Расчет конструктивной прочности стали по параметрам структуры

Теоретическая и техническая прочность. Основные способы упрочнения стали. Количественная оценка конструктивной прочности стали по параметрам структуры. Оценка влияния упрочнения на изменение температуры вязкохрупкого перехода ферритно-перлитной стали.

Рубрика Производство и технологии
Вид методичка
Язык русский
Дата добавления 21.06.2015
Размер файла 111,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетной образовательное учреждение

высшего профессионального образования

ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-технический институт

Кафедра металлургии, машиностроения и

технологического оборудования

КУРСОВАЯ РАБОТА

«Расчет конструктивной прочности стали по параметрам структуры»

по курсу «Материаловедение»

Учебно-методическое пособие

Профили: 150400 - металлургия черных металлов;

обработка металлов давлением;

140100 - промышленная теплоэнергетика

Череповец 2011

ВВЕДЕНИЕ

Задачей курсовой работы является научить студента применять теоретические знания по различным механизмам упрочнения сталей и сплавов для решения конкретных практических задач.

Цель работы - расчет по химическому составу стали и ее структуре предела текучести и влияния упрочнения на изменение температуры вязкоупругого перехода. Такой расчет не является строгим и основан на ряде допущений и упрощений. Его значение, прежде всего, заключается в оценке роли и вклада того или иного механизма упрочнения в такие важнейшие характеристики конструктивной прочности сталей, как предел текучести и температура вязкоупругого перехода.

1. ТЕОРЕТИЧЕСКАЯ И ТЕХНИЧЕСКАЯ ПРОЧНОСТЬ. КОНСТРУКТИВНАЯ ПРОЧНОСТЬ

прочность сталь вязкохрупкий

Увеличение прочности при сохранении достаточно высоких пластичности и вязкости повышает надежность и долговечность машин и понижает расход металла на их изготовление.

Это достигается созданием соответствующих композиций сплавов и технологий обработки. При этом происходит изменение состава и природы фаз, образующих сплав, их количества и размера, характера распределения дислокаций и других дефектов кристаллического строения. Поэтому устанавливают связь между структурной и конструктивной прочностью металлов и сплавов.

Принято различать техническую и теоретическую прочность металлов.

Под теоретической прочностью понимают сопротивление деформации и разрушению, которое должны были бы иметь материалы согласно физическим расчетам с учетом сил межатомного взаимодействия и предположения, что два ряда одновременно смещаются относительно друг друга под действием напряжения сдвига.

Исходя из кристаллического строения и межатомных сил, можно ориентировочно определить теоретическую прочность металла:

,

где G - модуль сдвига (для Fe G = 84 000 МПа).

Теоретическое значение прочности, рассчитываемое по указанной формуле, в 100 - 1000 раз больше технической прочности. Это связано с дефектами в кристаллическом строении и, прежде всего, с существованием дислокаций.

Прочность металлов не является линейной функцией плотности дислокаций. Как видно из рис. 1, минимальная прочность определяется некоторой критической плотностью дислокаций , приближенно составляющей 106 - 108 см-2. Эта величина относится к отожженным металлам.

Если плотность дислокаций меньше величины а, сопротивление деформации резко увеличивается и прочность быстро приближается к теоретической.

В настоящее время удалось получить кристаллы, практически не содержащие дислокаций. Эти нитевидные кристаллы небольших размеров (длиной 2 - 10 мм и толщиной 0,5 - 2,0 мкм), называемые «усами», обладают прочностью, близкой к теоретической. Так, предел прочности нитевидных кристаллов железа составляет 13000 МПа, а предел прочности технического железа - 300 МПа.

Размещено на http://www.allbest.ru/

Рис. 1. Схема зависимости сопротивления деформации от плотности дислокаций и других дефектов кристаллического строения металлов: 1 - теоретическая прочность; 2 - «усы»; 3 - чистые неупрочненные металлы; 4 - сплавы, упрочненные легированием, наклепом, термической или термомеханической обработкой

При возрастании количества дефектов свыше 106 - 108 см-2 происходит упрочнение металла вследствие взаимодействия дислокаций и торможение их движения.

Техническая прочность - способность материалов сопротивляться пластической деформации и разрушению под действием внешних нагрузок. Высокая прочность сплавов характеризуется не только механическими свойствами, определяемыми при растяжении: временным сопротивлением (в), пределом текучести (т), пределом упругости (упр), и т.п. Высокопрочные материалы должны также иметь определенную пластичность (, ), вязкость (KCU, KCV, KCT), необходимые пределы вязкости разрушения - коэффициент интенсивности напряжений при плотности деформации К, температуру вязкохрупкого перехода (порог хладноломкости) Тпр и др. Временное сопротивление в характеризуется сопротивлением материала значительным пластическим деформациям. С его ростом, как правило, увеличиваются предел текучести т и другие собственно прочностные характеристики. При этом во многих случаях предел текучести имеет большое значение для оценки работы конструкции, чем временное сопротивление. Однако повышение этих параметров прочности в конструкционных сплавах, как правило, сопровождается снижением параметров, определяющих пластичность и вязкость материала, т.е. способствует снижению параметров вязкости разрушения. В этом случае материал может разрушаться при малых нагрузках вследствие образования хрупкой трещины. Изделия, работающие в условиях знакопеременных нагрузок (усталости), могут разрушаться при напряжениях ниже временного сопротивления.

В этом случае прочность изделия будет характеризоваться пределом выносливости R. При повышенных температурах эксплуатации прочность характеризуют предел ползучести пл, предел длительной прочности дп и т.п.

Поэтому надежность сплава в конструкции или изделии не может быть оценена какой-либо одной характеристикой механических свойств. Ее характеризуют конструктивной прочностью. Под конструктивной прочностью понимают комплекс механических свойств, находящихся в корреляции с эксплуатационной прочностью изделия и конструкции. Естественно, в каждом конкретном случае, т.е. для каждого изделия или группы изделий, этот комплекс свойств будет включать различные критерии механических свойств.

Сплавы, применяемые для изготовления отдельных деталей и узлов машин, механизмов и конструкций, являются конструкционными. Они в большинстве случаев должны иметь высокую прочность при растяжении и вязкий характер разрушения. Так, для большинства конструкционных сталей важнейшими параметрами конструктивной прочности являются предел текучести т, температура вязкохрупкого перехода Тпр и параметр вязкости разрушения К.

Сопротивление пластической деформации тем выше, чем меньше подвижность дислокаций, чем больше препятствий на их пути. Пластичность и вязкость, наоборот, тем выше, чем легче осуществляется движение дислокаций. Следует иметь в виду, что помимо вязкого разрушения, являющегося результатом большого числа пластических сдвигов за счет движения дислокаций по различным плоскостям скольжения, возможно хрупкое разрушение в результате зарождения и прогрессирующего развития трещин.

На рис. 2 показано влияние структурного упрочнения (создание структурных барьеров для движения дислокаций) на предел текучести т и вязкости разрушения К. С увеличением барьеров для движения дислокаций предел текучести возрастает, а вязкость разрушения уменьшается. В области 1 надежность против внезапных хрупких разрушений высокая, так как случайные перегрузки будут сниматься пластической деформацией в устье трещины в связи с низким пределом текучести т и высоким значением вязкости разрушения К. Область 2 соответствует высокому значению т и низкому значению К, металл может разрушаться хрупко при малых нагрузках. Поэтому во многих случаях следует применять материал с меньшим значением т, что несколько увеличит массу конструкции, но значительно повысит сопротивление хрупкому разрушению.

Размещено на http://www.allbest.ru/

Рис. 2. Схема влияния структурного упрочнения на предел текучести т и вязкость разрушения К: 1 - вязкое разрушение; 2 - хрупкое разрушение

Склонность к хрупкому разрушению, в первую очередь, определяется работой распространения трещины. Чем она больше, тем меньше возможность внезапного хрупкого разрушения. Как известно, сталь может разрушаться хрупко или вязко в зависимости от температурного порога хладноломкости. Зная порог хладноломкости и рабочую температуру эксплуатации материала, можно оценить его температурный запас вязкости, под которым понимают интервал температур между порогом хладноломкости и рабочей температурой. Чем больше температурный запас вязкости, тем меньше опасность хрупкого разрушения. При небольшом запасе вязкости в результате случайного снижения температуры, роста зерна, загрязнения металла вредными примесями и т.д., порог хладноломкости может повыситься, что приведет к хрупкому разрушению. За порог хладноломкости принимается температура, при которой имеется 50% волокна и обозначается T50. Порог хладноломкости не является постоянной материала, а сильно зависит от его структуры, условий испытания, наличия концентраторов напряжений, размера образца и т.д. Чем выше прочность, тем выше порог хладноломкости.

Для получения высокого комплекса механических свойств (высокой конструктивной прочности), исключения возможности хрупкого разрушения нужно, чтобы барьеры, тормозящие движение дислокаций, позволяли при определенном напряжении прорываться через них дислокациям ("полупроницаемые" барьеры).

2. СПОСОБЫ УПРОЧНЕНИЯ СТАЛИ

Деформационное упрочнение (наклеп). Беспорядочно расположенные дислокации ("лес дислокаций") в деформированном металле вызывают сильное повышение прочности (т = 10-3 10-2G при = 1011 1012 см-2), но одновременно резко снижают сопротивление хрупкому разрушению. Следовательно, деформационное упрочнение не обеспечивает высокой конструктивной прочности.

При образовании твердых растворов в , т и НВ повышаются (твердорастворное упрочнение). В неупорядоченном твердом растворе возникающие вокруг атомов растворенного элемента поля упругих напряжений затрудняют скольжение дислокаций. Степень торможения дислокаций в твердом растворе определяется фактором размерного несоответствия атомов растворителя и растворенного элемента, разностью модулей упругости и возрастает пропорционально концентрации. Повышение прочности в твердом растворе замещения прямо пропорционально концентрации растворенного элемента (до 10 - 30 %). Однако абсолютная величина упрочнения зависит от вида растворяемого компонента. Величина К при образовании твердых растворов снижается. В случае твердого раствора внедрения прочность во много раз больше, чем при образовании твердого раствора замещения при той же концентрации. Очень затрудняют движение дислокаций, а следовательно, повышают прочность, атмосферы Коттрелла, даже при малом содержании компонента внедрения. Примеси внедрения сильно понижают вязкость разрушения К.

Основная причина охрупчивания металла в присутствии примесей внедрения - малая подвижность дислокаций. Это вызвано, с одной стороны, повышенным сопротивлением решетки раствора внедрения скольжению дислокаций и, с другой стороны, закреплением дислокаций атмосферами из атомов внедрения. Из-за низкой подвижности дислокаций, а следовательно, отсутствия микропластической деформации не происходит релаксация (ослабление) напряжений у вершины хрупкой трещины.

При ограниченном легировании, твердые растворы замещения обладают достаточной пластичностью и вязкостью и служат матрицей для многих конструкционных и инструментальных сплавов.

Механические свойства сплавов твердых растворов в сильной степени зависят от величины зерна, полигонизованной структуры (субструктуры) и других структурных изменений.

Эффективным барьером для движения дислокаций в металлах является межзеренная граница - зернограничное упрочнение. Это объясняется тем, что дислокация не может перейти границу зерна, так как в новом зерне плоскости скольжения не совпадают с плоскостью движения этой дислокации. Дальнейшая деформация продолжается в результате возникновения новой дислокации в соседнем зерне, поэтому чем мельче зерно (больше протяженность границ), тем выше прочность металла. Повышение прочности при измельчении зерна не сопровождается охрупчиванием. Границы зерен и субзерен являются полупроницаемыми для дфижущихся дислокаций. Чем мельче зерно, тем труднее развивается хрупкая трещина, поскольку границы зерен затрудняют переход трещины сколом из одного зерна в другое вследствие изменения направления ее движения.

Измельчение зерна понижает порог хладноломкости. Для устранения интеркристаллитного (межзеренного) хрупкого разрушения надо уменьшать скопление примесей в приграничных объемах (сегрегацию без выделения) и образование на границах зерен хрупких фаз (чаще химических соединений), особенно в виде сплошной сетки.

Измельчение зерна модифицированием, термической обработкой, легированием является одним из перспективных методов упрочнения металлов и сплавов. Создание в зерне препятствий для движения дислокаций в виде хорошо развитой субструктуры приводит к дополнительному упрочнению. Образование дислокационной структуры по механизму полигонизации (ячеистой структуры) повышает т, мало изменяет К и понижает порог хладноломкости Т50.

Выделение внутри зерен твердого раствора высокодисперсных равномерно распределенных частиц упрочняющих фаз, например, в процессе закалки и старения, сильно повышает т (дисперсное упрочнение). Упрочнение при старении объясняется торможением дислокаций зонами Гинье-Престона (ГП) или частицами выделений. Чем прочнее зоны ГП и больше их модуль упругости, тем труднее они перерезаются дислокациями. Вокруг зон ГП создается зона значительных упругих напряжений, которая также тормозит движение дислокаций, а следовательно, способствует упрочнению при старении.

В случае частиц избыточной фазы дислокации под действием приложенных напряжений либо перерезают, либо огибают эти частицы. Это зависит от их размера, прочности и расстояния между ними. Наибольшее упрочнение наблюдается, когда вторая фаза дисперсна, равномерно распределена по объему и расстояние между частицами не велико.

Таким образом, для получения сплавов с высокой конструктивной прочностью нужно, чтобы основной твердый раствор (матрица) имел мелкозернистое строение с развитой внутризеренной структурой, в которой рвномерно распределены высокодисперсные частицы упрочняющей фазы. Такая структура сплава обеспечивает получение полупроницаемых барьеров для движущихся дислокаций и сочетание высокой прочности (в, т), вязкости разрушения К и низкой температуры вязкохрупкого перехода.

3. КОЛИЧЕСТВЕННАЯ ОЦЕНКА ПРЕДЕЛА ТЕКУЧЕСТИ СТАЛИ ПО ПАРАМЕТРАМ СТРУКТУРЫ

Конструктивная прочность многих конструкционных материалов может быть охарактеризована пределом текучести стали и температурой перехода из вязкого состояния в хрупкое. Знание механизмов упрочнения позволяет провести количественную оценку предела текучести и изменения температуры вязко хрупкого перехода стали.

Исходными данными для количественной оценки прочности сплава служат данные о его химическом составе, распределении элементов между фазами и количественные параметры структуры (размер зерна, соотношение фаз, их размер и т.д.) в основу такого расчета положены количественные соотношения, установленные для каждого механизма упрочнения.

В большинстве случаев отмечается линейная аддитивность, т.е. вклад отдельных механизмов в общее упрочнение суммируется:

где n - число действующих в сплаве i-механизмов упрочнения.

Можно полагать, что в различных сталях и сплавах действуют следующие главные механизмы упрочнения:

0 - сопротивление решетки металла движению свободных дислокаций (напряжение трения решетки);

т.р - упрочнение твердого раствора растворенными в нем легирующими элементами и примесями (твердорастворное упрочнение);

д - упрочнение, обусловленное сопротивлением скользящей дислокации другим дислокациям в кристалле (дислокационное упрочнение);

д.у - упрочнение, вызванное образованием дисперсных частиц второй фазы при распаде пересыщенного твердого раствора (дисперсионное упрочнение);

з - упрочнение границами зерен и субзерен (зернограничное упрочнение).

При анализе указанных механизмов применительно к конкретной группе сталей необходимо уточнить действующие факторы каждого из главных механизмов упрочнения. В соответствии с принципом линейной аддитивности для перечисленных главных механизмов предел текучести поликристаллического сплава составит

Твердорастворное упрочнение. Упрочнение твердых растворов при легировании обусловлено разницей атомных диаметров и разностью модулей упругости атомов матрицы и растворенных легирующих элементов. При расчете твердорастворного упрочнения стали пользуются формулой:

Расчет по этой формуле возможен, если известны коэффициенты упрочнения ki. Их определяют при специальных исследованиях по влиянию легирования на свойства матрицы сплавов. Определение значений Сi является наиболее сложной задачей, так как эта величина представляет собой концентрацию легирующего элемента в твердом растворе, а не его содержание в стали или сплаве. Дело в том, что легирующий элемент может быть лишь частично растворен в твердом растворе, а частично он связан в карбидную, нитридную или интерметаллидную упрочняющую фазу. В качестве примера покажем, как величина Сi может быть ориентировочно оценена при расчете т.р для ферритно-перлитных сталей.

В этих сталях свойства легированного феррита существенно предопределяют уровень их механических свойств. Можно приблизительно считать, что такие некарбидообразующие элементы, как Si, Ni, Р целиком входят в состав феррита. Медь мало растворима в феррите и образует самостоятельную фазу. Как показывают опытные данные, в феррите горячекатаных сталей (нормализованных) обычно растворено ~ 0,01 - 0,02% (С + N). Остальное количество углерода и азота связано в цементит и специальные карбиды и нитриды. Из числа карбидообразующих элементов (Mn, Cr, Mo, V, W, Nb, Ti) практически целиком связаны в специальные карбиды Nb, V и Ti. Нитрообразователь Al обычно полностью связан в нитриды и неметаллические включения. Mo и Cr частично входят в состав карбидной фазы, а отчасти они растворены в феррите. Относительно слабый карбидообразователь Mn не образует самостоятельных карбидов в стали и фактически целиком растворен в феррите. Следовательно, в низколегированных ферритно-перлитных сталях Mn, Si, Ni и P практически полностью растворены в феррите; W, V, Nb, Ti и Al полностью входят в состав карбонитридной фазы, а Cr и Мо распределены между ферритом и карбидами. Учитывая невысокую концентрацию Cr и Мо в низколегированных сталях и малые значения их коэффициентов упрочнения ki, влиянием этих элементов на прочность феррита можно пренебречь. Следовательно, основными легирующими элементами, определяющими твердорастворное упрочнение ферритно-перлитных сталей, являются Mn, Si, Ni, P и частично C + N. С учетом указанных допущений может быть оценено твердорастворное упрочнение этих сталей.

Дислокационное упрочнение. Пластическая деформация металлов сопровождается образованием новых дислокаций, их определенным распределением, увеличением плотности. Возникающее при этом упрочнение определяют по формуле:

Для сталей с ферритной основой (о.ц.к. решеткой) параметры, входящие в приведенное выше уравнение, обычно составляют: М = 2,75; G = 84 ГПа; b = 0,25 нм. Коэффициент , зависящий от характера распределения и взаимодействия дислокаций при дислокационном упрочнении, равен 0,5.

Дисперсионное упрочнение. Для конструкционных сталей наилучшее совпадение с результатами эксперимента дает оценка дисперсионного упрочнения по механизму Орована - взаимодействия дислокаций с некогерентными частицами. В данном случае применение уравнения Орована объясняется следующим. В конструкционных сталях, имеющих ферритно-перлитную (горячекатаные нормализованные стали) либо сорбитную (закалка с высоким отпуском) структуру, дисперсионное упрочнение достигается за счет карбидов, нитридов и карбонитридов. Когда в стали прошел процесс «перестраивания», частицы полностью некогерентны с матрицей и поэтому достигается наилучшее сочетание прочности и вязкости. Объемная доля частиц в сталях практически всегда невелика (меньше 1%) и межчастичное расстояние намного больше размера самих частиц; модуль сдвига частиц в 2-3 раза больше модуля сдвига матрицы, поэтому дислокации огибают некогерентные выделения. Упрочнение за счет дисперсных частиц по Оровану рассчитывают по формуле

где - расстояние между частицами (карбидами, карбонитридами, нитридами, интерметаллидами).

Параметр непосредственно зависит от природы выделяющейся фазы, режима термической обработки и количества легирующего элемента в сплаве, что определяет степень пересыщения твердого раствора, размер выделений и т.д.

Поясним это на примере стали. Пусть одна сталь марки 40 легирована 2% Cr, а другая - 0,2% V. Как показывают опытные данные, после закалки и высокого отпуска в хромистой стали около половины всех атомов хрома выделяется в виде карбида (Cr, Fe)7С3 (остальные атомы хрома находятся в цементите и частично в феррите). В ванадиевой стали при такой обработке почти весь ванадий выделяется в виде карбида ванадия VC. При этом объемная доля (Cr, Fe)7С3 - около 2%, а объемная доля VC - на порядок меньше (0,35%). Однако размер частиц (Cr, Fe)7С3 в среднем равен 200 нм, а VC - 30 нм.

При этом межчастичное расстояние в хромистой стали ~ 1020 нм, а в ванадиевой ~ 360 нм. Дисперсионное упрочнение за счет карбида ванадия примерно в 3 раза больше, чем за счет карбида хрома. Таким образом, из рассмотренного примера видно, что легирование стали ванадием в количестве, в 10 раз меньшем количества хрома, позволяет получить значительно большую эффективность дисперсионного упрочнения. В этом примере природа упрочняющей фазы проявилась в размере частиц упрочняющей фазы, связанной с межчастичным расстоянием, являющимся главным фактором упрочнения.

В конструкционных сталях с ферритно-перлитной структурой при приложении нагрузки деформация начинает развиваться в феррите, а перлитные колонии являются "барьерами" для такой деформации. С этой точки зрения ферритно-перлитная структура может быть уподоблена структуре дисперсионно-упрочненной стали. Поэтому перлитную составляющую обозначим п и учтем ее вклад в предел текучести дополнительно к вкладу д.у. Количество перлитной составляющей, ее дисперсность, межпластинчатое расстояние и т.п. зависят от состава стали, устойчивости переохлажденного аустенита, скорости охлаждения, сечения проката и т.д. Вместе с тем, все эти параметры определяют механические свойства стали, в том числе предел текучести стали.

Во многих работах вклад перлитной составляющей в предел текучести стали с ферритной основой определяют путем умножения эмпирического коэффициента на долю перлита в стали. Значения этого коэффициента, по данным различных работы, находится в пределах 2,3 - 2,5 МПа / %. С учетом сказанного упрочнение за счет перлита следует определять по формуле

,

где П - содержание перлитной составляющей, %.

Зернограничное упрочнение. Собственно зернограничное упрочнение, т.е. повышение прочности за счет границ зерен, являющихся барьерами для продвижения дислокаций из одного зерна в другое, характеризуется уравнением Холла-Петча:

Уменьшение размера действительного зерна является эффективным способом повышения прочности конструкционных сталей с одновременным уменьшением склонности сталей к хрупким разрушениям. При kу = 0,6 МПа · мЅ размер зерна феррита d 100 мкм позволяет обеспечить з = 60 МПа, d 10 мкм - з = 200 МПа, а размер сверхмелкого зерна
d < 10 мкм - з = 500 МПа.

Размер зерна феррита зависит от размера аустенитного зерна и наличия дисперсных карбонитридных фаз. В ферритно-перлитных сталях с карбидо- и нитридообразующими элементами при переходе через критическую точку , в структуре стали имеются соответствующие карбиды и нитриды, что приводит к образованию более мелкого зерна аустенита, так как эти фазы оказывают зародышевое влияние при образовании новых зерен аустенита. Карбиды и нитриды тормозят рост зерна аустенита при дальнейшем его нагреве вплоть до температур растворения этих фаз в аустените. Нерастворенные карбиды и нитриды, а также выделившиеся из аустенита перед началом -превращения, служат зародышевыми центрами образования новых зерен феррита. Все это приводит к тому, что в ферритно-перлитных сталях с дисперсными упрочняющими фазами происходит заметное измельчение зерна феррита. Отсюда можно сделать очень важный вывод, что дисперсные частицы в сталях вызывают дополнительное зернограничное упрочнение.

Таким образом, легирование, приводящее к дисперсионному упрочнению, повышает и зернограничное упрочнение. Следовательно зернограничное и дисперсионное упрочнение можно достичь одним и тем же путем - получением в структуре дисперсных карбонитридных фаз V, Nb и Ti. При определенной обработке стали (например, термомеханической) внутри зерна может образовываться совершенная субзеренная структура, в результате чего внутри кристаллов, ограниченных большеугловыми границами, образуются субзерна, разделенные малоугловыми границами. Образование субзерен может привести к дополнительному упрочнению, которое определяют по формуле:

где m = 1, а kc = 0,1510-3 МПа м.

4. ОЦЕНКА ВЛИЯНИЯ УПРОЧНЕНИЯ НА ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ ВЯЗКОХРУПКОГО ПЕРЕХОДА ФЕРРИТНО-ПЕРЛИТНОЙ СТАЛИ

Повышение пределов текучести и прочности сталей обычно приводит к снижению вязкости, уменьшению работы развития трещины, повышению порога хладноломкости, т.е. увеличению склонности к хрупким разрушениям. Температура перехода из вязкого состояния в хрупкое Тп.р (порог хладноломкости), соответствующая температуре, при которой в изломе содержится 50% волокнистой составляющей температуры Т50, является наиболее часто применяемым критерием оценки склонности к хрупким разрушениям малоуглеродистых строительных ферритно-перлитных сталей. При грубой оценке влияния упрочнения на хладноломкость обычно считают, что увеличение предела текучести подобных сталей на каждые 15 МПа вызывает повышение температуры перехода на 4С.

Влияние легирующих элементов на температуру вязкохрупкого перехода индивидуально. На рис. 3 приведена схема влияния марганца, кремния, хрома, ванадия и никеля на порог хладноломкости железа. В области малых концентраций легирующих элементов температура перехода несколько снижается, а при большем их содержании заметно повышается. Никель в отличие от других элементов при всех концентрациях существенно понижает порог хладноломкости.

Размещено на http://www.allbest.ru/

Рис. 3. Влияние легирующих элементов на температуру (Т50) вязкохрупкого перехода железа

Однако, как показывают специальные исследования, повышение температуры перехода при упрочнении, или, как его можно упрощенно назвать, охрупчивание стали, зависит от того, каким из механизмов упрочнения достигнуто повышение предела текучести стали. Другими словами, желательно использовать такие механизмы упрочнения, которые обеспечили бы минимальное повышение температуры перехода на единицу возрастания предела текучести стали.

В настоящее время для ферритно-перлитных сталей установлено, что все компоненты упрочнения, кроме измельчения зерна, приводят к охрупчиванию (повышению Тпр). Единственным механизмом упрочнения, который наряду с приростом предела текучести приводит к снижению Тпр , является механизм зернограничного упрочнения.

Для ферритно-перлитных низколегированных сталей на основе специальных экспериментов и путем статистической обработки многочисленных исследований были установлены ориентировочные (сравнительные) значения коэффициента охрупчивания:

где Т0 - температура перехода, определенная без учета влияния компонентов упрочнения.

По этому уравнению невозможно определить абсолютное значение Тпр для данной стали, так как неизвестно значение Т0, на которое влияют другие неучтенные факторы (примеси, неметаллические включения, металлургическое качество и др.). Однако по этому уравнению можно оценить, в каком направлении и ориентировочно насколько достигнутое упрочнение повлияет на изменение температуры перехода.

Необходимо еще раз подчеркнуть, что только зернограничное упрочнение позволяет уменьшить склонность стали к хрупкому разрушению. Все остальные компоненты упрочнения увеличивают ее. Только уменьшением размера зерна стали можно компенсировать отрицательное влияние всех других компонентов упрочнения на температуру перехода стали из вязкого состояния в хрупкое (порог хладноломкости). Более того, сильным измельчением зерна можно «перекрыть» эффект охрупчивания от других компонентов упрочнения и достигнуть такого упрочнения, которое сопровождается уменьшением склонности к хрупкому разрушению (повышением хладостойкости).

Наиболее сильное охрупчивание стали достигается при повышении доли перлита в структуре (прежде всего при увеличении содержания углерода в стали). Для твердорастворного упрочнения коэффициент охрупчивания может колебаться для разных марок в определенных пределах (0,40,6) в зависимости от типа и количества легирующих элементов, растворенных в феррите. Твердорастворное упрочнение не является предпочтительным для низколегированных сталей, хотя и вносит существенный вклад в упрочнение стали, так как экономические затраты (стоимость легирования) при этом способе упрочнения весьма высокие.

Дисперсионное упрочнение вызывает наименьшее охрупчивание, по сравнению с другими «охрупчивающими» механизмами, а, учитывая, что дисперсные частицы обеспечивают получение мелкозернистой стали, для ферритно-перлитных сталей его следует считать предпочтительным среди других механизмов. Совместное влияние дисперсионного и зернограничного упрочнения на прирост предела текучести и изменение температуры перехода иллюстрируется схемой для трех марок сталей, приведенной на рис. 4. В стали 15 ГФ дисперсионной упрочняющей фазой является карбид ванадия VC. Он способствует измельчению зерна и изменению т = д.у + + з тем больше, чем выше содержание ванадия. Суммарного изменения температуры перехода Тп.р = Тд.у - Тз , показанного на рис. 4 толстой линией, практически не происходит, так как Тду Тз , т.е. охрупчивающее влияние дисперсионного упрочнения компенсируется уменьшением размера зерна. В стали с ниобием 10Г2Б карбид ниобия вызывает заметно большее измельчение зерна и з > д.у. При небольших содержаниях ниобия (0,04 0,06 %) дисперсионное упрочнение невелико и его охрупчивающее влияние легко перекрывается зернограничным упрочнением, в результате чего наряду с упрочнением наблюдается существенное понижение температуры перехода. С увеличением содержания ниобия в этой стали возрастает охрупчивающее действие дисперсионного упрочнения и доля компенсирующего влияния зернограничного упрочнения (не изменяющегося далее) уменьшается, поэтому Тпр начинает возрастать, а при 0,10 - 0,12 % Nb становится равной нулю. При таком составе порог хладноломкости для этой стали будет таким же, как и для стали без ниобия.

Наиболее эффективно действие обоих механизмов проявляется в стали 16Г2АФ с двумя карбонитридными фазами, карбонитридом ванадия и V(C, N) и нитридом алюминия AlN*. Благодаря этому зерно измельчается особенно сильно, что приводит, наряду с дисперсионным упрочнением, к наиболее существенному суммарному упрочнению. Так как з >> ду , то при всех содержаниях ванадия | Tз | > Tду и сталь имеет пониженную температуру перехода Tпр. В этой стали повышением запаса вязкости намного перекрывается охрупчивающее действие упрочнения.

Размещено на http://www.allbest.ru/

Рис. 4. Схема совместного влияния двух взаимозависящих механизмов - дисперсионного и зернограничного упрочнений - на изменение предела текучести и температуры перехода низколегированных ферритно-перлитных сталей

Сталь содержит 0,02 - 0,03% Al, не указанного в обозначении марки.

В сталях с карбонитридным упрочнением высокая прочность сочетается с малой склонностью к хрупким разрушениям, т.е. низкой температурой перехода из вязкого состояния в хрупкое. Такие стали обладают наиболее высокой конструктивной прочностью по сравнению с другими строительными ферритно-перлитными сталями.

Сталь 16Г2АФ, имеющая наиболее мелкое зерно, обладает наивысшей прочностью и наименьшей температурой перехода из вязкого состояния в хрупкое. В результате применения этой стали в строительстве достигается экономия металла 30 - 50% при замене ею углеродистой стали Ст. 3 и
15 - 30% - при замене ею низколегированных сталей типа 09Г2С и 14Г2. При этом стали с карбонитридным упрочнением обеспечивают надежную эксплуатацию металлоконструкций в районах с низкими климатическими температурами вплоть до -70С.

5. РАСЧЕТНЫЕ ФОРМУЛЫ ДЛЯ ОЦЕНКИ ВКЛАДА В УПРОЧНЕНИЕ РАЗЛИЧНЫХ МЕХАНИЗМОВ

Таблица 1

Механизм упрочнения

Структура

Компоненты механизма упрочнения

Расчетная формула

Сопротивление решетки движению дислокаций

Феррит + карбиды

Напряжение трения решетки

Твердорастворный

Феррит + карбиды

Легирование феррита

Мартенсит отпуска

Легирование мартенсита

Дислокационный

Феррит + карбиды

Дислокации в феррите

( = 107-109 см-2)

Мартенсит отпуска

Дислокации в мартенсите

( = 1010-1012 см-2)

Дисперсионный

Феррит + карбиды

Перлитная составляющая

Мартенсит отпуска

Дисперсные карбонитриды в феррите и мартенсите

Зернограничный

Феррит + карбиды

Размер зерен и субзерен феррита

Мартенсит отпуска

Размер мартенситных пакетов и субзерен в мартенсите

Примечание. G - модуль сдвига железа (G = 84000 МПа); Кi - коэффициент упрочнения i-м легирующим элементом; Сi - концентрация i-го элемента; M0 = 2,75; b - вектор Бюргерса (b = 0,2510-7 см); - расстояние между частицами, см; = 0,5; - плотность дислокаций, см-2; П - % перлитной составляющей, %; Ку - коэффициент упрочнения, Kу = 0,6 МПамЅ ; d - размер зерна, м; Кс = 0,1510-3 МПам; l - размеры субзерен, м. Размеры зерен: мелкие - 216 мкм, крупные - 1860 мкм. Размеры пакетов мартенсита: 2 6 мкм . -карбиды Cr = 1 мкм; -карбиды VC, Ti = = 0,2 мкм; VN = 0,1 мкм; V(C, N) = 0,35 мкм; AlN = 0,7 мкм; 1 мкм = 10-3 мм. = 2 мкм 0,1 мкм.

Порядок выполнения работы

1. Расшифровать заданные марки стали с учетом постоянных примесей.

2. Определить класс этих сталей по назначению.

3. Назначить термическую обработку.

4. Схематично изобразить структуру сталей после термообработки. Подчеркнуть по схеме структуры различия в размерах зерен, в количестве дисперсных частиц и в других особенностях структуры.

5. Для расчета значения коэффициентов упрочнения различными легирующими элементами использовать таблицу 2.

Таблица 2

Легирующий элемент

C+N

P

Si

Ti

Al

Mn

Cr

Ni

Mo

W

V

Cu

Кi , МПа / %

4670

690

85

3

3

35

30

30

10

12

3

39

Содержание углерода, растворенного в феррите, равно 0,006%, а азота - 0,004%, т.е. (С+N) = 0,01%. Содержание углерода в мартенсите отпуска по литературным данным примерно равно 0,2%. Содержание фосфора в стали равно 0,02 0,03 %. В качестве постоянных примесей в стали находятся Mn = 0,6% и Si = 0,3%.

6. При расчете плотность дислокаций с следует выбирать исходя от вида термообработки.

При нормализации: с = 107- 108 см-2.

При закалке и высоком отпуске: с = 108- 109 см-2.

При закалке и среднем отпуске: с = 109- 1010см-2.

При закалке и низком отпуске: с = 1010- 1011 см-2.

7. При расчете, и выбирать параметры указанные в примечании.

При выборе параметров для заданной пары сталей нельзя использовать одинаковые значения параметров.

6. ЗАДАНИЯ

1. Определить долю механизма в упрочнение сталей и дать практические рекомендации для обеспечения максимальной прочности и возможно низкого порога хладноломкости.

2. Построить зависимость i (Ci, i, i, di).

3. Сделать вывод по работе.

Варианты заданий

18ХН18ХГТ

12Х12ХГН

20Х20ХНМА

14Г214Г2АФ

15Г15ГФ

20Г20Г2СФ

40Х40ХНМ

45Х45ГНМА

30Х30ХГНМА

40Х40ХГТ

40ХН40ХН2МФ

40ХГ40ХГНР

30ХГС30Н2ВФА

60Г60С2ВФА

5050ХФА

55С255С2В2Ф

60ХГ60С2ХФА

ХВГШХ15

9ХСХВГС

У10АХ

ШХ20ШХ20СГФ

Литература

1. Гуляев А.П. Металловедение. М.: Металлургия, 1977. - 647 с.

2. Геллер Ю.А., Рахштадт А.Г. Материаловедение. М.: Металлургия, 1983. - 384 с.

3. Лахтин Ю.М. Металловедение и термическая обработка. М.: Металлургия, 1983. - 360 с.

4. Пикеринг Ф.Б. Физическое металловедение и разработка сталей:
Пер. с англ. М.: Металлургия, 1982. - 183 с.

5. Гольдштейн М.И. Пути повышения прочности и хладостойкости конструкционных сталей // МИТОМ. 1987. № 11. С. 430.

Размещено на Allbest.ru

...

Подобные документы

  • Исследование микроструктуры и механических свойств низколегированной стали 08Г2СМБ. Параметры, ответственные за формирование конструктивной прочности: напряжение трения решетки, твердорастворное, дислокационное, дисперсионное и зернограничное упрочнение.

    практическая работа [83,8 K], добавлен 23.01.2016

  • Процессы, протекающие в стали 45 во время нагрева и охлаждения. Применение стали 55ПП, свойства после термообработки. Выбор марки стали для роликовых подшипников. Обоснование выбора легкого сплава для сложных отливок. Способы упрочнения листового стекла.

    контрольная работа [71,5 K], добавлен 01.04.2012

  • Характеристика пластического деформирования (дробеструйная обработка) и поверхностной закалки (сильный нагрев верхнего слоя и резкое охлаждение для получения высокой твердости и прочности детали при вязкой сердцевине) как методов упрочнения стали.

    лабораторная работа [199,5 K], добавлен 15.04.2010

  • Анализ методов выбора стали для упрочнения стаканов цилиндров двигателей внутреннего сгорания. Характеристика стали и критерии выбора оптимальной стали в зависимости от типа цилиндра: химический состав и свойства, термообработка, нагрев и охлаждение.

    курсовая работа [177,7 K], добавлен 26.12.2010

  • Механизмы упрочнения низколегированной стали марки HC420LA. Дисперсионное твердение. Технология производства. Механические свойства высокопрочной низколегированной стали исследуемой марки. Рекомендованный химический состав. Параметры и свойства стали.

    контрольная работа [857,4 K], добавлен 16.08.2014

  • Производство стали в кислородных конвертерах. Легированные стали и сплавы. Структура легированной стали. Классификация и маркировака стали. Влияние легирующих элементов на свойства стали. Термическая и термомеханическая обработка легированной стали.

    реферат [22,8 K], добавлен 24.12.2007

  • Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.

    контрольная работа [37,5 K], добавлен 24.05.2008

  • Повышение твердости стали за счет образования мартенситной структуры. Превращение перлита в аустенит. Нагрев заэвтектоидной стали до температуры выше критической точки. Основные фазовые превращения, протекающие в сталях при нагреве и охлаждении.

    доклад [19,3 K], добавлен 17.06.2012

  • Группы изделий, требующие для их успешной эксплуатации "своих" специфических комплексов вязкостно-прочностных свойств. Способы отпуска закаленной стали. Влияние отпуска на прочность и пластичность стали. Основные сравнительные свойства для стали 45.

    статья [63,0 K], добавлен 24.06.2012

  • Явление полиморфизма в приложении к олову. Температура разделения районов холодной и горячей пластической деформации. Технология поверхностного упрочнения изделий из стали. Определение температуры полного и неполного отжига и нормализации для стали 40.

    контрольная работа [252,2 K], добавлен 26.03.2012

  • Строение и свойства стали, исходные материалы. Производство стали в конвертерах, в мартеновских печах, в дуговых электропечах. Выплавка стали в индукционных печах. Внепечное рафинирование стали. Разливка стали. Специальные виды электрометаллургии стали.

    реферат [121,3 K], добавлен 22.05.2008

  • Структура доэвтектоидных и заэвтектоидных сталей при различных температурах. Фазовые превращения стали. Особенности возникновения структуры доэвтектоидной стали. Основные факторы, от которых зависит микроструктура стали. Полный и неполный отжиг.

    реферат [2,1 M], добавлен 29.01.2014

  • Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа [1,5 M], добавлен 02.01.2005

  • История открытия нержавеющей стали. Описание легирующих элементов, придающих стали необходимые физико-механические свойства и коррозионную стойкость. Типы нержавеющей стали. Физические свойства, способы изготовления и применение различных марок стали.

    реферат [893,5 K], добавлен 23.05.2012

  • Фазовые превращения в стали. Основные виды предварительной термической обработки. Структурные изменения доэвтектоидной стали при полной фазовой перекристаллизации. Исправление структуры кованой, литой или перегретой стали. Устранение дендритной ликвации.

    реферат [1,8 M], добавлен 13.06.2012

  • Электрические печи, применяемые для выплавки стали, их строение и принцип действия. Понятие дислокаций в кристаллических веществах, оценка влияния их количества на механические свойства металлов, способы увеличения. Азотирование стали, преимущества.

    контрольная работа [26,8 K], добавлен 06.09.2014

  • Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.

    курсовая работа [2,1 M], добавлен 11.08.2012

  • Характеристика рельсовой стали - углеродистой легированной стали, которая легируется кремнием и марганцем. Химический состав и требования к качеству рельсовой стали. Технология производства. Анализ производства рельсовой стали с применением модификаторов.

    реферат [1022,5 K], добавлен 12.10.2016

  • Производство чугуна и стали. Конверторные и мартеновские способы получения стали, сущность доменной плавки. Получение стали в электрических печах. Технико-экономические показатели и сравнительная характеристика современных способов получения стали.

    реферат [2,7 M], добавлен 22.02.2009

  • Особенности технологии выплавки стали. Разработка способов получения стали из чугуна. Кислородно-конвертерный процесс выплавки стали. Технологические операции кислородно-конверторной плавки. Производство стали в мартеновских и электрических печах.

    лекция [605,2 K], добавлен 06.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.