Автоматические регуляторы импульсного действия
Назначение автоматического управления в технических и биотехнических системах. Цели использования управляемого объекта. Типы сигналов, распространяемых датчиком. Преимущества импульсного регулятора. Методы передачи информации с помощью модулятора.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 04.07.2015 |
Размер файла | 268,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Магнитогорский государственный технический университет им. Г.И. Носова
Реферат
Автоматические регуляторы импульсного действия
Автоматическое управление широко применяется во многих технических и биотехнических системах для выполнения операций, не осуществимых человеком в связи с необходимостью переработки большого количества информации в ограниченное время, для повышения производительности труда, качества и точности регулирования, освобождения человека от управления системами, функционирующими в условиях относительной недоступности или опасных для здоровья. Цель управления тем или иным образом связывается с изменением во времени регулируемой (управляемой) величины - выходной величины управляемого объекта. Для осуществления цели управления, с учётом особенностей управляемых объектов различной природы и специфики отдельных классов систем, организуется воздействие на управляющие органы объекта - управляющее воздействие. Оно предназначено также для компенсации эффекта внешних возмущающих воздействий, стремящихся нарушить требуемое поведение регулируемой величины. Управляющее воздействие вырабатывается устройством управления (УУ).
Совокупность взаимодействующих управляющего устройства и управляемого объекта образует систему автоматического управления.
В современных системах автоматического управления системы автоматического регулирования являются подсистемами САУ и их применяют для регулирования различных параметров при управлении объектом или процессом.
Принцип действия всякой системы автоматического регулирования (САР) заключается в том, чтобы обнаруживать отклонения регулируемых величин, характеризующих работу объекта или протекание процесса от требуемого режима и при этом воздействовать на объект или процесс так, чтобы устранять эти отклонения.
Для осуществления автоматического регулирования к регулируемому объекту подключается автоматический регулятор, вырабатывающий управляющее воздействие на регулирующий орган. Это управляющее воздействие вырабатывается регулятором в зависимости от разности между текущим значением регулируемой величины (температуры, давления, уровня жидкости и т. д.), измеряемой датчиком, и желаемым её значением, устанавливаемым задатчиком.
Регулируемый объект и автоматический регулятор вместе образуют систему автоматического регулирования.
Основным признаком САР, является наличие главной обратной связи, по которой регулятор контролирует значение регулируемого параметра.
Рисунок 1. - Функциональная схема САР:
Где:
З - задатчик, для установки заданного значения параметра X0;
Д - датчик (термопара, терморезистор, датчик уровня, скорости и др. для разных систем);
Р - регулятор;
ИМ - исполнительный механизм (эл. мотор с редуктором, пневмоцилиндры и др.);
РО - регулирующий орган (кран, вентиль, заслонка и др.);
О - объект регулирования (печь, эл. мотор, резервуар и др.);
У - регулирующее (управляющее) воздействие;
Z - помеха (возмущение);
Х - регулируемый параметр;
X1 - сигнал на выходе датчика;
еX1X0 - ошибка, возникает при отклонении параметра от задания;
X0 - заданное значение регулируемого (управляемого) параметра может быть постоянным X0 или изменяемым (Ut).
Сигнал с задатчика может быть:
- постоянным X0, const. для поддержания постоянства регулируемого параметра температуры, давления, уровня жидкости и т. д. (системы стабилизации);
- может изменяться во времени U(t) по определённой программе (программное регулирование);
- может изменяться во времени U(t) в соответствии с измеряемым внешним процессом (следящее регулирование).
Промышленностью выпускается большое количество различных автоматических регуляторов, предназначенных для регулирования режима работы котельных установок (температуры, давления, расхода, уровня, состава вещества и пр.).
Наибольшее распространение в промышленности получили стабилизирующие автоматические регуляторы непрерывного действия и релейные, реагирующие на отклонение регулируемой величины и использующие для воздействия на исполнительный механизм электрическую энергию или энергию сжатого воздуха. В современных регуляторах закон регулирования формируется, как правило, в соответствующих устройствах обратной связи, за исключением интегрального регулятора, который не имеет дополнительной обратной связи.
Регулятор импульсный - автоматический регулятор прерывистого действия, выходной сигнал (управляющее воздействие) которого имеет характер модулированной последовательности импульсов.
Необходимым элементом импульсного регулятора является импульсный элемент (модулятор), осуществляющий модуляцию выходной импульсной последовательности в соответствии с величиной сигнала ошибки. В зависимости от вида импульсной модуляции различают амплитудно-, широтно- и частотно-импульсные регуляторы.
Импульсный характер управления облегчает решение ряда технологических проблем, возникающих при разработке автоматических регуляторов, и позволяет создавать некие регулирующие устройства, обладающие существенными конструктивными и эксплуатационными преимуществами.
Одним из главных преимуществ импульсного регулятора является то, что в них с помощью простых и экономичных технических средств можно разрешить противоречие между точностью и мощностью управляющих сигналов.
При непрерывном характере управления первичный измерительный прибор (магнитоэлектрический гальванометр, логометр, гироскоп и т. п.) постоянно соединен с датчиком-преобразователем, который преобразует показания прибора в мощный сигнал, управляющий работой исполнительного механизма.
Датчик является дополнительной нагрузкой на подвижную систему прибора, снижающий точность его показаний. В импульсном регуляторе имеется возможность подключать датчик к первичному прибору лишь на время действия управляющего импульса.
На это время подвижная система измерительного прибора фиксируется в том положении, в котором она находилась перед появлением импульса, так что точность показаний прибора не ухудшается.
Существенным преимуществом регуляторов с амплитудно- и широтно-импульсной модуляцией (АИМ, ШИМ) является возможность осуществлять многоканальное регулирование.
При этом один импульсный регулятор управляет работой нескольких объектов управления ОУ1, ОУ2, ОУN за счет временного разделения каналов регулирования, осуществляемого импульсными элементами ИЭ-1, ИЭ-2,…,ИЭ-N, работающих с одинаковыми или кратными периодами повторения Т, но сдвинутых по фазе на величину ?Т.
Рисунок 2. - Многоканальная импульсная САР:
Где:
а - структурная схема;
б - диаграмма работы импульсных элементов;
xi - регулируемые величины;
еi - сигналы ошибок;
ui - управляющие воздействия.
Основным преимуществом импульсных регуляторов с частотно- и широтно-импульсной модуляцией (ЧИМ и ШИМ) является сочетание высокого качества регулирования с конструктивной простотой и надежностью, характерными для релейных систем. Высокое качество регулирования обеспечивается здесь линеаризующим действием ЧИМ или ШИМ, благодаря которому динамические характеристики импульсного регулятора приближаются к характеристикам линейных регуляторов.
В то же время релейный характер выходного сигнала таких регуляторов позволяет применять простые и надежные исполнительные механизмы с релейным управлением: асинхронные двигатели с короткозамкнутым ротором, гидравлические или электропневматические приводы, соленоидные клапаны, шаговые двигатели и т. п.
В качестве примера на рисунке 3 изображена блок-схема простейшего частотно-импульсного регулятора. Сигнал ошибки e(t), усиленный усилителем напряжения (УН), поступает на интегрирующий RC-фильтр. Сигнал после фильтра, усиленный усилителем мощности (УМ), подается на реле РУ, управляющее работой исполнительного механизма (ИМ) и реле времени (РВ). РВ, срабатывая с небольшой временной задержкой ?t, разряжает конденсатор С.
Это приводит к возврату РУ и остановке ИМ. В результате на выходе РУ появляются прямоугольные импульсы с постоянной длительностью ?t и с частотой, приблизительно пропорциональной сигналу ошибки e(t). По динамическим свойствам такой импульсный регулятор близок к простейшему линейному астатическому регулятору, а по конструктивной простоте и надежности - к трехпозиционному релейному регулятору.
Рисунок 3. - Блок-схема частотно-импульсного модулятора:
Импульсный способ передачи информации обладает повышенной помехозащищенностью. Поэтому импульсные регуляторы применяют в системах автоматического управления, содержащих проводные или радиотехнические каналы связи. Примерами таких систем являются радиолокационные станции сопровождения, системы телеуправления промышленными объектами и т. п.
В электроэнергетике большое распространение получили регуляторы напряжения, частоты и активной мощности с ШИМ и ЧИМ. В СССР выпускался большой ассортимент устройств для одно- и многоканального импульсного и цифрового регулирования типа МИР-63, пневматические обегающие устройства типов УМО-8 и УМО-16, предназначенные для 8- и 16-канального импульсного регулирования и выпускающиеся в составе системы «СТАРТ», машины для централизованного контроля и многоканального цифрового регулирования типов «ЭЛРУ», «Зенит», «Цикл-2», «АМУР», «МАРС-200Р» и др.
Импульсные регуляторы вместе со специальными логико-вычислительными устройствами позволяют создавать системы экстремального регулирования, предназначенные для автоматического подержания максимального (минимального) значения регулируемой величины. Примерами экстремальных импульсных регуляторов являются частотно-импульсный экстремальный регулятор «ЭРА-1» и экстремальные пневматические регуляторы серии АРС (система «СТАРТ»).
Заключение
Совершенствование технологии и повышение производительности труда во всех отраслях народного хозяйства относятся к важнейшим задачам технического прогресса нашего общества. Решение этих задач возможно лишь при широком внедрении систем автоматического регулирования и управления как отдельными объектами, так и производством, отраслью и всем народным хозяйством в целом.
Научно-техническая революция, вызванная созданием цифровых вычислительных машин, сказалась на развитии многих отраслей науки и техники. Особо сильному влиянию подверглись теория и практика автоматического регулирования и управления объектами и совокупностями объектов как в гражданской, так и в военной технике.
Применение цифровой вычислительной техники открывает большие возможности при управлении такими сложными устройствами и системами, как прокатные станы, домны, бумагоделательные машины, поточные линии, подвижные объекты (самолеты, ракеты, космические корабли и др.), автоматизированные системы управления производством, железнодорожным транспортом, воздушным движением и т. п.
Список использованных источников
1. Шандров, Б.В. Технические средства автоматизации Текст: учебник для студ. высш. учеб. заведений / Б.В. Шандров, А.Д. Чудаков. - М.: Издательский центр «Академия», 2007. - 368 с. - ISBN: 978-5-7695-3624-3.
2. Ткачук, Ю.Н. Технические средства автоматизации полиграфического производства Текст: учеб. пособие / Ю.Н. Ткачук, Ю.В. Щербина. - Моск. гос. ун-т печати. - М.: МГУП - 2010. - 230 с. - ISBN 978-5-8122-1114-1.
3. Клюев, А.С. Наладка средств автоматизации и автоматических систем регулирования: Справочное пособие / А.С. Клюев, А.Т. Лебедев, С.А. Клюев, А.Г. Товарное, под ред. А.С. Клюева. - 2-е изд., перераб. и доп. - М.: Альянс, 2009. - 368 с: ил. - ISBN: 5-903034-84-5 978-5-903034-84-0.
4. Каганов, В.И. Компьютерный анализ импульсной системы автоматического регулирования / В.И. Каганов, С.В. Терещенко // Вестник Воронежского института МВД России. - 2011. - №2. - С. 6-12. - ISSN 2071-3584. датчик импульсный модулятор
5. Пурро В. Автоматизация процессов.
Размещено на Allbest.ru
...Подобные документы
Система автоматического регулирования температуры печи на базе промышленного регулятора Р-111. Поиск математической модели объекта управления в виде передаточной функции, выбор удовлетворительных по точности и качеству параметров настройки регулятора.
курсовая работа [594,8 K], добавлен 25.04.2012Регулирующие системы автоматического управления. Автоматические системы управления технологическими процессами. Системы автоматического контроля и сигнализации. Автоматические системы защиты. Классификация автоматических систем по различным признакам.
реферат [351,0 K], добавлен 07.04.2012Система автоматического регулирования процесса сушки доменного шлака в прямоточном сушильном барабане. Требования к автоматизированным системам контроля и управления. Обоснование выбора автоматического регулятора. Идентификация системы автоматизации.
курсовая работа [3,1 M], добавлен 26.12.2014Определение параметров объекта регулирования. Выбор типового регулятора АСР и определение параметров его настройки. Построение переходного процесса АСР с использованием ПИ-регулятора. Выбор технических средств автоматизации: датчики, контроллер.
курсовая работа [1,5 M], добавлен 30.11.2009Основные понятия о системах автоматического управления. Выборка приборов и средств автоматизации объекта. Разработка схемы технологического контроля и автоматического регулирования параметров давления, расхода и температуры пара в редукционной установке.
курсовая работа [820,3 K], добавлен 22.06.2012Явление ядерного магнитного резонанса, использование для спектрометрии. Преимущества и недостатки метода. Разработка оптического метода регистрации ЯМР для точного определения спектральных свойств кристаллов. Блок-схема импульсного спектрометра.
дипломная работа [1,5 M], добавлен 16.02.2016Технологический процесс ткачества. Проведение идентификации питающего бункера чесальной машины как объекта автоматического регулирования линейной плотности. Наблюдаемость и управляемость объекта управления. Выбор пропорционально-интегрального регулятора.
курсовая работа [3,0 M], добавлен 25.10.2009Сущность и принцип действия системы автоматического регулирования, ее разновидности и отличительные черты. Преимущества и недостатки САР по отклонению. Методика и этапы регулирования электронагревателя. Постановка эксперимента по снятию кривой разгона.
курсовая работа [116,1 K], добавлен 24.05.2009Выбор и расчет основных элементов нестабилизированной системы автоматического управления положением объекта. Устойчивость системы и синтез корректирующего устройства, обеспечивающего требуемые качественные показатели, описание принципиальной схемы.
курсовая работа [2,9 M], добавлен 18.04.2011Принципы функционирования и схемы систем автоматического управления по отклонению и возмущению, их достоинства и недостатки. Построение статистической характеристики газового регулятора давления, влияние его конструктивных параметров на точность работы.
контрольная работа [526,3 K], добавлен 16.04.2012Построение принципиальной и функциональной схемы автоматического управления микроклиматом теплицы по нескольким параметрам, методы управления им. Выбор типа технологического оборудования и расчет технических средств автоматики.
контрольная работа [178,2 K], добавлен 26.04.2010Автоматизация производственного процесса. Исследование динамических свойств объекта регулирования и регулятора. Системы автоматического регулирования уровня краски и стабилизации натяжения бумажного полотна. Уравнение динамики замкнутой системы.
курсовая работа [1,4 M], добавлен 31.05.2015Разработка аппарата управления. Определение структуры и расчет базы телемеханических сигналов. Основные виды двоичных кодов. Расчет помехоустойчивости передачи и приема многотактных сигналов. Порядок расчета помехоустойчивости передаваемой информации.
курсовая работа [962,6 K], добавлен 27.05.2022Идентификация моделей каналов преобразования координатных воздействий объекта управления. Реализация моделей на ЦВМ, подтверждение адекватности. Синтез, анализ системы автоматического регулирования простейшей структуры и повышенной динамической точности.
курсовая работа [1,5 M], добавлен 08.04.2013Описание установки как объекта автоматизации, варианты совершенствования технологического процесса. Расчет и выбор элементов комплекса технических средств. Расчет системы автоматического управления. Разработка прикладного программного обеспечения.
дипломная работа [4,2 M], добавлен 24.11.2014Технические данные системы охлаждения циркуляционного масла главного судового дизеля. Назначение системы автоматического регулирования температуры масла, ее особенности и описание схемы. Определение настроечных параметров регулятора температуры масла.
курсовая работа [1,9 M], добавлен 23.02.2013Рассмотрение основных особенностей моделирования адаптивной системы автоматического управления, характеристика программ моделирования. Знакомство со способами построения адаптивной системы управления. Этапы расчета настроек ПИ-регулятора методом Куна.
дипломная работа [1,3 M], добавлен 24.04.2013Построение технологической схемы объекта автоматического регулирования. Выбор датчика уровня жидкости в емкости, пропорционального регулятора, исполнительного механизма, электронного усилителя. Расчет датчика обратной связи, дискретности микроконтроллера.
курсовая работа [1,7 M], добавлен 20.10.2013Обзор специфических особенностей металлургических агрегатов как объектов автоматического управления. Техническая характеристика доменной печи. Разработка математической модели объекта и аппроксимация кривой разгона. Расчет параметров настройки регулятора.
курсовая работа [989,6 K], добавлен 05.12.2013Неразрушающий контроль материалов с использованием источника тепловой стимуляции. Композиты: виды, состав, структура, область применения и преимущества. Применение метода импульсно-фазовой термографии для определения дефектов в образце из углепластика.
курсовая работа [4,2 M], добавлен 15.03.2014