Проектирование металлической балочной клетки

Классификация и назначение резервуаров. Выбор и обоснование способа сварки. Расчет режимов сварки. Контроль качества сварных соединений. Методы борьбы со сварочными деформациями. Химический состав и свариваемость материалов. Испытания готовых изделий.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 21.06.2015
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Значение расхода защитного газа принимаем в соответствие с таблицей 3

В рассматриваемом случае расход газа составит 10л/мин.

Зависимость напряжения и расхода углекислого газа от силы тока

Таблица 3

Сила свароч.тока,А

60

100

? 160

? 240

? 300

? 380

? 450

Напряжение дуги,В

18

20

? 22

? 27

30

? 32

? 34

Расх. СО2, л/мин

? 10

? 10

? 10

?16

? 16

20

? 20

Таблица режимов сварки в среде защитных газов

Таблица 4

Vсв

Vпп

F

К

Еш

hпр

А

В

м/ч

м/ч

мм2

Мм

мм

мм

Расчётные значения

134

27.5

14

280

18

5

10

4,1

Справочные значения

120…250

25…28

12…15

250…280

-

4…7

8...12

4…6

Заданные значения

130…150

25…27

15…20

280…300

18…20

5

10…12

4…5

Таким образом, сварку предлагается выполнять методом механизированной сварки цельной проволокой. Применяемая проволока СВ08Г2С относится к разряду омедненных. Характеристики проволоки сварочной СВ08Г2С соответствуют ГОСТ 2246-70. СВ08Г2С обеспечивает надежность соединений благодаря ее высоким сварочно-технологическим свойствам. Диаметр стальной сварочной проволоки СВ08Г2С варьируется от 0,8 до 4,0 мм, она поставляется в мотках и на кассетах. Проволока СВ08Г2С применяется для сварочных работ малоуглеродистых и низколегированных сталей. Сварка проводится и в смеси аргона AR и углекислого газа СО2 (соотношение рабочих газов в смеси 80/20) и в среде чистого углекислого газа.
В процессе сварки сварочная проволока расплавляется и сваривает раскаленным металлом свариваемые поверхности. Проволока омедненная для сварки соответствует ГОСТу 2246-70.

Источник питания

В дипломном проекте предложено использовать инверторные сварочные аппараты - полуавтоматы с микропроцессорным управлением для сварки самозащитной порошковой проволокой (без газа), непрерывной и импульсной сварки MIG-MAG, пайки, а также TIG-DC LIFT и MMA сварки (рис.9).

Благодаря синергетическим программам и дистанционной регулировке параметров сварки сварочные аппараты рекомендованы к промышленному применению.

Возможно использование сварочного аппарата с широким диапазоном материалов, таких как сталь, нержавеющая сталь, алюминий и его сплавы.

50 предустановленных и 40 персональных программ сварки.

сварочные аппараты комплектуются отдельных блоком подачи проволоки с 4-роликовым подающим механизмом.

2-уровневая регулировка времени подачи газа после выключения тока.

Регулировка нарастания сварочного тока, начальной скорости подачи проволоки, времени плавления проволоки.

Выбор между 2- или 4-тактным режимами работы сварочного аппарата в зависимости от свариваемого материала или режима сварки точками.

Автоматический тест-контроль всех функций при запуске сварочного аппарата

Термозащита, защита от перегрузок, повышенного и пониженного напряжения, отсутствия фазы

Стандартная версия поставляется с тележкой и принадлежностями для сварки типа MIG-MAG, в версию R.A. также входит устройство водяного охлаждения G.R.A. 2400.

Рис.9. Источник питания фирмы BlueWeld

6. Контроль качества сварных соединений

6.1 Общие требования

1. Контроль качества работ по изготовлению и монтажу конструкций резервуаров должен осуществляться заказчиком, изготовителем и монтажником (производителем работ).

2. Проектировщик осуществляет авторский надзор за сооружением резервуаров. Представителям заказчика, а также представителям проектной организации, выполняющим авторский надзор, представляются свободный доступ ко всем рабочим местам, где выполняются работы по изготовлению и монтажу конструкций резервуаров, и рабочая документация.

3. При сооружении резервуаров применяются следующие виды контроля качества сварных соединений:

механические испытания сварных соединений образцов-свидетелей;

визуальный контроль всех сварных соединений резервуара;

измерительный с помощью шаблонов, линеек, отвесов, геодезических приборов и т.д.;

контроль герметичности (непроницаемости) сварных швов с пользованием проб «мел-керосин», вакуумных камер, избыточного давления воздуха или цветной дефектоскопии;

физические методы - для выявления наличия внутренних дефектов: радиография или ультразвуковая дефектоскопия, а для контроля наличия поверхностных дефектов с малым раскрытием - магнитография или цветная дефектоскопия;

гидравлические и пневматические прочностные испытания конструкции резервуара.

6.2 Организация контроля

1. В проектной документации (ППР) должны указываются методы и объемы контроля всех сварных соединений конструкций резервуара, нормативы для оценки дефектности сварных швов и последовательность работ.

2. Ответственность за организацию контроля качества сварных соединений, как правило, возлагается на руководителей сварочных работ от изготовителя и монтажника.

3. Контроль качества сварных соединений резервуаров физическими методами выполняется по заявке, в которой должны быть указаны характеристики соединения, тип и категория шва, толщина металла и марка стали, пространственное положение, объем контроля.

6.3 Визуальный контроль

1. Визуальному контролю должны подвергаться 100 % длины всех сварных соединений резервуара.

2. По внешнему виду сварные швы должны удовлетворять следующим требованиям:

по форме и размерам швы должны соответствовать проекту;

швы должны иметь гладкую или равномерно чешуйчатую поверхность (высота или глубина впадин не должка превышать 1 мм);

металл шва должен иметь плавное сопряжение с основным металлом;

швы не должны иметь недопустимых внешних дефектов.

3. К недопустимым внешним дефектам сварных соединений резервуарных конструкций относятся трещины любых видов и размеров, несплавления, наплывы, грубая чешуйчатость, наружные поры и цепочки пор, прожоги и свищи.

6.4 Контроль герметичности

1. Контролю на герметичность подлежат все сварные швы, обеспечивающие герметичность резервуара, а также плавучесть и герметичность понтона или плавающей крыши.

2. Контроль герметичности сварных швов с использованием пробы «мел-керосин» следует производить путем обильного смачивания швов керосином. На противоположной стороне сварного шва, предварительно покрытой водной суспензией мела или каолина, не должно появляться пятен. Продолжительность контроля капиллярным методом зависит от толщины металла, типа сварного шва и температуры испытания. Заключение о наличии в сварном соединении сквозных дефектов делается не ранее 1 ч после нанесения на шов индикатора сквозных и поверхностных дефектов.

3. При вакуумном способе контроля герметичности сварных швов вакуумкамеры должны создавать разрежение над контролируемым участком с перепадом давления не менее 250 мм вод. ст. Перепад давления должен проверяться вакуумметром. Неплотность сварного шва обнаруживается по образованию пузырьков в нанесенном на сварное соединение мыльном или другом пенообразующем растворе.

4. Допускается не производить контроль на герметичность стыковых соединений листов стенки толщиной 12 мм и более.

5. Контроль давлением применяется для проверки герметичности сварных швов приварки усиливающих листовых накладок люков и патрубков на стенке резервуаров. Контроль производится путем создания избыточного воздушного давления от 400 до 4000 мм вод. ст. в зазоре между стенкой резервуара и усиливающей накладкой с использованием для этого контрольного отверстия в усиливающей накладке. При этом на сварные швы внутри и снаружи резервуара должна быть нанесена мыльная пленка, пленка льняного масла или другого пенообразующего вещества, позволяющего обнаружить утечки. После проведения испытаний контрольное отверстие должно быть заполнено ингибитором коррозии.

6. Контроль герметичности сварных соединений настила крыш резервуаров рекомендуется проводить в процессе гидравлических и пневматических испытаний за счет создания избыточного давления воздуха внутри резервуара до 150 ч 200 мм вод. ст.

6.5 Физические методы контроля

1. Объем контроля сварных соединений резервуаров физическими методами определяется в рабочей документации КМ в зависимости от:

класса резервуара по степени опасности;

категории сварного шва;

уровня расчетных напряжений в сварном соединении;

условий и режима эксплуатации резервуара, включая температуру эксплуатации, цикличность нагружения, сейсмичность района и т.д.

2. Контроль радиографический.

1. Контроль радиографический (рентгенографированием или гаммаграфированием) должен производиться в соответствии с нормативными документами, утвержденными в установленном порядке, для всех резервуаров объемом 1000 м3 и более.

Наряду с радиографическим контролем может применяться рентгенотелевизионный контроль согласно установленным нормативным документам.

Радиографический контроль выполняется только после приемки сварных соединений по визуальному контролю.

При контроле пересечений швов рентгеновские пленки должны размещаться Т-образно или крестообразно - по две пленки на каждое пересечение швов.

Снимки должны иметь длину не менее 240 мм, а ширину - согласно соответствующим стандартам. Чувствительность снимков должна соответствовать 3-му классу согласно этому стандарту.

Маркировочные знаки должны устанавливаться согласно стандарту и содержать идентификационные номера резервуара и контролируемого конструктивного элемента, а также номер рентгенограммы, указанный на развертке контролируемого элемента.

Для соединений из деталей толщиной 8 мм и более допускается вместо радиографического контроля применять контроль ультразвуковой дефектоскопией.

2. Оценка внутренних дефектов сварных швов при радиографическом контроле должна производиться по соответствующим стандартам и должна соответствовать:

для резервуаров III класса - 6-му классу;

для резервуаров II класса - 5-му классу;

для резервуаров I класса - 4-му классу.

Допускаемые виды и размеры дефектов в сварных соединениях в зависимости от их класса регламентируются соответствующими стандартами.

3. Радиографический контроль применяется для контроля стыковых сварных швов стенки и стыковых швов окраек днищ в зоне сопряжения со стенкой резервуаров.

Участки всех вертикальных сварных соединений в зонах примыкания к днищу длиной не менее 240 мм на резервуарах объему более 1000 м3 подлежат обязательному контролю.

При выборе зон контроля вертикальных и горизонтальных соединений преимущественное внимание уделять проверке качества мест пересечения швов.

монтажные стыки полотнищ стенок должны контролироваться в объеме 100 % вертикальных швов и всех пересечений вертикальных и горизонтальных швов;

4. При обнаружении недопустимых дефектов сварного шва должны быть определены границы дефектного участка. Кроме того, должен быть сделан дополнительный снимок (не считая снимков, необходимых для определения границ дефекта) в любом месте этого же или другого шва, выполненного тем же сварщиком, который допустил дефект. На схемах расположения рентгенограмм должны быть указаны места, где были обнаружены недопустимые дефекты и проводилось исправление. Если в сварном соединении установлен уровень дефектности более 10 %, то объем контроля таких швов удваивается.

6.5.1 Ультразвуковая дефектоскопия

Ультразвуковая дефектоскопия производится для выявления внутренних дефектов (трещин, непроваров, шлаковых включений, газовых пор) с указанием количества дефектов, их эквивалентной площади, условной протяженности и координат расположения.

Звуковые волны не изменяют траектории движения в однородном материале. Отражение акустических волн происходит от раздела сред с различными удельными акустическими сопротивлениями. Чем больше различаются акустические сопротивления, тем большая часть звуковых волн отражается от границы раздела сред. Так как включения в металле обычно содержат газ (смесь газов) возникающих вследствие процесса сварки, литья и т. п. И не успевают выйти наружу при затвердевании металла, смесь газов имеет на пять порядков меньшее удельное акустическое сопротивление, чем сам металл, то отражение будет практически полное.

Разрешающая способность акустического исследования, то есть способность выявлять мелкие дефекты раздельно друг от друга, определяется длиной звуковой волны, которая в свою очередь зависит от частоты ввода акустических колебаний. Чем больше частота, тем меньше длина волны. Эффект возникает из-за того, что при размере препятствия меньше четверти длины волны, отражения колебаний практически не происходит, а доминирует их дифракция. Поэтому, как правило, частоту ультразвука стремятся повышать. С другой стороны, при повышении частоты колебаний быстро растет их затухание, что сокращает возможную область контроля. Практическим компромиссом стали частоты в диапазоне от 0,5 до 10 МГц.

Существует несколько методов возбуждения ультразвуковых волн в исследуемом объекте. Наиболее распространенным является использование пьезоэлектрического эффекта. В этом случае излучение ультразвука производится с помощью преобразователя, который преобразует электрические колебания в акустические путём обратного пьезоэлектрического эффекта. Пройдя через контролируемую среду, сигналы попавшие на пьезопластину преобразователя, вследствие прямого пьезоэлектрического эффекта вновь становятся электрическими, которые и регистрируются измерительными цепями. В зависимости от конструкции и подключения, пьезоэлектрические преобразователи могут выполнять роль только излучателя ультразвуковых колебаний или только приёмника, либо совмещать в себе обе функции.

Также используются электромагнитно-акустический (ЭМА) метод, основанный на приложении сильных переменных магнитных полей к металлу. КПД этого метода гораздо ниже, чем у пьезоэлектрического, но зато может работать через воздушный зазор и не предъявляет особых требований к качеству поверхности.

Классификация методов исследования

Существующие акустические методы неразрушающего контроля подразделяют на две большие группы -- активные и пассивные.

Активные. Активные методы контроля подразумевают под собой излучение и приём акустических волн. На рис. 10 представлен метод отражения

Эхо-метод или эхо-импульсный метод -- наиболее распространенный: преобразователь генерирует колебания (то есть выступает в роли генератора) и он же принимает отражённые от дефектов эхо-сигналы (приёмник). Данный способ получил широкое распространение за счёт своей простоты, так как для проведения контроля требуется только один преобразователь, следовательно при ручном контроле отсутствует необходимость в специальных приспособлениях для его фиксации (как, например, в дифракционно-временном методе) и совмещении акустических осей при использовании двух преобразователей. Кроме того, это один из немногих методов ультразвуковой дефектоскопии, позволяющий достаточно точно определить координаты дефекта, такие как глубину залегания и положение в исследуемом объекте (относительно преобразователя).

Зеркальный или Эхо-зеркальный метод -- используются два преобразователя с одной стороны детали: сгенерированные колебания отражаются от дефекта в сторону приемника. На практике используется для поиска дефектов расположенных перпендикулярно поверхности контроля, например трещин.

Дифракционно-временной метод -- используется два преобразователя с одной стороны детали, расположенные друг напротив друга. Если дефект имеет острые кромки (как, например, трещины) то колебания дифрагируют на концах дефекта и отражаются во все стороны, в том числе и в сторону приёмника. Дефектоскоп регистрирует время прихода обоих импульсов при их достаточной амплитуде. На экране дефектоскопа одновременно отображаются оба сигнала от верхней и от нижней границ дефекта, тем самым можно достаточно точно определить условную высоту дефекта. Способ достаточно универсален, позволяет производить ультразвуковой контроль на швах любой сложности, но требует специального оборудования для фиксации преобразователей, а также дефектоскоп, способный работать в таком режиме. Кроме того, дифрагированные сигналы достаточно слабые.

Дельта-метод -- разновидность зеркального метода -- отличается механизмом отражения волны от дефекта и способом принятия сигнала. В диагностике используется для поиска специфично расположенных дефектов. Данный метод очень чувствителен к вертикально-ориентированным трещинам, которые не всегда удаётся выявить обычным эхо-методом.

Ревербационный метод -- основан на постепенном затухании сигнала в объекте контроля. При контроле двухслойной конструкции, в случае качественного соединения слоёв, часть энергии из первого слоя будет уходить во второй, поэтому ревербация будет меньше. В обратном случае будут наблюдаться многократные отражения от первого слоя, так называемый лес. Метод используется для контроля сцепления различных видов наплавок, например баббитовой наплавки с чугунным основанием. Основным недостатком данного метода является регистрация дефектоскопом эхо-сигналов от границы соединения двух слоёв. Причиной этих эхо-сигналов является разница скоростей упругих колебаний в материалах соединения и их различное удельное HYPERLINK "https://ru.wikipedia.org/wiki/Удельное_акустическое_сопротивление"акустическое сопротивление. Например на границе баббит-сталь возникает постоянный эхо-сигнал даже в местах качественного сцепления. В силу конструкционных особенностей некоторых изделий, контроль качества соединения материалов ревербационным методом может быть невозможен именно из-за наличия на экране дефектоскопа эхо-сигналов от границы соединения.

Акустическая микроскопия благодаря повышенной частоте ввода ультразвукового пучка и применению его фокусировки, позволяет обнаруживать дефекты, размеры которых не превышают десятых долей миллиметра. Широкое применение в промышленности затруднено в связи с крайне низкой производительностью метода. Данный метод подходит для исследовательских целей, диагностике, а также радиоэлектронной промышленности.

Когерентный метод -- по сути является разновидностью Эхо-импульсного метода. Помимо двух основных параметров эхо-сигнала, таких как амплитуда и время прихода, используется дополнительно фаза эхо-сигнала. Использование когерентного метода, а точнее нескольких идентичных преобразователей, работающих синфазно. При использовании специальных преобразователей, таких как преобразователь бегущей волны или его современный аналог -- преобразователь с фазированной решёткой. Исследования применимости данного метода к реальным объектам контроля еще не завершены. Метод находится на стадии научно-исследовательских изысканий.

Прохождения

Методы прохождения подразумевают под собой наблюдение за изменением параметров ультразвуковых колебаний, прошедших через объект контроля, так называемых сквозных колебаний. Изначально для контроля применялось непрерывное излучение, а изменение его амплитуды сквозных колебаний расценивалось как наличие дефекта в контролируемом объекте, так называемой звуковой тени. Отсюда появилось название теневой метод. Со временем непрерывное излучение сменилось импульсным, а к фиксируемым параметрам помимо амплитуды добавились также фаза, спектр и время прихода импульса и появились другие методы прохождения. Термин теневой потерял свой первоначальный смысл и стал означать один из методов прохождения. В англоязычной литературе метод прохождения называется through transmission technique или through transmission method, что полностью соответствует его российскому названию. Термин теневой в англоязычной литературе не применяется.

Теневой -- используются два преобразователя, которые находятся по две стороны от исследуемой детали на одной акустической оси. В данном случае один из преобразователей генерирует колебания (генератор), а второй принимает их (приёмник). Признаком наличия дефекта будет являться значительное уменьшение амплитуды принятого сигнала, или его пропадание (дефект создает акустическую тень).

Зеркально-теневой -- используется для контроля деталей с двумя параллельными сторонами, развитие теневого метода: анализируются отражения от противоположной грани детали. Признаком дефекта, как и при теневом методе, будет считаться пропадание отраженных колебаний. Основное достоинство этого метода в отличие от теневого заключается в доступе к детали с одной стороны.

Временной теневой основан на запаздывании импульса во времени, затраченного на огибание дефекта. Используется для контроля бетона или огнеупорного кирпича.

Метод многократной тени аналогичен теневому, с тем исключением, что ультразвуковая волна несколько раз проходит через параллельные поверхности изделия.

При эхо-сквозном методе используют два преобразователя, расположенные по разные стороны объекта контроля друг напротив друга. В случае отсутствия дефекта, на экране дефектоскопа наблюдают сквозной сигнал и сигнал, двукратно отражённый от стенок объекта контроля. При наличии полупрозрачного дефекта, также наблюдают отражённые сквозные сигналы от дефекта.

Эхо-сквозной метод контроля. При отсутствии дефекта на экране дефектоскопа наблюдаются только 1 и 2 импульсы. При наличии полупрозрачного дефекта, дополнительно 3 и 4-й. На рисунке для наглядности отражения ультразвуковых волн, неверно показаны направления их распространения. Ультразвуковые волны распространяются вдоль акустической оси передатчика (верхнего преобразователя).

2. Ультразвуковая дефектоскопия должна проводиться в соответствии со стандартом.

6.5.2 Магнитопорошковая или цветная дефектоскопия

1. Контроль магнитопорошковой или цветной дефектоскопией производится в целях выявления поверхностных дефектов основного металла и сварных швов, не видимых невооруженным глазом. Магнитопорошковой или цветной дефектоскопии подлежат:

все вертикальные сварные швы стенки и швы соединения стенки с днищем резервуаров, эксплуатируемых при температуре хранимого продукта свыше 120 °С;

сварные швы приварки люков и патрубков к стенке резервуаров после их термической обработки;

места на поверхности листов стенок резервуаров с пределом текучести свыше 345 МПа, где производилось удаление технологических приспособлений.

6.5.3 Контроль при гидравлических испытаниях резервуара

1. При гидравлических испытаниях резервуара фиксируются и бракуются все места, где появляются течи и отпотины. После опорожнения резервуара в этих местах производятся необходимый ремонт и контроль.

7. Методы борьбы со сварочными напряжениями и деформациями

Сварка вызывает в изделиях появление напряжений, существующих без приложения внешних сил. Напряжения возникают по ряду причин, прежде всего из-за неравномерного распределения температуры при сварке, что затрудняет расширение и сжатие металла при его нагреве и остывании, так как нагретый участок со всех сторон окружен холодным металлом, размеры которого не изменяются. Вследствие структурных превращений участков металла околошовной зоны, нагретых в процессе сварки выше критических точек, в свариваемых конструкциях возникают структурные напряжения. В отличие от напряжений, действующих на конструкцию во время ее эксплуатации и вызываемых внешними силами, эти напряжения называют внутренними (собственными) и остаточными сварочными напряжениями. Если значения сварочных напряжений достигнут предела текучести металла, они вызовут изменение размеров и формы, т.е. деформацию изделия.

Деформации могут быть временными и остаточными. Если остаточные деформации достигнут заметной величины, они могут привести к неисправимому браку. Остаточные напряжения могут вызвать не только деформацию сварного изделия, но и его разрушение. Особенно сильно проявляется действие этих напряжений в условиях, способствующих хрупкому разрушению сварного соединения, которое происходит в результате неблагоприятного сочетания концентрации напряжений, температуры и остаточных напряжений. Первые два фактора меньше поддаются изменению, чем остаточные напряжения, поэтому применяют ряд мер по предотвращению и снижению сварочных напряжений и деформаций.

Высокая концентрация теплоты способствует сужению зоны, подвергающейся пластическим деформациям, и уменьшению деформаций конструкций. С этой точки зрения наиболее благоприятной является замена ручной сварки покрытыми электродами автоматической или полуавтоматической сваркой под флюсом или в защитных газах. Для обеспечения минимальной деформации сварной конструкции следует накладывать сварные швы наименьшего сечения и не допускать их увеличения в процессе изготовления конструкции. Величина и характер сварочных напряжений и остаточных деформаций непосредственно зависит от погонной энергии, определяемой режимом сварки, а также от размера шва или слоя. При прочих равных условиях Х-образная разделка кромок, обеспечивающая симметричное расположение шва, вызывает меньшую деформацию, чем V-образная. Эффективной мерой уменьшения деформаций является применение сварочных материалов, обеспечивающих более высокую прочность металла шва и поэтому позволяющих делать швы меньшего сечения.

На величину остаточных напряжений и деформаций оказывает влияние порядок наложения шва по его длине и сечению. Наибольшие остаточные деформации возникают при сварке «напроход». При ручной сварке швы следует выполнять от середины к концам двумя сварщиками. Уменьшает напряжения и деформации обратноступенчатая сварка, сварка каскадом. Эффективной мерой снижения остаточных деформаций является закрепление свариваемых деталей в специальных кондукторах. Для борьбы с деформациями часто применяют предварительный обратный изгиб свариваемых деталей или определенный порядок сварки.

При резком охлаждении сварного соединения нагреваемый при сварке участок, в котором возникают пластические деформации, сужается, что приводит к уменьшению остаточных деформаций и напряжений. Предварительный или сопутствующий подогрев уменьшает перепад температур между участками сварного соединения, в результате чего снижаются напряжения.

Существуют также конструктивные меры борьбы со сварочными напряжениями и деформациями. С помощью этих мер стараются получить равномерное по сечению изделия распределение напряжений от рабочей нагрузки и остаточных, а также устранить всевозможные концентраторы напряжений. Для этого сводят до минимума число пересекающихся и сближающихся швов; Число швов, образующих замкнутый контур; сокращают скопление швов в изделии; обеспечивают свободные деформации в частях изделия при сварке швов (постановка лишних ребер жесткости или косынок, уменьшающих гибкость изделия, часто приносит вред); применяют по возможности стыковые швы, которые обеспечивают наименьшую концентрацию напряжений.

Если меры по предотвращению образования сварочных напряжений и деформаций оказываются недостаточными, необходимо снять эти напряжения. Для полного снятия напряжений сварные соединения подвергают термической обработке. Снять напряжения можно термопластическим методом, основанным на создании пластических деформаций в зоне шва путем нагрева смежных со швом участков основного металла. Одной из мер снятия сварочных напряжений является расплавление участка перехода от шва к основному металлу неплавящимся электродом в аргоне. При этом нарушается равновесие внутренних сил напряженного поля вследствие перехода части металла в жидкое и пластическое состояния. Сварочные напряжения могут быть сняты почти полностью, если в околошовной зоне создать дополнительные пластические деформации путем проковки шва. Эффективной мерой снятия сварочных напряжений в конструкциях из незакаливающихся сталей является воздействие на сварную конструкцию внешних сил, от которых в ней возникают напряжения, равные пределу текучести металла. Устранить деформации можно с помощью термической правки, когда нагрев производят газокислородным пламенем или электрической дугой неплавящимся электродом, или путем механической правки на прессах или вручную.

С помощью этих приспособлений конструкции собирают в такой последовательности. До расстроповки листа на каждую пару шайб-фиксаторов 3 надевают стяжные планки 1 и временно закрепляют их круглыми клиньями 4, забивая их в отверстия шайб. Последовательно от одного конца листа к другому подгоняют все стыки шайб-фиксаторов. После установки и выверки всех листов одного пояса шайбы-фиксаторы сваривают, а стяжные планки снимают для сборки следующих поясов.

8. Технологический процесс сборки и сварки

005 КОМПЛЕКТОВАНИЕ

1. Укомплектовать сварочные заготовки совместно с сопроводительной документацией.

2. Оформить технологический паспорт.

010 КОНТРОЛЬ

1. Проверить наличие аттестации: инженерно-технических работников, дефектоскопистов, контролеров, сварщиков.

2. Проконтролировать периодичность проверки исправности сборочно-сварочного оборудования, приспособлений и аппаратуры в соответствии с графиком.

3. Проверить комплектность заготовок по спецификации.

4. Проверить изготовление входящих деталей по техническому паспорту.

5. Проверить результаты входного контроля сварочных материалов.

6. Проверить маркировку.

7. Результаты контроля зафиксировать в технологическом паспорте.

015 СБОРОЧНАЯ

Собрать элементы конструкции согласно чертежа, зафиксировать с помощью сборочных приспособлений, зажимов.

020 КОНТРОЛЬ

Проверить правильность сборки согласно чертежа.

025 СЛЕСАРНАЯ

Прихватить элементы конструкции на режимах. Представленных в таблице (рамер прихваток 30...40 мм, расстояние между прихватками 200...300мм).

030 СВАРОЧНАЯ

Варить сборку катетом, указанным в чертеже.

035 КОНТРОЛЬ

Проверить качество сварного соединения на наличие наплывов, подрезов и других внешних дефектов согласно требованиям руководящих документов.

9. Безопасность жизнедеятельности

Процессы сварки являются источниками образования опасных и вредных факторов, способных оказывать неблагоприятное воздействие на работников.

К опасным и вредным производственным факторам относятся: твердые и газообразные токсические вещества в составе сварочного аэрозоля, интенсивное излучение сварочной дуги в оптическом диапазоне (ультрафиолетовое, видимое, инфракрасное), интенсивное тепловое (инфракрасное) излучение свариваемых изделий и сварочной ванны, искры, брызги и выбросы расплавленного металла и шлака, электромагнитные поля, ультразвук, шум, статическая нагрузка и т.д

Поражения электрическим током. При сварке плавлением используют источники тока с напряжением холостого хода Uxx = 45 - 80 В при постоянном токе, Uхx = 55-75 В при переменном токе, Uxx = 180 - 200 В при плазменной резке. Поэтому источники питания должны иметь автоматические устройства, отключающие их в течение не более 0,5 с при обрыве дуги[9].

Учитывая непостоянную величину электрического сопротивления человеческого тела (так, при сухой коже, например, сопротивление составляет 8000--20 000 Ом, а при влажных руках, повреждениях кожи сопротивление снижается до 400--1000 Ом), безопасным считают напряжение не выше 12 В (переносное освещение). Если сварщик работает в тесном помещении, может иметь большую площадь контакта с металлической поверхностью, с целью уменьшения опасности поражения электрическим током необходимо соблюдение следующих мероприятий:

1. Надежная изоляция всех проводов, связанных с питанием источника тока и сварочной дуги, устройство геометрически закрытых включающих устройств, заземление бункеров сварочных аппаратов. Заземлению подлежат: бункера источников питания, аппаратного ящика, вспомогательное электрическое оборудование. Сечение заземляющих проводов должно быть не менее 25 мм2. Подключением, отключением и ремонтом сварочного оборудования занимается только дежурный электромонтер. Сварщикам запрещается производить эти работы[9].

2. Применение в источниках питания автоматических выключателей высокого напряжения, которые в момент холостого хода разрывают сварочную цепь и подают на держатель напряжение 12 В[9].

3. Надежное устройство электрододержателя с хорошей изоляцией, которая гарантирует, что не будет случайного контакта токоведущих частей электрододержателя со свариваемым изделием или руками сварщика (ГОСТ 14651-69). Электрододержатель должен иметь высокую механическую прочность и выдерживать не менее 8000 зажимов электродов[9].

4. Работа в исправной сухой спецодежде и рукавицах. При работе в тесных отсеках и замкнутых пространствах обязательно использование резиновых галош и ковриков, источников освещения с напряжением не свыше 6--12 В[9].

5. При работе на электронно-лучевых установках предотвращение опасности поражения лучами жесткого рентгеновского излучения в связи с использованием ускоряющего напряжения 20--22 кВ и выше.

Наряду с соблюдением указанных в п. 1 -- 5 требований, с целью предотвращения поражения электрическим током, запрещается притрагиваться к клеммам и зажимным болтам цепи высокого напряжения; снимать крышки клеммников электродвигателей подающего и ходового механизмов автоматов и полуавтоматов; открывать дверцы аппаратного ящика и трансформаторов и регулировать их и т. п.

Отравления вредными газами и аэрозолями, выделяющимися при сварке. Высокая температура дуги (6000 -- 8000° С) неизбежно приводит к тому, что часть сварочной проволоки, покрытий, флюсов переходит в парообразное состояние. Эти пары, попадая в атмосферу цеха, конденсируются и превращаются в аэрозоль конденсации, частицы которой по дисперсности приближаются к дымам и легко попадают в дыхательную систему сварщиков. Эти аэрозоли представляют главную профессиональную опасность труда сварщиков. Количество пыли в зоне дыхания сварщика зависит главным образом от способа сварки и свариваемых материалов, но в известной степени определяется и типом конструкций. Химический состав электросварочной пыли зависит от способов сварки и видов основных и сварочных материалов. Наряду с пылью при дуговой сварке также образуются и выделяются газообразные продукты -- окислы азота, окись углерода; при сварке электродом с покрытием «Б» и под флюсами -- фтористые соединения. В зоне дыхания сварщиков концентрация этих газов может достигать (мг/л): N2O5 0,009--0,018; SiF4, HF до 0,004 каждого, СО до 0,46. При сварке цветных металлов и их сплавов в зоне дыхания сварщика могут наблюдаться такие вредные газообразные соединения, как ZnO, SnO2, MnO2, SiO2 и т. д.[9]

Наиболее опасны для здоровья сварщиков аэрозоли марганца, так как отравление марганцем может вызвать длительное и стойкое поражение центральной нервной системы вплоть до параличей. Острые отравления парами цинка и свинца могут вызвать литейную лихорадку, а отравление хромовым ангидридом -- бронхиальную астму. Длительное отложение пыли в легких может вызвать пневмоконикозы. Все указанные поражения могут возникнуть, если сварку выполняют с грубым нарушением правил техники безопасности и охраны труда, касающихся обеспечения общей и местной вентиляции, применения индивидуальных средств защиты (масок, респираторов), особенно при сварке цветных металлов и их сплавов, а также при сварке в тесных, замкнутых отсеках при недостаточной вентиляции и т. п. существуют строгие требования в области вентиляции при сварочных работах. Для улавливания сварочного аэрозоля на стационарных постах, а где это возможно, и на нестационарных нужно устанавливать местные отсосы в виде вытяжного шкафа, вертикальной или наклонной панели равномерного всасывания, стола с подрешеточным отсосом и др. При сварке крупногабаритных серийных конструкций на кондукторах, манипуляторах и т. п. местные отсосы необходимо встраивать непосредственно в эти приспособления. При автоматической сварке под флюсом, в защитных газах, электрошлаковой сварке применяют устройства с местным отсосом газов.[9]

Если в цехе расход сварочных материалов превышает 0,2 г/ч на 1 м3 объема здания, должна быть устроена механическая, общеобменная вентиляция. При работе на нестационарных сварочных постах в замкнутых и полузамкнутых пространствах (отсеках) следует применять местные отсасывающие устройства типа эжекторов, высоковакуумных установок с обеспечением объема удаляемого воздуха от одного сварочного поста 400--500 м3/ч, но не менее 100--150 м3/ч, что обеспечивает допустимый уровень загрязненности воздуха.[9]

Предотвращение опасности взрывов. Опасность взрывов возникает при неправильной транспортировке, хранении и использовании баллонов со сжатыми газами, при проведении сварочных работ в различных емкостях без предварительного контроля степени их очистки и наличия в них остатков горючих веществ и т. д.[9]

При использовании баллонов со сжатыми газами необходимо соблюдать установленные меры безопасности: не бросать баллоны, не устанавливать их вблизи нагревательных приборов, не хранить вместе баллоны с кислородом и горючими газами, баллоны хранить в вертикальном положении. При замерзании влаги в редукторе баллона с СО2 отогревать его только через специальный электроподогреватель или обкладывая тряпками, намоченными в горячей воде. Категорически запрещается отогревать любые баллоны со сжатыми газами открытым пламенем, так как это почти неизбежно приводит к взрыву баллона.[9]

При производстве сварочных работ на емкостях, ранее использованных, требуется выяснение типа хранившегося продукта и наличие его остатков. Обязательна тщательная очистка сосуда от остатков продуктов и 2--3 - кратная промывка 10%-ным раствором щелочей, необходима также последующая продувка сжатым воздухом для удаления запаха, который может вредно действовать на сварщика.[9]

Категорически запрещается продувать емкости кислородом, что иногда пытаются делать, так как в этом случае попадание кислорода на одежду и кожу сварщика при любом открытом источнике огня вызывает интенсивное возгорание одежды и приводит к ожогам со смертельным исходом.[9]

Взрывоопасность существует и при выполнении работ в помещениях, имеющих большое количество пылевидных органических веществ (пищевой муки, торфа, каменного угля). Эта пыль при определенной концентрации может давать взрывы большой силы. Помимо тщательной вентиляции для производства сварочных работ в таких помещениях требуется специальное разрешение пожарной охраны.[9]

9.1 Предотвращение пожаров

Опасность возникновения пожаров по этой причине существует в тех случаях, когда сварку выполняют по металлу, закрывающему дерево либо горючие изолировочные материалы, на деревянных лесах, вблизи легко воспламеняющихся материалов и т. п. Все указанные варианты сварки не должны допускаться.[12]

9.2 Предотвращение опасности поражения лучами электрической дуги

Сварочная дуга является источником световых лучей, яркость которых может вызвать ожог незащищенных глаз при облучении их в течение всего 10--15 с. Более длительное воздействие излучения дуги может привести к повреждению хрусталика глаза и потере зрения. Ультрафиолетовое излучение вызывает ожоги глаз и кожи, подобные ожогам при прямом действии ярких солнечных лучей, инфракрасное может вызвать помутнение хрусталика глаза.[12]

Воздействие излучения дуги вредно не только для сварщиков, но и для подручных рабочих-сборщиков. Для предотвращения опасного поражения глаз обязательно применение защитных стекол -- наиболее темных для сварщиков (для электрогазосварочных и вспомогательных работ используют темное стекло типа В, Г и Э, при электродуговой сварке - темное стекло типа С-3 - С-13, при газовой сварке и кислородной резке - темное стекло типа С-1 - С-4 по ГОСТ 12.4.080-79 ”ССБТ. Светофильтры стеклянные для защиты глаз от вредных излучений на производстве. Технические условия.”) и более светлых для вспомогательных рабочих, что должно обеспечить значительное (почти полное) поглощение вредных излучений, связанных с горением дуги. Особую опасность в смысле поражения глаз представляет световой луч квантовых генераторов (лазеров), так как даже отраженные лучи лазера могут вызвать тяжелое повреждение глаз и кожи. Поэтому лазеры имеют автоматические устройства, предотвращающие такие поражения, но при условии строгого соблюдения производственной инструкции операторами-сварщиками, работающими на этих установках. Защитные стекла, вставленные в щитки и маски, снаружи закрывают простым стеклом для предохранения их от брызг расплавленного металла. Щитки изготовляют из изоляционного металла -- фибры, фанеры и по форме и размерам они должны полностью защищать лицо и голову сварщика (ГОСТ 1361--69).[12]

Для ослабления резкого контраста между яркостью дуги и малой яркостью темных стен (кабины) последние должны быть окрашены в светлые тона (серый, голубой, желтый) с добавлением в краску окиси цинка с целью уменьшения отражения ультрафиолетовых лучей дуги, падающих на стены.[12]

При работе вне кабины для защиты зрения окружающих, работающих сварщиков и вспомогательных рабочих должны применяться переносные щиты и ширмы.[12]

Интенсивность инфракрасного (теплового) излучения свариваемых изделий и сварочной ванны зависит от температуры предварительного подогрева изделий, их габаритов и конструкций, а также от температуры и размеров сварочной ванны. При отсутствии средств индивидуальной защиты воздействие теплового излучения может приводить к нарушениям терморегуляции вплоть до теплового удара. Контакт с нагретым металлом может вызвать ожоги.[12]

Предотвращение опасности поражения брызгами расплавленного металла и шлака. Образующиеся при дуговой сварке брызги расплавленного металла имеют температуру до 1800° С, при которой одежда из любой ткани разрушается. Для защиты от таких брызг обычно используют спецодежду (брюки, куртку и рукавицы) из брезентовой или специальной ткани. Куртки при работе не следует вправлять в брюки, а обувь должна иметь гладкий верх, чтобы брызги расплавленного металла не попадали внутрь одежды, так как в этом случае возможны тяжелые ожоги.[12]

Для защиты от соприкосновения с влажной, холодной землей и снегом, а также с холодным металлом при наружных работах и в помещении сварщики должны обеспечиваться теплыми подстилками, матами, подколенниками и подлокотниками из огнестойких материалов с эластичной прослойкой.[12]

Напряженность электромагнитных полей зависит от конструкции и мощности сварочного оборудования, конфигурации свариваемых изделий.

Характер их влияния на организм определяется интенсивностью и длительностью воздействия.[12]

Источником ультразвука могут являться плазмотроны, ультразвуковые генераторы, электроды и др. Действие ультразвука зависит от его спектральной характеристики, интенсивности и длительности воздействия.[12].

Источниками шума являются пневмоприводы, вентиляторы, плазмотроны, источники питания и др. Воздействие шума на организм зависит от спектральной характеристики и уровня звукового давления.[12]

Источником локальной вибрации у работников сборочно-сварочных цехов являются ручные пневматические инструменты, используемые для зачистки швов после сварки.[12]

Статическая нагрузка на верхние конечности при ручных и полуавтоматических методах сварки, металлов зависит от массы и формы электрододержателей, горелок, гибкости и массы шлангов, проводов, длительности непрерывной работы и др. В результате перенапряжения могут возникать заболевания нервно-мышечного аппарата плечевого пояса.[9]

При выборе технологических процессов сварки и предпочтение должно отдаваться тем, которые характеризуются наименьшим образованием опасных производственных факторов и минимальным содержанием вредных веществ в воздухе рабочей зоны.[9]

При невозможности применения безопасного и безвредного технологического процесса необходимо применять меры по снижению уровней опасных и вредных факторов до предельно допустимых значений.[9]

Содержание вредных веществ в воздухе рабочей зоны на рабочих местах должно соответствовать требованиям, указанным в ГОСТ 12.1.005.[9]

По степени воздействия на организм человека вредные вещества, в соответствии с классификацией ГОСТ 12.1.007, разделены на четыре класса опасности: 1 - вещества чрезвычайно опасные; 2 - вещества высокоопасные; 3 - вещества умеренно опасные; 4 - вещества малоопасные.[9]

Допустимая плотность потока энергии электромагнитного излучения оптического диапазона (ультрафиолетового, видимого, инфракрасного) на рабочих местах должна соответствовать требованиям, установленным соответствующими нормативными правовыми актами.[9]

Допустимые уровни звукового давления и эквивалентные уровни широкополосного шума на рабочем месте должны отвечать требованиям ГОСТ 12.1.003.[9]

Для тонального и импульсного шума допустимые эквивалентные уровни уменьшаются на 5 дБ.[9]

При эксплуатации установок кондиционирования, вентиляции и воздушного отопления допустимые эквивалентные уровни уменьшаются на 5 дБ.[9]

Для оценки воздействия различных уровней звука при разной их длительности применяется показатель эквивалентного уровня звука. При уровнях звука выше допустимых на 5 дБ работники должны быть снабжены средствами индивидуальной защиты.[9]

Для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБ, а для импульсного шума 125 дБ.

Допустимые уровни ультразвука на рабочем месте оператора и в сварочных цехах в течение восьмичасового рабочего дня должны соответствовать требованиям ГОСТ 12.1.001.[9]

Допустимые уровни производственной локальной вибрации от вспомогательного оборудования должны соответствовать требованиям ГОСТ 12.1.012.[9]

При невозможности снижения уровней опасных и вредных факторов до предельно допустимых значений по условиям технологии запрещается производить сварку, наплавку и резку металлов без оснащения работника соответствующими средствами коллективной и индивидуальной защиты, обеспечивающими безопасность.[9]

9.3 Влияние сварочных производств на окружающую среду

Загрязнение воздушной среды возможно при работе вентиляционных вытяжных систем, обслуживающих посты полуавтоматической сварки в СО2, машины для наплавки порошковой проволокой и лентой, плазменной резки металлов и др.[11]

В соответствии со СНиП II-33-75* допустимое содержание пыли в воздухе, выбрасываемом в атмосферу (мг/м3), следует определять по формуле:[11]

С = (160 -- 4*10-3L)*К,

где L -- расход удаляемого воздуха, м3/ч; К - коэффициент, равный 0,6.

Зная расход сварочных материалов, удельное выделение пыли и коэффициент одновременности работы сварщиков, равный 0,8, можно подсчитать максимальную концентрацию сварочного аэрозоля в выбрасываемом воздухе:

Св = 0.8Z/L,

где Z -- количество выделяющегося аэрозоля, мг/ч, от сварочных установок, обслуживаемых данной системой вытяжной вентиляции производительностью L.[11]

Если Св > С, воздух должен подвергаться очистке.

Для очистки вентиляционных выбросов от сварочного аэрозоля могут быть использованы пластинчатые электрофильтры, обеспечивающие эффективность очистки около 0,95. Такими фильтрами целесообразно оборудовать крупные вентиляционные установки, к которым должны подключаться небольшие системы местной вытяжной вентиляции. При этом необходимо обеспечить очистку фильтров от осаждаемой сварочной пыли.[11]

На выбросной стороне вентиляционных установок необходимо устанавливать глушители абсорбционного типа (трубчатые или пластинчатые).[11]

10. Организационно-экономический раздел

Капитальные вложения представляют собой затраты, направляемые на создание и воспроизводство основных фондов. В их состав входят:

строительно-монтажные работы;

затраты на приобретение основных фондов (станки, машины, оборудование и т.д.);

затраты на научно-исследовательские, опытно-конструкторские, проектно-изыскательские работы и т.п.;

вложения в трудовые ресурсы;

прочие затраты.

В расчёте сравниваются два варианта изготовления:

ручная дуговая сварка;

дуговая сварка самозащитной порошковой проволокой

Использование полуавтоматической сварки взамен ручной сварки покрытыми электродами повышает производительность, обеспечивает лучшие условия труда и снижает требования к квалификации сварщиков.

Преобладающая толщина стенки равна 6 мм. Марка материала -Ст3сп. Годовая программа выпуска составляет 10000 изделий.

Протяжённость всех швов одного изделия составляет 4 метра. Принимая, что скорость ручной сварки составляет 6 метров/час, находим число сварщиков, необходимое для выполнения годовой программы. При этом принимаем число рабочих часов в год равным 2000 час.

К= 8*10000/6*2000=7,2 (чел)

Принимаем, что программу выполняют 7 сварщиков 5 разряда. Оплата каждого сварщика осуществляется по контракту и составляет 20 тыс. руб.

При сварке с использованием новой технологии скорость сварки принимаем равной 12 метров/час. Тогда количество сварщиков составит

К = 8*10000/12*2000 = 3,3чел.

Принимаем одну сварочную установку, на которой работают три сварщика 3 разряда в три смены. Каждый сварщик, работающий на роботе, получает по контракту 15 тыс. руб.

В существующих условиях сварка изделий осуществляется вручную, что снижает конкурентоспособность участка по следующим основным причинам:

малая производительность, которая определяется величиной сварочного тока;

качество шва зависит в значительной степени от квалификации сварщика, что приводит к нестабильным свойствам сварного соединения;

большие затраты на изготовление изделия и, как следствие, более высокая стоимость готового продукта. Для снижения затрат повышения конкурентоспособности предлагается применить полуавтоматическую сварку плавящимся электродом в углекислом газе. Это позволит повысить производительность, обеспечить лучшие условия труда и снизить требования к квалификации сварщиков.

Расчёт дополнительных капитальных вложений. Дополнительные капитальные вложения необходимы для приобретения дополнительного оборудования, оснастки и инвентаря. При этом отсутствует необходимость вложений в здания, сооружения и передаточные устройства, так как при полуавтоматической сварке используются существующие производственные площади.

Капитальные вложения при техническом перевооружении состоят из требуемых вложений за вычетом ликвидационной стоимости. Ликвидационная стоимость оборудования определяется с учётом рыночной конъюнктуры. В большинстве случаев эта стоимость незначительна или вообще отсутствует из-за изношенности оборудования. Поэтому в дальнейших расчётах ликвидационная стоимость оборудования не учитывается.

Для внедрения полуавтоматической сварки необходимо дополнительно приобрести следующее оборудование:

Источник питания фирмы BlueWeld - оптовая цена 100 тыс. руб. Для полноты учёта сметной стоимости оборудования целесообразно полученный итог увеличить на 10…20% за счёт стоимости неучтённого оборудования, что составит 20 тыс. руб. Итого оптовая цена одного поста оборудования составляет 120 тыс. руб. Принимаем затраты на проектирование 40,0 тыс. руб. Тогда дополнительные капитальные вложения на оборудование составят

Коб= 40+ 120,(1,0+0,1+0,05+0,05) = 184 тыс. руб.

При расчёте затрат на оснастку и инвентарь принимаем, что эти затраты составят 20% от вложений на оборудование, т.е. равными 36,8 тыс. руб. Таким образом, дополнительные капитальные вложения при внедрении полуавтоматической сварки составят 220,8 тыс. руб.

Расчёт годовых ткущих издержек

Расход основных материалов. Затраты на заготовки в обоих вариантах остаются одинаковыми и равными 190 руб. на одно изделие. Из технологической части работы принято, что длина шва составляет 4 м. Приняв плотность стали равной 7,8 г/см3, получим массу наплавленного металла равной 0,775г. Тогда масса электродов, необходимых на изготовление одного изделия, составит МЭ =0,775 *1,8 =1,4кг. Затраты на электроды при стоимости за 1 кг равной 40 руб. составят 56,0 руб. на одно изделие. Масса проволоки, необходимой для сварки одного изделия, составляет МПР = 0,775*1,2 =0,94 кг. Затраты на электродную проволоку при стоимости 30 руб. за 1 кг составят 27,8 руб. на одно изделие.

...

Подобные документы

  • Требования к контролю качества контрольных сварных соединений. Методы испытания сварных соединений металлических изделий на излом, а также на статический изгиб. Механические испытания контрольных сварных стыковых соединений из полимерных материалов.

    реферат [327,5 K], добавлен 12.01.2011

  • Назначение, особенности и условия эксплуатации сварной конструкции. Выбор и обоснование выбора способа сварки балки двутавровой. Определение расхода сварочных материалов. Определение параметров сварных швов и режимов сварки. Контроль качества продукции.

    дипломная работа [643,9 K], добавлен 03.02.2016

  • Преимущества сварки в защитном газе. Расчет ее режимов для угловых швов. Химический состав, механические и технологические свойства стали 09Г2С. Выбор сварочных материалов. Определение норм времени и расхода сварочных материалов. Методы контроля изделий.

    курсовая работа [165,1 K], добавлен 05.03.2014

  • Описание конструкции, назначение и условия работы сварного узла газотурбинного двигателя. Выбор способа сварки и его обоснование, выбор сварочных материалов и режимов сварки. Выбор методов контроля: внешний осмотр и обмер сварных швов, течеискание.

    курсовая работа [53,5 K], добавлен 14.03.2010

  • Методы получения неразъемных соединений термопластичных полимерных материалов. Классификация относительно ультразвуковой сварки. Процесс сварки термопластов. Контроль качества сварных соединений. Факторы, влияющие на прочность клеевого соединения.

    курсовая работа [522,9 K], добавлен 26.03.2014

  • Организация рабочего места сварщика. Подготовка металла и сборка деталей под сварку. Выбор и обоснование ее режимов, технология и этапы проведения. Перспективные виды сварки, передовой производственный опыт. Контроль качества сварных соединений и швов.

    реферат [263,1 K], добавлен 12.04.2014

  • Характеристика сварочно-монтажных работ, их применение для соединения труб в непрерывную нитку магистрального трубопровода. Сущность метода ручной дуговой сварки. Дефекты сварных соединений. Выбор материалов и режима сварки, контроль их качества.

    дипломная работа [2,1 M], добавлен 31.01.2016

  • Исследование особенностей конструкции металлической стойки опор контактной сети. Анализ влияния элементов на свариваемость. Организация рабочего места сварщика. Характеристика сварочного оборудования. Расчет режимов сварки. Дефекты сварных соединений.

    реферат [289,2 K], добавлен 20.07.2015

  • Сварка как один из распространенных технологических процессов соединения материалов. Описание конструкции балки. Выбор и обоснование металла сварной конструкции. Выбор сварочного оборудования, способа сварки и методов контроля качества сварных соединений.

    курсовая работа [1,2 M], добавлен 13.02.2014

  • Описание действующей технологии изготовления изделия, анализ вариантов сварки. Расчет режимов, выбор и обоснование используемого оборудования и приспособлений. Разработка технологического процесса сборки и сварки изделия, контроль качества материалов.

    дипломная работа [678,7 K], добавлен 15.02.2015

  • Анализ технических требований, обоснование способа сварки, характеристика сварочных материалов. Расчет режимов сварки и выбор электротехнического оборудования. Конструирование узла сборочно-сварочного приспособления. Мероприятия защиты окружающей среды.

    курсовая работа [233,9 K], добавлен 14.04.2009

  • Расчет вертикального цилиндрического емкостного аппарата. Определение толщины стенки емкости, выбор материалов сварной конструкции. Проектный расчет стенки на прочность, на выносливость. Выбор способа сварки и контроль качества сварных соединений.

    курсовая работа [1,3 M], добавлен 13.10.2017

  • Основные элементы сварной конструкции - кронштейн симметричный. Оценка свариваемости материала, выбор и обоснование способа сварки, типов и конструктивных форм сварных соединений. Проектирование приспособления для сборки – сварки кронштейна переходного.

    реферат [515,6 K], добавлен 23.03.2012

  • Общий критерий выбора технологии и режима сварки. Химический состав сварочной проволоки Св-08Г2С. Параметры режимов механизированной сварки, оказывающие влияние на размеры и форму шва. Контроль сварочных материалов и мероприятия по технике безопасности.

    курсовая работа [197,4 K], добавлен 12.03.2014

  • Выбор способа сварки. Химический состав материала Ст3пс. Определение площади наплавленного металла. Выбор разделки свариваемых кромок. Химический состав сварочной проволоки Св-08Г2С. Технические характеристики полуавтомата. Дефекты в сварных соединениях.

    курсовая работа [67,5 K], добавлен 18.06.2015

  • Описание основного материала. Трудности и особенности сварки сплава АМг-6. Выбор и обоснование способа и режимов сварки, разделки кромок, сварочных материалов и оборудования. Специальные технологические материалы, условия и особенности их применения.

    курсовая работа [279,5 K], добавлен 17.01.2014

  • Способы повышения коррозионностойкости сварных соединения аустенитных сталей. Технология изготовления пробкоуловителя. Выбор и обоснование способов и режимов сварки. Визуальный контроль и измерение сварных швов. Финансово-экономическая оценка проекта.

    дипломная работа [2,9 M], добавлен 09.11.2014

  • Механизация и автоматизация самих сварочных процессов. Подготовка конструкции к сварке. Выбор сварочных материалов и сварочного оборудования. Определение режимов сварки и расхода сварочных материалов. Дефекты сварных швов и методы контроля качества.

    курсовая работа [1,4 M], добавлен 07.08.2015

  • Строение и назначение вентилятора. Технические условия на изготовление корпуса вентилятора. Выбор методов сборки и сварки конструкции. Методы борьбы со сварочными деформациями. Защита глаз и лица сварщика от световой радиации электрической дуги.

    курсовая работа [306,7 K], добавлен 22.06.2014

  • Описание сварной конструкции. Выбор способа сварки, сварочных материалов и сварочного оборудования. Нормирование технологического процесса. Химический состав материала Ст3пс. Расчет затрат на проектируемое изделие. Карта технологического процесса сварки.

    курсовая работа [836,2 K], добавлен 26.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.