Производство керамики

История развития на Руси гончарного ремесла. Керамические изделия и материалы, их классификация по назначению и свойствам. Выбор метода формования керамики. Производство фарфора, фаянса, майолики. Изделия простой формы. Способ приготовления шликера.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 10.06.2015
Размер файла 592,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Керамика (греч. keramike - гончарное искусство, от kramos - глина) - изделия и материалы, получаемые спеканием глин и их смесей с минеральными добавками, а также окислов и др. неорганических соединений. Керамика получила широкое распространение во всех областях жизни - в быту (различная посуда), строительстве (кирпич, черепица, трубы, плитки, изразцы, скульптурные детали), в технике, на железнодорожном, водном и воздушном транспорте, в скульптуре и прикладном искусстве. Основными технологическими видами керамики являются терракота, майолика, фаянс, каменная масса и фарфор.

1. История керамики

Первые фигурки из глины появляются в древнейшие времена палеолита (около 27 тыс. до н. э.). Несколько позднее появляются глиняные сосуды, в которых хранили воду и продукты питания. В это же время были попытки использовать обожженную глину.

Уже в эпоху неолита широко распространяется обжиг. В разных частях Земли создаются похожие изделия, еще неуклюжие, вылепленные со следами пальцев, большей частью открытых форм, с толстыми стенками. Первоначальные сосуды повсеместно имели острое или закругленное дно, их размещали между камнями очага. В позднем палеолите появляются сосуды с плоским дном. Изделия украшаются вылепленным орнаментом. Постепенно керамика разных местностей обретает разнообразие форм и орнаментов. Керамика этого периода является важным археологическим признаком культур, которые нередко и называют по преобладающему типу орнамента.

В 6 тыс. до н. э. в ряде регионов преобладает расписная керамика (самаррская культура в Средней Месопотамии, эгейская керамика). Появляется лощеная керамика прекрасного качества (коричневых и красных, строго черных тонов). Керамические статуэтки в Эгейском мире прекрасно передают изящество девушек-кор. В этот же период керамика используется как строительный материал.

В бронзовом веке в государствах Междуречья и Египта ремесленники стали использовать гончарный круг, изготовление керамики становится наследственной профессией. Благодаря открытию глазури пористые сосуды становились водонепроницаемыми, а разнообразные цвета и украшения, полученные с помощью цветной глазури, превращали керамические изделия в произведения искусства. В Китае благодаря использованию качественной белой глины -- каолина уже во 2-1 тыс. до н. э. изготовлялись тонкостенная глазурованная посуда. В Древнем Египте во 2 тыс. до н. э. появляется фаянс.

1.1 Керамика в России

Археологические находки во многих древнерусских городах свидетельствуют о широком развитии на Руси гончарного ремесла. В Древней Руси применяли большей частью двухъярусные (нижний, топочный ярус зарывали в землю) гончарные горны, но были и одноярусные.

Монголо-татарское нашествие повлияло на развитие древнерусской культуры. История одной из её ветвей -- керамики, сместилась из южных регионов в северные и западные пограничные города, в московские земли, поэтому не случайно возрождение изразцового искусства в Древней Руси было уничтожено множеством произведений русских гончаров IX--XII веков. Например, исчезли двуручные корчаги-амфоры, вертикальные светильники, более простым стал орнамент, искусство перегородчатой эмали, глазурь (самая простая -- жёлтая, уцелела только в Новгороде).

В XIII--XIV столетиях в Пскове получила распространение муравленная черепица, применяемая для головного убора православных храмов. Она, вероятно, породила простые облицовочные плитки, а затем изразцы с узором и румпой для крепления в кладке стен.

На территории Псково-Печерского Свято-Успенского монастыря сохранились уникальные памятники глазированной керамики -- более ста древних надгробных монашеских плит (керамид), вмурованных в стены подземных галерей. Достигающие в среднем высоты 45-60 см и имеющие ширину 30-40 см, они выполнены из обожжённой глины с тёмно-зелёной поливой. Количество и высокое художественное качество изделий свидетельствует о том, что в монастыре издревле процветало керамическое производство. Керамиды впервые на Руси начали изготавливать именно на Псковщине в XVI веке. В монастыре была специальная гончарная мастерская.

Псковские гончарные изделия, такие как посуда, узнаваемы по своим формам. Искусство псковских мастеров ярко проявилось в изготовлении декоративной керамики.

Отдельное направление русской, а затем и современной российской керамики, составляет гжель (по имени города). Эти изделия исполняются в бело-синем стиле.

1.2 Керамика 20 века

Уже с конца 19 в. работы керамистов большинства стран отмечены поисками нового стиля: стремлением обнажить естественную красоту керамической массы или, наоборот, придать ей утонченную урбанистичность. Знаменитым стал фарфор в стиле модерн, изготовлявшийся на заводе в Копенгагене.

В ряде стран проявилась характерная для модерна стилизация народного творчества, возврат к изделиям ручного производства. К керамике обращаются многие художники и скульпторы. В мастерских Абрамцева керамика приобретает новые формы, новый колорит (прежде всего в работах М. А. Врубеля). Свойственное модерну внимание к декоративно-прикладному убранству приводит к широкому использованию керамики в отделке зданий и интерьеров.

Дизайнеры-функционалисты, начиная с 1920-х гг., стремились к новым простым формам, очищенным от излишней декоративности и пригодным для массового производства. Особое внимание придавалось выявлению фактуры материала. Развиваются технологии: появляются новые виды глазури, эмалей. Крупные панно и мелкую пластику из керамики делают практически все крупные художники 20 в. Особенно знамениты панно Ф. Леже. Керамика становится важной частью интерьеров.

Развитие технологии и рост уровня жизни приводит к тому, что керамика становится довольно массовым увлечением; многие имеют свои печи для обжига. В работах многих художников-керамистов заметно стремление соединить западные стили с восточными традициями и технологиями. В СССР своей керамикой особенно славились республики Прибалтики.

В 1953 организована международная Академия керамики в Женеве (Швейцария)

1.3 Западноевропейская керамика

В Западной Европе керамика стала интенсивно развиваться в эпоху Возрождения. Большое влияние оказали керамические изделия из арабских стран, в особенности из мавританской части Испании. Под влиянием испанских керамических изделий с оловянной глазурью, известных как испано-мавританские изделия (центр изготовления -- Валенсия), в конце 14 в. в Италии (в городах Фаэнца, Урбино, Губбио) стало интенсивно развиваться производство подобной керамики, но уже под названием "майолика". Покрытие изделий белой оловянной глазурью создавало идеальный фон для росписи. В свою очередь, итальянская майолика оказала немалое внимание на развитие майолики Германии 15 в., а также Франции (особенно в Невере) 16-18 вв., где она стала называться "фаянс".

В Нидерландах (в Делфте) изготовляли подобную керамику с середины 16 в. Английская керамика с оловянной глазурью в духе голландских изделий, производившаяся в течение 17-18 вв., получила название "делфтские изделия". Позднее более утилитарные изделия выпускала английская керамическая Ламбетская фабрика -- аптекарские кувшины, бутыли для вина, фляжки для воды.

Широкую известность получила и керамика со свинцовой глазурью, легко окрашивающаяся в различные цвета. Своего расцвета она достигла во Франции в 17 в. -- знаменитые тончайшие сосуды из Сен-Поршера и "сельские глины" -- покрытые поливами декоративные блюда Бернара Палисси.

Другим технологическим видом керамики того времени была каменная масса. Первенство в ее изобретении принадлежит немецким гончарам 14 в. Центрами производства изделий из каменной массы стали Нюрнберг, Хехст, Нимфенбург, Людвигсбург. Немецкая керамика попала в Англию. Стаффордширские мастера усовершенствовали каменную массу и получили более прочный черепок.

Самого большого успеха добился английский керамист Дж.Веджвуд, который на основе каменной массы, изобрел более качественные фаянсовые массы -- базальтовый черепок, кремовую массу и "яшмовую массу", из которой изготавливались знаменитые синие вазы с белым рельефом в стиле классицизма.

Подлинным переворотом в истории западноевропейской керамики стало изобретение в начале 18 в. немецким химиком Иоганном Бетгером фарфора. Вскоре в саксонском городке Мейсене была открыта мануфактура, начавшая производить один из самых ценных фарфоров в мире -- мейсенский. Фарфор из Мейсена прославился своими изящными сюжетными статуэтками, сервизами, вазами, туалетными приборами.

С середины 18 в. в Европе стал первенствовать севрский фарфор, выпускавшийся во французском городе Севре. Предшественницей севрской мануфактуры стала небольшая фабрика в Венсене близ Парижа, специализировавшаяся на отливке фарфоровых цветов в стиле рококо. В 1756 венсенская фабрика переехала в Севр, где окончательно сложился изысканно-утонченный стиль севрского фарфора. Наряду с расписной позолоченной пластикой создавали фигурки из белого неглазурованного фарфора -- бисквита.

Английский высококачественный фарфор также получил всемирное признание. В 18 в. Британия едва ли не первенствовала по числу керамических фабрик: Вустер, Челси, Дерби, Споуд, Коулпорт, Боу, Минтон. Каждую из них отличал свой собственный почерк и стиль.

фарфор фаянс гончарный шликер

2. Виды керамики

В зависимости от строения различают тонкую керамику (черепок[2] стекловидный или мелкозернистый) и грубую (черепок крупнозернистый). Основные виды тонкой керамики -- фарфор, полуфарфор, фаянс, майолика. Основной вид грубой керамики -- гончарная керамика. Кроме того, различают керамику карбидную (карбид вольфрама, карбид кремния), алюмооксидную, циркониевую (на основе ZrO2), нитридную (на основе AlN) и пр.

Фарфор имеет плотный спёкшийся черепок белого цвета (иногда с голубоватым оттенком) с низким водопоглощением (до 0,2 %), при постукивании издаёт высокий мелодичный звук, в тонких слоях может просвечивать. Глазурь не покрывает край борта или основание изделия из фарфора. Сырьё для фарфора -- каолин, песок, полевой шпат и другие добавки.

Фаянс имеет пористый белый черепок с желтоватым оттенком, пористость черепка 9 -- 12 %. Из-за высокой пористости изделия из фаянса полностью покрываются бесцветной глазурью невысокой термостойкости. Фаянс применяется для производства столовой посуды повседневного использования. Сырьё для производства фаянса -- беложгущиеся глины с добавлением мела и кварцевого песка.

Полуфарфор по свойствам занимает промежуточное положение между фарфором и фаянсом, черепок белый, водопоглощение 3 -- 5 %, используется в производстве посуды.

Майолика имеет пористый черепок, водопоглощение около 15 %, изделия имеют гладкую поверхность, блеск, малую толщину стенок, покрываются цветными глазурями и могут иметь декоративные рельефные украшения. Для изготовления майолики применяется литьё. Сырьё -- беложгущиеся глины (фаянсовая майолика) или красножгущиеся глины (гончарная майолика), плавни, мел, кварцевый песок.

Гончарная керамика имеет черепок красно-коричневого цвета (используются красножгущиеся глины), большой пористости, водопоглощение до 18 %. Изделия могут покрываться бесцветными глазурями, расписываются цветными глиняными красками -- ангобами.

2.1 Производство керамики

Керамические изделия и материалы классифицируют по назначению и свойствам, по основному используемому сырью или фазовому составу спекшейся керамики. В зависимости от состава сырья и температуры обжига керамические изделия подразделяют на 2 класса: полностью спекшиеся, плотные, блестящие в изломе изделия с водопоглощением не выше 0,5% и пористые, частично спекшиеся изделия с водопоглощением до 15%. Различают грубую керамику, имеющую крупнозернистую, неоднородную в изломе структуру (например, строительный и шамотный кирпич), и тонкую керамику с однородным, мелкозернистым в изломе и равномерно окрашенным черепком (например, фарфор, фаянс). Основным сырьём в керамической промышленности являются глины и каолины вследствие их широкого распространения и ценных технологических свойств.

По способу приготовления керамические массы подразделяют на порошкообразные, пластичные и жидкие. Порошкообразные керамические массы представляют собой увлажнённую или с добавкой органических связок и пластификаторов смесь измельченных и смешанных в сухом состоянии исходных минеральных компонентов. Перемешиванием глин и каолинов с отстающими добавками во влажном состоянии (18-26% воды по массе) получают пластические формовочные массы, которые при дальнейшем увеличении содержания воды и с добавкой электролитов (пептизаторов) превращаются в жидкие керамические массы (суспензии) - литейные шликеры. В производстве фарфора, фаянса и некоторых других видов керамики пластичную формовочную массу получают из шликера частичным обезвоживанием его в фильтр-прессах с последующей гомогенизацией в вакуумных массомялках и шнековых прессах.

Выбор метода формования керамики определяется в основном формой изделий. Изделия простой формы - огнеупорный кирпич, облицовочные плитки - прессуются из порошкообразных масс в стальных пресс-формах на механических и гидравлических пресс-автоматах.

Обжиг керамики является самым важным технологическим процессом, обеспечивающим заданную степень спекания. Точным соблюдением режима обжига обеспечиваются необходимый фазовый состав и все важнейшие свойства керамики. За редким исключением спекание кристаллических фаз протекает с участием жидких фаз, образующихся из эвтектических расплавов. В зависимости от состава керамической массы и температуры обжига в фарфоровых, стеатитовых и др. плотно спекшихся изделиях содержание жидкой фазы в процессе спекания достигает 40-50% по массе и более. Силами поверхностного натяжения, возникающими на границе жидкой и твёрдой фаз, зёрна кристаллических фаз (например, кварца в фарфоре) сближаются, а газы, распределённые между ними, вытесняются из капилляров. В результате спекания размеры изделий уменьшаются, возрастают их механическая прочность и плотность. Спекание некоторых видов технической керамики (например, корундовой, бериллиевой, циркониевой) осуществляется без участия жидкой фазы в результате объемной диффузии и пластического течения, сопровождающихся ростом кристаллов.

2.2 Приготовление шликера

Шликер - используемая в производстве фарфора кашеообразная, мягкая фарфоровая масса, состоящая из каолина, кварца и полевого шпата. Смешанная с водой и подкрашенная глина, использовавшаяся в древности для росписи керамики, также называется шликером.

Способ приготовления керамического шликера относится к технологии тонкой керамики и может быть использован при производстве фарфоро-фаянсовых изделий различного назначения. Приготовление керамического шликера осуществляется путем постадийного мокрого помола массы, включающей глинистую составляющую, отощающие и плавни, при влажности 16-20%. Смесь исходных компонентов предварительно подвергают термоактивации обжигом при температуре 900-1200°С с последующим охлаждением при следующем соотношении компонентов, мас.%: глинистая составляющая - 25-65; отощающие - 15-50; плавни - 0-40. Дополнительно может осуществляться введение стабилизированного шамотного наполнителя в количестве до 50% от массы всей дисперсной фазы. Технический результат - понижение влажности литьевого шликера, увеличение плотности отливок, снижение усадочных явлений.

Известен способ приготовления фарфоро-фаянсового шликера, включающий размалывание в шаровой мельнице каменистых материалов, воды и электролитов с последующим добавлением глинистых материалов. Помол ведется до остатка на сите № 006 не более 2%. Влажность шликера составляет 29-36%, плотность 1760 кг/м3, коэффициент загустеваемости 1,6-2,5. Далее после созревания шликер подают на формование литьем, а полученные отливки после сушки подвергают обжигу при температуре 1180-1280°С

Недостатками указанного способа являются высокая влажность, нестабильность литьевых характеристик шликеров, высокая усадка при сушке, что приводит к снижению качества и браку изделий.

2.3 Формование керамических изделий

Формование керамических изделий можно вести тремя различными способами: полусухим и изостатическим прессованием из пресс-порошков, пластическим формованием из пластичной массы и шликерным литьем из литейных шликеров. В свою очередь все три способа имеют большое количество разновидностей, отличающихся между собой усилиями формования, способами приложения их к материалу и специальной оснасткой - пресс-формами и различными приспособлениями.

Способ горячего литья - литья шликера, содержащего вместо воды расплавленный парафин, в металлическую форму, применяется для формования безглинистой технической керамики. Общая цель всех методов формования - заставить дисперсный материал принять нужную форму и сохранить эту форму без разрушения до обжига, при котором происходит образование единого прочного керамического тела. Для изделий, изготавливаемых из глинистого сырья, достаточно привести частицы массы в состояние контакта и снизить влажность заготовки, высушив ее до влажности 10-15%. При этом мелкие частицы глины служат своеобразным клеем-основой и могут склеивать непластичные частицы песка, полевого шпата и т. п.

Если же керамическое изделие производят из непластичных материалов, то для его формования требуется особая связка, которая послужит таким клеем. При горячем литье такой связкой служит парафин, при других способах формования используют синтетические полимеры в виде водных или иных растворов. Сохранить форму изделия в первом случае помогает превращение расплава парафина в твердое тело при его охлаждении в металлической форме, в других случаях - испарение воды или иного растворителя и стягивание частиц, покрытых тонким слоем клеящей связки.

3. Программа для расчета математической модели (Comsol)

Программа для конечно-элементных расчётов сложных научно-технических задач. Пакет COMSOL Multiphysics позволяет моделировать практически все физические процессы, которые описываются частными дифференциальными уравнениями. Программа содержит различные решатели, которые помогут быстро справиться даже с самыми сложными задачами, а простая структура приложения обеспечивает простоту и гибкость использования. Решение любой задачи базируется на численном решении уравнений в частных производных методом конечных элементов. Спектр задач, которые поддаются моделированию в программе чрезвычайно широк. Набор специальных модулей в программе охватывает практически все сферы приложений уравнений в частных производных.

3.1 Расчет математической модели

Эта модель представляет концепцию эффективной диффузии в пористых средах на основе сравнения перемещений через искусственные пористые структуры. Описанная в детальной модели упрощенная однородная структура пористых сред, характеризуется использованием эффективных свойств перемещений.

Расчет состоит из двух частей.

Первая часть описывает, как создать модель с подробной геометрией.

Вторая часть показывает, как определить модель однородности для пористых сред с помощью эффективного коэффициента диффузии, полученного с использованием детальной модели из первой части.

Движения через пористые структуры, как правило, рассматриваются с использованием упрощенных однородных моделей с эффективными свойствами перемещения. Это в большинстве случаев необходимо, поскольку типичные размеры пор и частиц, образующих пористую структуру на несколько порядков величины меньше, чем размер подобласти, которая должна быть смоделирована.

Тем не менее, это может быть интересно, исследовать допущения и упрощения, когда гомогенизирую пористые структуры, будем сравнивать однородную модель с моделью, определенной с помощью детальной структуры.

Искусственные пористые структуры, используемые в этой модели изображены на рисунке 1.

Рисунок 1: Искусственные пористые структуры. Домен окрашен в красный цвет, обозначающий доступность для диффузии

Уравнение модели в моделируемой области, изображенной на рисунке 1, в зависимости от времени

где с обозначает концентрацию (моль / м3, используя единицы СИ) и D коэффициент диффузии (м2 / с) растворенного вещества.

Граничные условия из трех различных типов. Состояние концентрации границы относящееся на левой вертикальной границе на рисунке 1, выражается как

где с0 заданная концентрация.

Правая вертикальная граница на рисунке 1 устанавливается в соответствии с

где km коэффициент массопереноса (м / с), и c1 представляет собой концентрацию в объеме раствора вне пористой структуры.

Все остальные границы изолированы в соответствии с

Начальное условие задается в форме колокола, профиль проходит вдоль оси хс максимумом в точке х = 0 и соответствующего значения с = с0:

Предположим, что газообразный раствор с содержанием растворенного в 3 моль / м3 концентрирует на границе. Коэффициент диффузии равен 1 · 10-5 м2 / с.

Вторая часть этого расчета использует усредненный 1D геометрическую модель с эффективными свойствами перемещения и средней пористостью. Уравнение модели имеет вид:

где ? обозначает среднюю пористость, а Deff эффективный коэффициент диффузии. Эти свойства рассчитываются по результатам детальной структуры; в следующем разделе. На границах концентрации условия, описанные выше, применимы.

Результаты и обсуждение.

Моделирование выполняется при Т = 0 до 0,1 с0, когда достигается устойчивое состояния. На рисунке 2 представлен профиль концентрации после 0,05 сек в пористой структуре.

Уже на этом этапе концентрация почти достигла устойчивого состояния, которое показано на линейном профиле концентрации по всей структуре.

Рисунок 2: Профиль Концентрация в моделируемой искусственного пористой структуры при Т = 0,05 с.

При моделировании пористых сред, точная концентрация в структуре пор не самый важный вопрос. Самое интересное, это то описание потока. Для расчета средней скорости потока, используется следующее выражение:

Фиг.3 показывает значение этого интеграла как функции времени. Если вы позволите процесс достижения устойчивого состояния, средний поток становится 8,051 · 10-3 моль · м2 / с. Учитывая почти линейный профиль по всей структуре, естественно заменить пористую структуру с усредненной структуры 1D вдоль оси х. В этом случае можно рассчитать эффективный коэффициент диффузии в соответствии со следующим:

где сout является средняя концентрация (моль / м3) на границе потока и L1 представляет собой длину геометрии вдоль оси х. Средняя концентрация получается интегрированием соответствии с приведенной ниже формуле:

Это дает среднюю концентрацию cout = 1,61 · 10-3 моль / м3. Использование L1 = 8 · 10-4 м, эффективный коэффициент диффузии является:

что дает значение для эффективного коэффициента диффузии 2,15 · 10-6 м2 / с по сравнению с "out" диффузии 1 · 10-5 м2 / с. Самый эффективный и "out" коэффициенты диффузии, как правило, связаны в соответствии с уравнением:

где ? является пористостью структуры и ? извилистость, которая является мерой фактической длины на единицу эффективной длины молекулы. Чтобы вычислить пористость моделируемой структуры, необходимо интегрировать значение 1 на структуре, а затем разделить это по длине и ширине структуры:

в результате находится значение 0,382. Значение ? можно рассчитать по 1,78. Кроме того, извитость, как правило, выражается в виде интенсивности пористости, в результате чего, выражение для эффективного коэффициента диффузии имеет вид:

Если вы используете вычисленные значения пористости и эффективной диффузии, значение р 1,60. Экспериментальные значения для р для пористых структур, используемых для перевозки в катализаторах, почв и других пористых структур, как правило, в диапазоне 1,5-2.

Используя значение эффективного коэффициента диффузии, простая гомогенизированная модель 1D дает возможность сравнить величину потока с помощью подробной 2D структуры. Рисунок 3 показывает, что существует хорошее соответствие между моделью, использующую подробную геометрию и гомогенизированной моделью.

Рисунок 3: Средний поток на границе в подробной 2D модели (сплошная линия) и гомогенизируют приближение 1D (пунктирная линия)

Обе модели, описанные выше, просто смоделировать в COMSOL Multiphysics. Одна особенность, которая имеет большое применение в этой модели является возможность определения операторов интегрирования для автоматической генерации значения интегралов, необходимых для оценки результатов модели.

Список использованных источников

1. Help in COMSOL version 4.2

2. Трояновский В.М. Математическое моделирование в менеджменте. Учебное пособие. - М.: Русская Деловая Литература, 2007.

3. Бусленко, "Моделирование сложных систем", Москва, изд. "Наука", 1973

Размещено на Allbest.ur

...

Подобные документы

  • Классификация и производство керамических изделий и материалов, основные технологические виды: терракота, майолика, фаянс, каменная масса и фарфор. История развития и образование международной Академии гончарного искусства в Женеве. Биеннале керамики.

    реферат [22,6 K], добавлен 23.12.2010

  • Понятие и способы изготовления стеклянных изделий, их классификация и типы, применяемые методы и материалы. История керамики и общее описание изготавливаемого изделия, оборудование. Особенности применения стеклянных и керамических изделий в оформлении.

    курсовая работа [299,6 K], добавлен 17.11.2013

  • История возникновения гончарного производства. Развитие фаянсовой промышленности, производства, росписи (Конаковский фаянс, Торжокская игрушка, Лихославльская керамика). Материалы и оборудование для производства посуды. Мастера завода Конаковского фаянса.

    реферат [28,1 K], добавлен 06.10.2014

  • Основные виды керамики: майолика, фаянс, каменная масса и фарфор. Производство санитарно-технических и бытовых изделий из тонкой керамики. Технология производства технической керамики. Способы декорирования полуфарфора, фарфоровых и фаянсовых изделий.

    реферат [723,1 K], добавлен 18.01.2012

  • История гончарной керамики. Технология производства керамических изделий. Сырьё для керамических масс. Прозрачные керамические материалы, особенности их структуры. Производство каменной керамической посуды в XVI в. Виды современных глиняных изделий.

    презентация [3,0 M], добавлен 11.02.2011

  • Виды керамики, характеристика материалов, используемых для формования керамических изделий. Приготовление керамической массы. Полусухое и гидростатическое прессование. Различные варианты вибрационного формования. Специфика применения шликерного литья.

    реферат [678,6 K], добавлен 13.12.2015

  • Исторические сведения о возникновении керамики, область ее применения. Современные технологии керамических материалов. Производство керамических материалов, изделий в Казахстане, СНГ и за рубежом. Производство и применение стеновых и облицовочных изделий.

    курсовая работа [134,7 K], добавлен 06.06.2014

  • Высокопрочные керамики на основе оксидов - перспективные материалы конструкционного и инструментального назначения. Свойства оксидов цинка и меди. Допированные керамики. Основы порошковой металлургии. Технология спекания. Характеристика оборудования.

    курсовая работа [923,2 K], добавлен 19.09.2012

  • Изучение технологии изготовления керамики - материалов, получаемых из глинистых веществ с минеральными или органическими добавками или без них путем формования и последующего обжига. Этапы производства: формовка изделия, нанесение декора, сушка, обжиг.

    реферат [21,2 K], добавлен 03.02.2011

  • История развития алюминиевой промышленности. Производство первичного алюминия и направления его потребления. Электродные изделия и требования к ним. Производство анодной массы и других электродов. Техника безопасности при обслуживании электролизеров.

    контрольная работа [54,8 K], добавлен 22.01.2009

  • Методы производства композиционных ультрадисперсных порошков: способы формования, реализуемые при спекании механизмы. Получение и применение корундовой керамики, модифицированной допированным хромом, оксидом алюминия, а также ее технологические свойства.

    дипломная работа [1,6 M], добавлен 27.05.2013

  • Расчет оптимального размера партии запускаемых в производство изделий. Удобно-планируемый ритм запуска партий изделий в производство. Цикловой график сборки изделия с учетом загрузки рабочих мест. Расчет опережения запуска сборочных единиц изделия.

    курсовая работа [379,1 K], добавлен 22.01.2012

  • Фарфор - вид керамики, непроницаемый для воды и газа. История происхождения, исходное сырье, технология производства; характеристика и свойства материала; виды фарфора. Области применения фарфоровых изделий: промышленность, медицина; декоративный фарфор.

    презентация [181,9 K], добавлен 29.05.2013

  • Керамика: изделия и материалы, получаемые спеканием. Распространение оксидной керамики на основе природных минералов и синтетических оксидов металлов. Виды, состав и свойства стекла. Применение силикатного стекла в быту и различных областях техники.

    презентация [265,7 K], добавлен 04.03.2010

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Состав предприятия, характеристика продукции и сырьевые материалы. Режим работы производства и его технологическая схема. Расчет основных параметров технологических режимов и организация производства изделия. Проектирование технологического процесса.

    курсовая работа [331,5 K], добавлен 30.01.2009

  • Классификация сплавов черных металлов по свойствам. Содержание примесей в чугуне. Сырые материалы (шихта). Топливо и флюсы в металлургии чугуна, характеристика некоторых железных руд. Производство чугуна на АО "АрселорМиттал Темиртау". Качество чугуна.

    презентация [607,8 K], добавлен 31.10.2016

  • Технология различных видов корундовой керамики. Влияние внешнего давления и добавок на температуру спекания керамики. Физико-механические и физические свойства керамики на основе диоксида циркония. Состав полимерной глины Premo Sculpey, ее запекание.

    курсовая работа [2,1 M], добавлен 27.05.2015

  • Выбор и обоснование способа производства изделия из полиэтилена низкого давления, характеристика основного и вспомогательного оборудования. Технологическая схема производства. Расчет количества сырья и материалов. Составление материального баланса.

    дипломная работа [2,2 M], добавлен 26.03.2012

  • Керамические плитки - изделия, изготовленные из смеси глины разных сортов, с добавлением других натуральных компонентов. Технология их изготовления и сферы использования, оценка ассортимента на современном рынке. Методы испытаний плитки по UNI EN.

    курсовая работа [612,9 K], добавлен 10.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.