогенного характера с содержанием их не более установленного количества.

Контроль качества готовых таблеток проводят согласно требованиям фармакопейной статьи «Таблетки», а также частным фармакопейным статьям по следующим показателям:

· органолептические свойства;

· механическая прочность;

· распадаемость;

· растворение;

· средняя масса таблеток и отклонение в массе отдельных таблеток;

· содержание лекарственных веществ в таблетках;

· однородность дозирования;

· определение талька, аэросила.

Некоторые дополнительные требования по качеству таблеток изложены в частных фармакопейных статьях.

9. Определение распадаемости таблеток

Наиболее правильный способ определения распадаемости таблеток - наблюдение данного процесса в желудке человека с помощью

рентгенснимков. Однако при массовом производстве таблеток это затруднительно, вследствие чего во всем мире приняты условные методы определения распадаемости таблеток, проводимые вне организма человека.

Более совершенным методом является определение распадаемости таблеток в приборе фирмы «Эрвека» (ФРГ). Отличается этот прибор устройством, производящим автоматическое прекращение колебания корзинки в момент полного распадания таблетки. Одновременно автоматически останавливаются часы и фиксируется время распадания.

Нормы распадаемости таблеток:

1. обычные таблетки - 15 мин;

2. таблетки, покрытые оболочками, растворимыми в желудке, - не более 30 мин (если нет других указаний в отдельных фармакопейных статьях). Таблетки, покрытые кишечнорастворимыми оболочками, не должны распадаться в течение 1 ч в растворе кислоты хлористоводородной 0,1 моль/л, а после промывания водой должны распадаться не более чем за 1 ч в щелочном растворе натрия гидрокарбоната;

3. сублингвальные таблетки - в воде 30 мин;

4. таблетки для приготовления растворов - в воде 5 мин.

10. Определение механической прочности таблеток

Определение механической прочности таблеток проводят на приборах. На одних определяют прочность на сжатие (раскол), на других - на истирание. Объективную оценку механических свойств таблеток можно получить, проводя определение их прочности обоими способами. Это объясняется тем, что ряд таблетированных препаратов, удовлетворяя требованиям на сжатие, имеют легко истираемые края и по этой причине оказываются недоброкачественными. Следует отметить, что определение прочности на сжатие не является фармакопейным методом [4].

11. Фасовка, упаковка и маркировка таблеток

Применение оптимальной упаковки -- основной путь предотвращения снижения качества таблетированных препаратов при хранении. Поэтому выбор вида упаковки и упаковочных материалов решается в каждом конкретном случае индивидуально, в зависимости от физико-химических свойств входящих в состав таблеток веществ [4].

Одним из важнейших требований, предъявляемых к упаковочным материалам, является защита таблеток от воздействия света, атмосферной влаги, кислорода воздуха, микробной обсемененности.

Для упаковки таблеток в настоящее время используются такие традиционные упаковочные материалы, как бумага, картон, металл, стекло (картонные конвалюты, стеклянные пробирки, металлические пеналы, склянки на 50, 100, 200 и 500 таблеток, железные банки с впрессованной крышкой на 100-500 таблеток и др.).

Наряду с традиционными материалами широко применяются пленочные упаковки из целлофана, полиэтилена, полистирола, полипропилена, поливинилхлорида и различных комбинированных пленок на их основе. Наиболее перспективны пленочные контурные упаковки, получаемые на основе комбинированных материалов методом термосваривания: безъячейковая (ленточная) и ячейковая (блистерная).

Для ленточной упаковки широко применяются в различных сочетаниях: ламинированная целлофановая лента, алюминиевая фольга, ламинированная бумага, полимерная пленка, ламинированная полиэстером или нейлоном. Упаковку изготовляют, применяя термосваривание двух совмещенных материалов.

Упаковку осуществляют на специальных автоматах (А1-АУ3-Т и А1-АУ4-Т).

Ячейковая упаковка состоит из двух основных элементов: пленки, из которой термоформованием получают ячейки, и термосвариваемой или самоклеящейся пленки для заклеивания ячеек упаковок после заполнения их таблетками. В качестве термоформуемой пленки чаще всего применяется жесткий (непластифицированный) или слабо пластифицированный поливинилхлорид (ПВХ) толщиной 0,2-0,35 мм и более. Пленка ПВХ хорошо формуется и термосклеивается с различными материалами (фольгой, бумагой, картоном, покрытыми термолаковым слоем). Это наиболее распространенный материал, используемый для упаковки негигроскопичных таблеток. таблетка оболочка водорастворимый капсулирование

Покрытие пленки из поливинилхлорида поливинилхлоридом или галогенированным этиленом уменьшает газо- и паропроницаемость; ламинирование поливинилхлорида полиэстером или нейлоном применяется для изготовления ячейковой упаковки, безопасной для детей.

На все виды упаковок наносят следующие сведения:

· наименование продукта;

· наименование и местонахождение изготовителя (юридический адрес, включая страну, и при несовпадении с юридическим адресом - адрес(а) производств(а) и организации в РФ, уполномоченной изготовителем на принятие претензий от потребителей на её территории)

· товарный знак изготовителя (при наличии);

· масса нетто или объем продукта;

· состав продукта, в том числе пищевые добавки, ароматизаторы, биологически активные добавки к пище, ингредиенты нетрадиционного состава;

· пищевая и энергетическая ценность;

· условия хранения;

· дата изготовления и дата упаковывания;

· срок годности;

· способы и условия приготовления;

· условия применения, противопоказания;

· обозначение настоящих технических условий, в соответствии с которыми выпускается данный продукт;

· информация о подтверждении соответствия.

На транспортную тару наносится следующая маркировка:

· наименование продукта;

· наименование и местонахождение предприятия изготовителя (юридический адрес, фактический адрес);

· количество пачек и масса нетто единицы продукции в потребительской упаковке;

· масса нетто;

· масса брутто;

· товарный знак изготовителя (при наличии);

· состав продукта, в т.ч. пищевые добавки, ароматизаторы и др. (при производстве в качестве сырья для функциональных продуктов питания);

· дата изготовления и дата упаковывания;

· обозначение настоящих технических условий;

· количество единиц в транспортной таре.

12. Условия хранения таблеток

Условия хранения во многом влияют на стабильность таблеток и на их физико-химические показатели (прочность, распадаемость).

При хранении в чрезмерно сухом воздухе таблетки теряют влагу, что является одной из основных причин их цементации и, как следствие, почти полной потери способности распадаться. При повышенной влажности воздуха обычно уменьшается прочность таблеток, время распадаемости при этом может как увеличиваться, так и уменьшаться.

Отрицательное влияние на качество таблеток также оказывают повышение температуры воздуха и действие прямых солнечных лучей. Поэтому таблетки хранят при комнатной температуре в сухом, защищенном от света месте. По истечении года хранения проверяют распадаемость таблеток.

13. Пути совершенствования таблеток

Разработка методов нанесения оболочек на таблетки путем прессования, а также использование ряда других технологических принципов значительно расширили проблему таблетирования и открыли пути для совершенствования таблеток как лекарственной формы и для создания новых препаратов пролонгированного действия.

Многослойные таблетки

Многослойные (слоистые) таблетки дают возможность сочетать биологически активные вещества, несовместимые по физико-химическим свойствам, пролонгировать действие биологически активных веществ в определенные промежутки времени и регулировать последовательность их всасывания.

Популярность многослойных таблеток возрастает по мере совершенствования оборудования и накопления опыта в их изготовлении и применении. Для их изготовления применяют циклические таблеточные машины с многократным насыпанием. Их применение позволяет проводить троекратное насыпание, выполняемое с различными гранулятами. Различают двухслойные и трехслойные таблетки.

Метод сухого напрессовывания позволяет использовать вместе несовместимые вещества, поместив одно биологически активное вещество в середину таблетки, а другое - в ее оболочку (например, витамины B6 и В12 - витамин С). Устойчивость таблетки к действию желудочного сока можно увеличить, добавляя к грануляту, образующему оболочку, 20 % ацетилфталилцеллюлозы.

С помощью многослойных таблеток можно добиться пролонгирования действия активного вещества. Очевидно, что вначале окажет действие доза вещества, помещенная в оболочке, а затем (предположим, через 3 ч) начнет проявлять действие доза того же активного вещества, помещенная в середине таблетки. Если в слоях таблетки будут находиться разные активные вещества, то действие их проявится дифференцированно, последовательно, в порядке растворения слоев

Таблетки с нерастворимым скелетом

Перспективны также таблетки с нерастворимым скелетом. Активное вещество из него постепенно высвобождается вымыванием. Такую таблетку сравнивают с губкой, поры которой заполнены растворимой субстанцией (смесью биологически активного вещества с растворимым наполнителем - сахаром, лактозой, полиэтиленгликолем и т. д.). Таблетки не распадаются в пищеварительном тракте и сохраняют геометрическую форму. Материалом для скелета служат некоторые неорганические (сульфат бария, гипс, дву- и трехзамещенный фосфат кальция, титана диоксид) и органические (полиэтилен, полихлорвинил, тугоплавкие воски, мыла алюминиевые и др.) вещества. Скелетные таблетки могут быть получены путем простого прессования биологически активных веществ, образующих скелет. Они могут быть также многослойными, например трехслойными, причем биологически активное вещество находится преимущественно в среднем слое. Растворение его начинается с боковой поверхности таблетки, в то время как с больших поверхностей (верхней и нижней) вначале диффундируют только вспомогательные вещества из среднего слоя через капилляры, образовавшиеся в наружных слоях.

14. Гранулы

Гранулы (от лат. granula -- зерно) -- лекарственная форма для внутреннего применения в виде крупинок круглой, цилиндрической или неправильнойформы, содержащих смесь лекарственных и вспомогательных веществ.

При помощи гранул можно совместить реагирующие между собой ингредиенты, скрыть их неприятный вкус, повысить устойчивость к воздействию влаги идругих факторов внешней среды. Они, как правило, характеризуются хорошей распадаемостью и биологической доступностью, их легко проглотить. Это даетвозможность применять их в педиатрической практике.

При производстве гранул и покрытии их оболочками используются процессы, принятые в таблетировании и применяются те же вспомогательные вещества.

15. Технология капсулирования

Капсулы (от лат. capsula - футляр или оболочка) - это дозированная форма, состоящая из биологически активного вещества, заключенного в оболочку.

В настоящее время капсулированные препараты приобретают все большее значение.

Классификация капсул

В зависимости от содержания пластификаторов и по технологическому принципу различают два типа капсул:

1. Твердые

2. Мягкие, с цельной оболочкой

Мягкие капсулы получили свое название, потому что наполнитель помещается в еще мягкую эластичную оболочку в процессе их изготовления. Затем капсулы подвергаются дальнейшим технологическим процессам, в результате которых первоначальная эластичность оболочки может теряться частично или полностью. Такие капсулы имеют цельную оболочку, которая бывает эластичной или жесткой. Иногда в состав оболочки мягких капсул входит действующее вещество.

Твердые капсулы заполняют после того, как полностью пройдет весь технологический процесс формования, и они приобретут соответствующую упругость и жесткость. Твердые капсулы имеют двухсекционное строение и могут быть изготовлены заранее, а наполнение их биологически активными веществами осуществляется по мере необходимости.

В зависимости от локализации активного вещества капсулы подразделяются на:

I. сублингвальные;

II. желудочнорастворимые;

III. кишечнорастворимые

Отдельную группу составляют капсулы с регулируемой скоростью и полнотой (пролонгированием) высвобождения активных веществ - ретард-капсулы. Капсулы с модифицированным высвобождением имеют в составе содержимого или оболочки (или и в том и другом одновременно) специальные вспомогательные вещества, предназначенные для изменения скорости или места высвобождения действующих веществ [4].

Кишечнорастворимые капсулы также относят к средствам с модифицированным высвобождением, которые должны быть устойчивыми в желудочном соке и высвобождать действующие вещества в кишечнике. Они изготовляются путем покрытия твердых или мягких капсул кислотоустойчивой оболочкой или наполнением капсул гранулами либо частицами, покрытыми кислотоустойчивыми оболочками.

Интерес к желатиновым капсулам объясняется их высокой биодоступностью и целым рядом преимуществ: они имеют красивый внешний вид; легко проглатываются; проницаемы для пищеварительных соков; терапевтическое действие содержимого проявляется через 5-10 мин после введения; оболочка из желатина непроницаема для летучих жидкостей, газов, кислорода воздуха (что очень важно для сохранности легкоокисляющихся средств); заключение в оболочку удобно для отпуска веществ, имеющих красящий эффект или неприятный вкус и запах, поскольку разрушение оболочки и высвобождение действующих веществ происходит в определенном отделе желудочно-кишечной системы. Поэтому капсулы весьма перспективны для применения.

Как преимущество капсул следует отметить возможность с их помощью улучшать терапевтическую активность действующих веществ, способствовать их пролонгированию, обеспечивать растворение в определенном отделе ЖКТ.

При производстве капсулированных средств соблюдается высокая точность дозирования, так как изготовление их почти полностью механизировано и автоматизировано.

В мягких и твердых капсулах можно капсулировать препараты в неизменном виде, не подвергая их влажной грануляции, тепловому воздействию, давлению, как в случае производства таблеток. Кроме того, число факторов, влияющих на процессы высвобождения и всасывания биологически активных веществ из капсул, значительно меньше, чем, например, у таблеток.

16. Автоматы для наполнения капсул

Наполнение мягких желатиновых капсул происходит с помощью поршневых вакуумных автоматов, отличающихся большой точностью дозирования (2-3 %) и высокой производительностью.

Для наполнения твердых желатиновых капсул используют автоматы различных фирм, отличающиеся производительностью (от 20 до 150 тыс./ч), точностью дозирования (2-5 %) и строением дозатора. В зависимости от сыпучести и степени дисперсности (зернистости) фасуемого препарата автоматы работают со шнековыми, вакуумными или вибрационными дозаторами [9].

Наполнение твердых желатиновых капсул проводится в пять операций:

1. Ориентировка пустых капсул.

2. Разделение (вскрытие) пустых капсул.

3. Наполнение корпуса капсулы.

4. Соединение и закрытие тела и крышечки капсулы.

5. Выброс наполненных капсул.

Наполнение корпуса капсул - наиболее ответственная из операций.

Точность дозирования зависит от характеристики наполнителя, метода наполнения и типа заполняющей машины.

Активные вещества для наполнения в твердые желатиновые капсулы должны отвечать следующим требованиям:

1. Содержимое должно освобождаться из капсулы, обеспечивая высокую биодоступность.

2. При использовании автоматических наполняющих машин вещества должны обладать определенными физико-химическимии технологическими свойствами, такими как:

· определенная величина и форма частиц;

· однородность размера частиц;

· гомогенность смешивания;

· сыпучесть (текучесть);

· содержание влаги;

· способность к компактному формированию под давлением [9].

Для придания активным компонентам необходимых технологических свойств к ним добавляют вспомогательные вещества.

Если необходимо улучшить сыпучие свойства наполнителя, то добавляют скользящие вспомогательные вещества. Например, введение 0,1-0,3 % аэросила или магния стеарата с 0,5-1,0 % талька может быть достаточным.

В большинстве случаев активные вещества капсулируют в форме порошков или гранул. Однако микрокапсулы, микродраже, таблетки (покрытые и непокрытые оболочками), маленькие желатиновые капсулы, пасты и жидкости с высокой вязкостью по отдельности или в различных комбинациях также можно капсулировать без особых трудностей.

Наполнение капсул сферическими гранулами, микродраже и микрокапсулами с жировой и пленочной оболочкой, которые имеют хорошие сыпучие свойства, позволяет использовать меньший объем, чем порошковыми формами. Кроме того, наличие желатиновых оболочек дает возможность защищать материал от неблагоприятных факторов и контролировать высвобождение активных веществ как по скорости, так и по локализации действия. Еще одним преимуществом твердых желатиновых капсул является возможность комбинации (сочетания) нескольких несовместимых веществ в одной мягкой капсуле.

17. Методы капсулирования

В настоящее время в мировой практике используют несколько методов ручного наполнения капсул, на полуавтоматических машинах и на высокоскоростных автоматах с производительностью около 150 тыс. капсул в час.

Наполнение вдавливанием. Этот метод применяется при ручном наполнении капсул или при использовании простейших полуавтоматических машин. Отвешенным количеством порошка или гранул заполняют корпус капсул, а оставшийся наполнитель вдавливается специальными пуансонами в требуемое число капсул. Данный метод используется для наполнения испытательных образцов капсул в исследовательских проектах и при изготовлении небольших партий препаратов.

Дисковый метод дозирования. Дозировочный диск с шестью группами отверстий образует основание вместилища. Наполнитель, распределенный через эти отверстия, прессуется пятью отдельно отрегулированными уплотняющими устройствам (станциями). Шестая станция служит для перемещения утрамбованного порошка в корпус капсулы.

Метод позволяет корректировать дозировку, если порошок имеет плохую сыпучесть и тенденцию к формированию комков.

Масса наполнителя может регулироваться изменением давления и повышением или понижением уровня наполнителя. Это позволяет наполнять капсулы минимальными дозами препаратов [19].

Поршневые методы дозирования основаны на объемном дозировании при использовании дозировочных блоков различной конструкции.

При поршневом скользящем методе наполнитель передается из загрузочного бункера в дозировочный блок, состоящий из сборника и двенадцати параллельных дозировочных цилиндров, отделенных от сборника прокладкой. При движении прокладки наполнитель проходит через отверстия в ней и поступает в цилиндры, которые имеют поршни. Дальнейшее движение прокладки перекрывает подачу наполнителя из сборника, после чего поршни опускаются, открывая отверстия в цилиндрах. Через эти отверстия происходит подача наполнителя в корпус капсулы.

Поршневой дозировочный метод основан на объемном дозировании с помощью специального дозировочного цилиндра. Наполнитель поступает из бункера в дозировочный блок, расположенный вместе с дозировочными цилиндрами. При наполнении цилиндры перемещаются вверх через сборник наполнителя, после чего поднимается поршень до верхней точки цилиндра, способствуя перемещению наполнителя через специальные каналы в корпус капсулы [19].

Трубочный дозировочный метод. Здесь используют трубки специальной формы (дозатор и поршень), углубляющиеся в порошкообразный или гранулированный наполнитель. После удаления трубки из наполнителя дозировочный блок поворачивается на 180є и спрессованный порошок выталкивается дозировочным поршнем в корпус капсулы.

Сжатие порошка может регулироваться таким образом, что создается требуемая высота и форма наполнителя.

Метод двойного скольжения базируется на принципе объемного дозирования. Наполнитель дозируют в специальные отделения, из которых он впоследствии поступает в корпус капсулы.

Метод позволяет частично заполнять капсулы. Это существенно, когда капсула должна быть наполнена ингредиентами нескольких типов (например, микрокапсулы) [2].

Метод дозировочных цилиндров предназначен для дозирования двух наполнителей в одну капсулу.

Наполнители поступают из бункеров в дозировочные устройства, прикрепленные к плоской пластине с овальными отверстиями для дозирования наполнителей. Базовая пластина прилегает к подвижным дозирующим цилиндрам, имеющим боковые каналы и поршни. После наполнения первым порошком цилиндр передвигается ко второму дозирующему устройству, где происходит дальнейшее заполнение цилиндра вторым наполнителем. Затем поршень скользит вниз, открывая боковой канал, через который смесь наполнителей попадает в корпус капсулы.

Метод дозировочных трубок. Еще один объемный метод, при котором наполнитель переносится в капсулу с помощью вакуума. Вакуум подведен к дозировочным трубкам, последовательно погружающимся внутрь вращающегося дозировочного желоба. Объем дозировочной камеры внутри трубки контролируется поршнем.

Метод наполнения капсул твердыми формами (метод формирования катков). Особенностью данного метода является наличие наполнителей, представленных таблетками, ядрами, таблетками с оболочками, драже, капсулами строго определенных размеров [2].

18. Контроль качества производства желатиновых капсул

При оценке качества капсул определяют среднюю массу, однородность дозирования, распадаемость и растворение [19].

Определение средней массы. Взвешивают 20 невскрытых капсул и определяют их среднюю массу, затем -- каждую отдельно и сравнивают массу каждой капсулы со средней. Отклонение не должно превышать ±10 %.

Определение однородности дозирования. При содержании в капсуле 0,05 г и менее активного вещества испытания проводят согласно статье «Таблетки», если нет других указаний в частных статьях.

Определение распадаемости и растворения проводят также согласно статье «Таблетки». Если нет других указаний в частных статьях, капсулы должны распадаться или растворяться в желудочно-кишечном тракте не дольше 20 мин. Серия считается удовлетворительной при растворении в воде не менее 75 % действующего вещества за 45 мин, при перемешивании со скоростью 100 об/мин.

Упаковка. Капсулы должны выпускаться в плотно закрытой упаковке, предохраняющей от воздействия влаги.

Хранение. Капсулы следует хранить в сухом, прохладном месте, в соответствии с указанием нормативно-технической документации на препарат.

19. Факторы, влияющие на биологическую доступность биологически активных веществ в желатиновых капсулах

В связи с развитием производства капсулированных форм большое внимание уделяется биодоступности биологически активных веществ в капсулах.

На биологическую доступность капсулированных препаратов оказывают влияние основные и вспомогательные вещества как в составе содержимого капсул, так и в составе желатиновой оболочки, а также методы получения капсул.

Усиливающийся интерес к капсулам объясняется тем, что они обладают высокой биодоступностью, быстро набухая и растворяясь в желудочно-кишечном тракте. Биополимерная желатиновая оболочка медленно, порция за порцией, освобождает действующее вещество, обеспечивая его полноценное всасывание. Сам желатин как основное сырье для капсул легко и быстро усваивается даже при тяжелых нарушениях функций желудочно-кишечной системы человека.

Важнейшими специфическими методами оценки капсулированных форм «in vitro» является определение их распадаемости и растворимости, которые при условии корреляции с данными «in vivo» могут служить методами оценки биологической доступности.

Механизм распадаемости твердых и мягких желатиновых капсул существенно отличается. На скорость растворения препаратов в твердых капсулах обычно влияет только их содержимое. Особое влияние на кинетику высвобождения биологически активных веществ из таких капсул оказывают вспомогательные вещества, их природа, количество, соотношение в составе содержимого. Таким образом, выбор размера капсулы и величина уплотнения массы (плотности набивки капсул), с учетом природы и величины частиц основного и вспомогательных веществ, существенно влияют на биодоступность капсулированных препаратов в твердых капсулах.

Для мягких капсул, в отличие от твердых, кинетика растворения связана с началом высвобождения содержимого. По мере растворения оболочки или вскрытия по месту шва происходит постепенное выделение содержимого капсул. Тогда как для твердых капсул после быстрого растворения оболочки начинается, как правило, замедленный распад содержимого в зависимости от его структуры и составных частей. Время высвобождения содержимого из мягких желатиновых капсул зависит от состава желатиновой оболочки и метода получения капсулы.

Таким образом, желатиновые капсулы, благодаря ценным свойствам и многим преимуществам, являются незаменимой формой для многих препаратов и в настоящее время находят свое дальнейшее развитие в пищевой и фармацевтической промышленности.

Список литературы

1. Медицинская энциклопедия Видаль [Электронный ресурс] -: URL: http://www.vidal.ru/poisk_preparatov/thrombo-ass.htm. 15.12.2013 г.

2. Покрытие таблеток оболочками. Технология лекарственных форм [Электронный ресурс] -: URL: http://techlekform.ru/tverdyie-lekarstvennyie-formyi/tabulettae/pokryitie-tabletok-obolochkami.html 25.11.2013 г.

3. Промышленная технология лекарств. Электронный учебник [Электронный ресурс] -: URL: http://ztl.nuph.edu.ua/html/medication/chapter14_10.html. -9.12.2013 г.

4. Упаковка таблеток в блистеры. Технология производства [Электронный ресурс] -: URL: http://www.lisyz.ru/tehnologii-proizvodstva/upakovka-tabletok-v-blistery.html. 9.12.2013 г.

5. Рюмина Т.Е., Голованенко А.Л. Биофармацевтические исследования пленок лекарственных анестезирующего и реминерализирующего действия // Современные проблемы науки и образования. - 2012. - № 1; URL: http://www.science-education.ru/101-5430 (дата обращения: 02.02.2012).

6. К.В Алексеев, С.А. Кедик, Е.В. Блынская, Е.Е. Лазарева, Н.А. Уваров, В.К. Алексеев, Н.В.Тихонова. Фармацевтическая технология. Твёрдые лекарственные формы. М.: Изд-во ЗАО ИФТ, 2011.662с.

7. Rowe R.C. Handbook of pharmaceutical excipients, 6th edition/ R.C. Rowe, PJ. Sheskey, M. E. Quinn// Pharmaceutical press - 2009.

8. Рецензент:

9. Степанова Э.Ф., д.ф.н., профессор кафедры «Технология лекарств» Пятигорского медико-фармацевтического института - филиала ГБОУ ВПО ВолгГМУ Минздрава России, г. Пятигорск;

10. Шевченко А.М., д.ф.н., профессор кафедры «Технология лекарств» Пятигорского медико-фармацевтического института - филиала ГБОУ ВПО ВолгГМУ Минздрава России, г. Пятигорск.

11. Работа поступила в редакцию 29.07.2014.

12. Промышленная технология лекарств: в 2 т. / под ред. В. И. Чуешова. - Х.: НФАУ, 2002. - 560 с.

13. Огилюк В.В. Пероральные кишечнорастворимые лекарственные формы // Провизор. - 2009. - Вып. 09 : электронный журнал. - URL: http://www.provisor.com.ua/archive/2009/N06/pklf_069.php?part_code=125&art_code=7136

14. Реестр инновационной продукции, выпускаемой предприятиями Пензенской области (по основным видам экономической деятельности). - URL: http://www.inno-terra.ru/reestr

15. Флисюк Е.В., Карбовская Ю.В., Парипса А.А. Современный рынок вспомогательных ве-ществ для пленочных защитных покрытий // Ремедиум. Журнал о российском рынке ле-карств и медицинской технике. - 2012. - № 1. - С. 36-39.

16. http://medical-diss.com/docreader/40548/a?#?page=3

17. http://www.dissercat.com/content/teoreticheskie-i-eksperimentalnye-osnovy-protsessa-naneseniya-pokrytii-na-tverdye-lekarstven

18. http://cyberleninka.ru/article/n/farmako-tehnologicheskie-i-biofarmatsevticheskie-aspekty-naneseniya-pokrytiy-na-tverdye-lekarstvennye-formy

19. http://cyberleninka.ru/article/n/izuchenie-vliyaniya-naibolee-znachimyh-biofarmatsevtichekih-faktorov-na-vysvobozhdenie-lekarstvennyh-sredstv-iz-gelya-dlya

20. http://cyberleninka.ru/article/n/mehanohimicheskaya-tehnologiya-dlya-povysheniya-rastvorimosti-lekarstvennyh-veschestv

21. http://cyberleninka.ru/article/n/razrabotka-tverdoy-lekarstvennoy-formy-betagistina-prolongirovannogo-vysvobozhdeniya

22. http://www.science-education.ru/pdf/2013/6/413.pdf

23. http://bankpatentov.ru/node/367785

24. http://promoboz.com/uploads/articles/133.pdf

25. http://ztl.nuph.edu.ua/html/medication/chapter16_05.html

26. http://pharmjournal.ru/articles/stati/tabletki-pokryityie-kishechnorastvorimoj-obolochkoj-3-maj-2013

27. http://chem.folium.ru/index.php/chem/article/view/173/173

28. http://promoboz.com/uploads/articles/140.pdf

29. http://www.saec.ru/articles/chislennoe-modelirovanie-processov-formovanija-tabletok-i-nanesenija-pokrytija-obolochki

30. http://www.scienceforum.ru/2014/581/1629

31. http://texnologia-lekarstv.poznau.com/chast3/glava21_002.htm

32. http://www.favea.org/favea-company/articles/134-dzheneriki-v-novom-veke

Размещено на Allbest.ru

...

Подобные документы

  • Технологическая схема таблетирования. Особенности фасовки, упаковки и маркировки таблеток. Санитарная подготовка производства таблеток. План таблеточного цеха и схема движения материалов. Описание системы для распыления пленочного покрытия таблеток.

    презентация [7,5 M], добавлен 02.05.2019

  • Спекание таблеток из UO2 является основной стадией технологического процесса получения таблеток. Этот процесс происходит в печах тоннельного типа, работающих в непрерывном режиме. Расчет процесса сушки в печи: материальный, тепловой, конструктивный.

    курсовая работа [103,9 K], добавлен 14.02.2008

  • Виды и свойства керамических покрытий, способы получения. Электронные ускорители низких энергий в технологиях получения покрытий. Нанесение покрытий CVD-методом. Золь-гель технология. Исследование свойств нанесенных покрытий, их возможные дефекты.

    курсовая работа [922,9 K], добавлен 11.10.2011

  • Методы защиты металлических труб трубопровода от коррозии. Изоляционные покрытия, битумные мастики. Покрытия на основе эпоксидной порошковой краски и напыленного полиэтилена. Виды электрохимической защиты. Конструкция и действие машины для покрытий.

    курсовая работа [770,8 K], добавлен 03.04.2014

  • Характеристики полимерно-порошкового покрытия. Классификация способов нанесения покрытий. Центробежный метод распыления порошков. Технология порошковой окраски электростатическим напылением - технология зарядки коронным разрядом. Напыление в вакууме.

    курсовая работа [497,2 K], добавлен 04.12.2014

  • Определение и виды лакокрасочных покрытий. Методы их нанесения. Основные свойства лакокрасочных покрытий. Их промежуточная обработка. Защита материалов от разрушения и декоративная отделка поверхности как основное назначение лакокрасочных покрытий.

    контрольная работа [172,4 K], добавлен 21.02.2010

  • Разработка защитно-декоративного покрытия шкафа для хранения одежды. Спецификация деталей изделия, характеристика основных и вспомогательных лакокрасочных материалов, определение потребного количества. Технологическая карта процесса, расчет оборудования.

    курсовая работа [38,1 K], добавлен 04.10.2014

  • Качество производимой тары. Основные дефекты, возникающие при изготовлении тары и упаковки, рекомендации по их устранению. Технологическое оборудование и оснастка для изготовления тары из картона. Маркировка, фасовка и упаковка сахара в картонную тару.

    курсовая работа [1,8 M], добавлен 25.12.2014

  • Технология восстановления коленчатого вала методом хромирования. Показатели качества покрытия при хромировании. Механическая обработка. Составы щелочных растворов для химического обезжиривания. Установка для электролитического осаждения металлов.

    курсовая работа [1,5 M], добавлен 21.01.2014

  • Характеристика, свойства и применение современных износостойких наноструктурных покрытий. Методы нанесения покрытий, химические (CVD) и физические (PVD) методы осаждения. Эмпирическое уравнение Холла-Петча. Методы анализа и аттестации покрытий.

    реферат [817,5 K], добавлен 26.12.2013

  • Технология пищевого производства, ассортиментный состав карамельных изделий, оценка их качества, требования к упаковке и условиям хранения, недопустимые дефекты. Технико-экономический расчет концентрирования томат-пасты в однокорпусной выпарной установке.

    контрольная работа [33,9 K], добавлен 24.11.2010

  • Изучение технологии изготовления электродов. Складирование материалов электродного покрытия и проволоки. Дробление и размол ферросплавов. Сортировка, взвешивание и упаковка готовых электродов. Виды сварочных электродов. Изготовление сварочной проволоки.

    контрольная работа [1,8 M], добавлен 05.06.2010

  • Состав гальванического покрытия и его использование для защиты деталей от коррозии и придания им красивого внешнего вида. Особенности применения и отличительные свойства анодных и катодных металлических покрытий. Сферы использования химических покрытий.

    контрольная работа [930,4 K], добавлен 18.09.2009

  • Применение наплавки для повышения износостойкости трущихся поверхностей в машиностроительном производстве. Технологические процессы лазерной обработки металлов. Технология нанесения покрытий лазерным оплавлением предварительно нанесенного порошка.

    реферат [682,4 K], добавлен 22.02.2017

  • Технологии, связанные с нанесением тонкопленочных покрытий. Расчет распределения толщины покрытия по поверхности. Технологический цикл нанесения покрытий. Принципы работы установки для нанесения покрытий магнетронным методом с ионным ассистированием.

    курсовая работа [1,4 M], добавлен 04.05.2011

  • Назначение и конструкция комода, используемые материалы. Техническая характеристика лака и грунтовки. Расчет объемов отделки поверхностей. Выбор оборудования для нанесения лака. Схема защитно-декоративного покрытия изделия, технология его создания.

    курсовая работа [53,6 K], добавлен 11.12.2013

  • Понятие о молоке: физиологические свойства, основные компоненты; водорастворимые витамины. Значение молочных продуктов в жизни человека. Технология обработки молока: охлаждение, пастеризация, гомогенизация, стерилизация; производство кефира, простокваши.

    контрольная работа [28,7 K], добавлен 19.06.2013

  • Разработка метода нанесения покрытия на стеклянную, керамическую и металлическую подложку. Ознакомление с процессом выбора составов для адгезионного покрытия без токсического действия. Определение и анализ электропроводящих свойств у данных покрытий.

    курсовая работа [458,0 K], добавлен 02.06.2017

  • Области применения химического никелирования. Подготовка поверхности перед нанесением покрытия. Условия образования никелевых покрытий. Влияние отдельных факторов на скорость восстановления никеля. Физические, химические и защитные свойства покрытия.

    дипломная работа [376,3 K], добавлен 02.10.2012

  • Технология и товароведение промышленной продукции на примере стекла армированного листового - регламентирование контроля качества и стандарты его показателей, условия поставок, упаковки, транспортировки, приема, испытания, применения и хранения.

    курсовая работа [35,7 K], добавлен 21.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.