Классификация статических гидропередач

Статическая гидропередача как напорная линия всегда геометрически отделена от всасывающей, а усилия на рабочих органах определяются статическим давлением жидкости в магистралях. Универсальный регулятор скорости. Машины с качающимся блоком цилиндров.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 01.08.2015
Размер файла 181,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Классификация статических гидропередач

По назначению различают:

а) силовые гидропередачи, предназначенные главным образом для передачи механической энергии от какого-либо источника к рабочему органу машины трансформации момента или силы и изменения скорости движения рабочего органа; статический гидропередача цилиндр

б) гидравлические системы управления и автоматики, предназначенные главным образом для передачи движения и усиления входного командного сигнала.

К силовым гидропередачам относятся гидравлические приводы вертикального и горизонтального наведения многих пусковых и артиллерийских установок, гидравлические подъемные и подъемно - уравновешивающие механизмы, современные механизмы вывешивания и горизонтирования самоходных агрегатов и многие другие гидравлические механизмы.

К гидравлическим системам управления и автоматики обычно относят гидравлические усилители различных типов, гидравлические суппорты металлорежущих станков, гидравлические рулевые машины самолетов, гидропривод рулей тяжелых автомобилей, гидравлические системы торможения, стопорения и тому подобные механизмы.

В состав многих современных гидравлических агрегатов входят как силовая часть, так и гидравлическая система управления и автоматики. Т. е. в таких агрегатах имеется не менее двух, трех гидравлических контуров, завязанных прямыми и обратными связями, и такие агрегаты чаще всего называют гидравлическими или электрогидравлическими следящими приводами (ГСП или ЭГСП).

По устройству и внешнему конструктивному оформлению силовые гидропередачи и гидравлические системы управления и автоматики в принципе могут быть одинаковыми. Однако по ряду параметров и некоторым деталям они существенно различны. Например, силовые гидропередачи, как правило, работают при высоких давлениях (10-30) МПа и имеют высокий кпд (более 0,6-0,75) , системы автоматики и управления работают при сравнительно низких (до 2,5 МПа) давлениях, к ним предъявляются очень высокие требования по точности передачи командного сигнала, а по кпд требования не высокие (порядка 0,2).

По характеру движения различают:

а) вращательные или ротационные;

б) возвратно-поступательные;

в) поворотные.

Этот классификационный признак в значительной степени условен, т.к. учитывает характер движения лишь выходного звена гидропередачи. (входное звено в 99 случаях из 100 имеет вращательное движение - исключение составляют гидравлические тормозные устройства). Вместе с тем этот признак весьма практичен, что позволяет специалистам одним-двумя словами характеризовать принципиальные конструктивные особенности основных элементов гидропередачи.

По способу регулирования различают гидроприводы:

а) с объемным регулированием,

б) с дроссельным регулированием,

с) со ступенчатым регулированием.

Сущность объемного регулирования заключается в бесступенчатом изменении производительности насоса (или рабочего объема гидродвигателя) в процессе его работы. Изменять производительность насоса, при постоянстве скорости вращения его вала, можно тремя путями: изменением длины рабочего хода замыкателя (поршня или пластины), изменением эффективной величины зон нагнетания и всасывания в распределителе и изменением величины сдвига фаз работающих попарно замыкателей.

Гидроприводы с объемным регулированием являются наиболее сложными гидравлическими агрегатами и с точки зрения КПД наиболее совершенными. Впервые их стали использовать в военной технике, которая и в настоящее время является одним из основных потребителей этих машин.

Объемное регулирование присуще, как правило, силовому приводу. Наиболее характерным признаком этого способа регулирования является то, что упорядоченное движение жидкости осуществляется по замкнутому контуру и что давление на выходе насоса незначительно отличается от давления на входе в гидродвигатель. При этом давление нагнетания определяется величиной нагрузки на выходе привода.

Принцип дроссельного регулирования базируется на законе гидравлики, выводится из уравнения Бернулли и обычно записывается в следующем виде

где m= 0,6-0,75 - коэффициент расхода (опытная величина),

S - площадь щели (отверстия),

DР - перепад давлений в полостях до щели и за ней,

r - плотность жидкости .

Приводы с дроссельным регулированием также широко используются в военной технике и особенно в системах управления и автоматики. Эти приводы дешевле (стоимость регулируемого насоса приблизительно в 4-5 раз выше нерегулируемого той же конструктивной схемы). Правда, у них ниже КПД. Характерной особенностью гидроприводов с дроссельным регулированием является наличие разомкнутости в контуре циркуляции жидкости и независимость давления на выходе из насоса от нагрузки на гидродвигатель (Р1 = const - поэтому и КПД ниже при малых нагрузках).

В гидроприводах с комбинированным регулированием используются оба вышеуказанных принципа. На практике они встречаются редко.

Универсальный регулятор скорости (УРС)

Рис. 1 - Принципиальная схема УРС приведена на рис. 1.

В блоке цилиндров 1 расположены поршни 2. Золотниково-распределительное устройство 3 обеспечивает образование двух полостей - полости нагнетания и полости всасывания рабочей жидкости. Поршни при помощи штоков 4 соединены с качающейся шайбой 6. Шайба помещена в чашку 5. Шарнир 7 обеспечивает передачу вращения от входного вала, жестко связанного с блоком цилиндров, качающейся шайбе. В основу данной машины заложен кривошипно-шатунный механизм (рис. 2).

Рис. 2

Только таких механизмов несколько. Все они объединены в один блок. Кривошип R заменен шайбой и повернут на 90о в плоскости вращения, при этом шайба на подшипниках покоится в чашке, при помощи которой может наклоняться от начального положения на угол +/- a. Поршни с цилиндрами разнесены от оси вращения таким образом, что угол g » 0о, и вращаются вместе с валом и шайбой.

Нетрудно убедиться, что каждый поршень будет совершать одновременно два движения: переносное (в пространстве) и относительное (возвратно-поступательное).

Для изучения существа работы гидравлической машины как преобразователя механической энергии в энергию потока жидкости и наоборот, имеет значение в основном относительное движение, в процессе которого за один оборот вала машины (за один цикл переносного движения поршень) совершает 2 хода длиной

h = 2 R * sina

Рис. 3

Один ход (на половине оборота вала) используется для всасывания жидкости в полость цилиндра, другой - для вытеснения ее из цилиндра (нагнетания в магистраль). Это обеспечивается специальной конфигурацией каналов золотниково-распределительного устройства (рис. 3).

Величина хода поршня, пропорциональна a, и, при прочих равных условиях, определяет количество подаваемой насосом жидкости. Если в процессе вращения вала с одной и той же скоростью и в одну сторону изменять угол a, например, от 20о до 0о, то будет изменяться и количество перекачиваемой жидкости от какого-то значения Q до 0 (естественно a не может быть равен или превышать 45о, обычно a = 15?30о).

При переходе шайбы через вертикальную ось (ось “мертвых положений”), направление потока жидкости изменится на противоположное, т.е. произойдет реверс потока жидкости и, в итоге, реверс движения выходного вала.

Так эта машина работает в роли насоса. Если же под поршни такой машины, через распределитель, подавать жидкость под давлением от какого-либо источника, то она будет гидродвигателем, в котором энергия потока жидкости будет преобразовываться в механическую энергию и через его вал передаваться управляемому рабочему органу.

То есть ротационно-поршневые машины, как и всякие другие типы гидравлических машин, в принципе обратимы (необратимыми являются машины лишь с клапанным распределением) и в этом плане они аналогичны электрическим машинам постоянного тока.

Поскольку это так, то очевидно гидропривод может быть образован из двух принципиально одинаковых машин, одна из которых регулируема и используется, например, в качестве насоса, вращаясь в одну и ту же сторону с w1 = const, а другая нерегулируема и используется в качестве гидродвигателя (гидромотора), для которого w2 = var.

Именно по такой схеме в 1905 году в Америке, инженером Дженни был изобретен первый высококачественный гидравлический агрегат, предназначенный для передачи механической энергии от какого-либо источника к рабочему органу машины и регулирования скорости движения этого органа.

Этот аппарат, названный вначале “муфтой Дженни”, не был признан на родине создателя. Однако, был сразу же оценен русскими инженерами военно-морского флота, прошедшими Цусимское сражение, в результате которого для русского флота трагическую роль сыграл электропривод на башенных артиллерийских установках.Машина очень хорошо отработана, обладает большой долговечностью и надежностью. Однако, по ряду параметров (частота вращения 500 об/мин), давление 15?75 кГ/см2) не удовлетворяет требованиям некоторых современных отраслей техники, и в частности требованиям к приводам летательных аппаратов, пусковых и артиллерийских установок, танков, самоходных кранов и т.п. Пониженные скорости и рабочие давления обусловлены кинематическими особенностями машины - одношарнирным (несинхронным) соединением ведущего и ведомого звеньев (вал-блок цилиндров и ведомая шайба-блок цилиндров). Одношарнирное соединение валов, как известно, ведет к неравномерности текущей скорости ведомого звена (шайба), что в свою очередь вызывает дополнительные динамические нагрузки, в первую очередь на штоки поршней, что ведет к ограничению вышеуказанных параметров. Поэтому в дальнейшем были изобретены более совершенные аксиально-поршневые машины.

Машины с качающимся блоком цилиндров

В машинах данного типа введено двух шарнирное соединение. При этом, шайба названа диском, который располагается перпендикулярно к оси вращения, а блок цилиндров располагается в так называемой “люльке” и может изменять положение в пространстве.

Рис. 4

Двух шарнирное (синхронное) соединение ведущего и ведомого звеньев позволило повысить скорость вращения валов до 1000 об/мин для мощных машин и до 10000 об/мин относительно маломощных. Удалось также повысить рабочее давление до 150?210 кГ/см2 (280?320 кГ/см2). Габариты и веса гидродвигателей при этом по сравнению с гидродвигателями УРС той же мощности сократились в 10 и более раз. Правда, габариты регулируемого насоса (рис. 4) остались практически такими же, ибо для изменения положения в пространстве блока цилиндров в корпусе насоса требуется больший объем, чем для качающейся шайбы. Этот тип машин выпускается серийно во всех развитых странах мира. Причем по сравнению с другими типами объем их выпуска самый большой.

Машина с поворотным диском и косой шайбой

Эти разновидности машин получаются в том случае, если уничтожить механические связи между поршнями и шайбой (диском). Чтобы обеспечить возвратно-поступательное движение поршней (плунжеров) в цилиндрах, необходимы какие-то дополнительные мероприятия: либо прижим поршней избыточным давлением в полости всасывания, либо введение под поршни специальных пружин (рис. 5.).

Рис. 5

Формула для определения хода поршня получает вид:

h = 2 R tga ( R не равно const )

Эффект регулирования достигается путем изменения угла наклона a поворотного диска или косой шайбы. Машины компакты, особенно хороши в качестве гидромоторов машины с косой шайбой

Радиально-поршневые машины

В процессе вращения ротора поршень также совершает два движения: переносное и относительное, конечно, если имеет место эксцентриситет е.

В основу заложен механизм вращающейся кулисы, который сам по себе образован из кривошипно-шатунного механизма (рис. 6).

В относительном движении поршень совершает также два хода, длиной h = 2e, один из которых используется для всасывания жидкости, а другой для нагнетания. Регулирование достигается за счет изменения эксцентриситета e.

Рис. 6

Машины обратимы, просты по устройству, по сравнению с аксиальными, менее чувствительны к загрязнению жидкости. В силу последнего обстоятельства широко используются в кузнечно-прессовом оборудовании, которое постоянно работает в условиях загрязненности. Однако эти машины относительно металлоемки, у них велик момент инерции вращающихся частей (немного меньше чем у электродвигателей). Поэтому в гидроприводах специальной техники они как правило не находят применения.

Эксцентриковые машины

Бывают схемы с эксцентриковым валом, примерно такие же с коленчатым валом, рядные и V-образные. В процессе вращения эксцентрика или коленчатого вала, поршень совершает как правило, лишь относительное движение (правда есть схемы, где поршень совершает покачивающее движение - обратимые машины с цапфенным распределением).

Ход поршня определяется точно такой же формулой, как и для радиальных машин: h =2e. В принципе в этих машинах можно также найти подобие кривошипно-шатунного механизма.

Распределение жидкости чаще всего клапанное, хотя есть и с золотниковым (цапфенным) распределением. Клапанное распределение в принципе инерционно, поэтому также машины относительно тихоходны (1000,1500) об/мин; их трудно сделать регулируемыми, хотя возможно, но без реверса. Положительны тем, что при клапанном распределении легче достигаются высокие давления (до 300,500) кГ/см2 . Широко применяются в приводах ПУ и ряда агрегатов общепромышленного назначения.

Заключая краткий обзор основных разновидностей ротационно-поршневых машин, отметим, что наиболее распространенными являются аксиальные машины. Их выпуск составляет примерно 80% выпуска всех ротационно-поршневых машин и около 45% выпуска всего мирового производства насосов и гидромоторов, включая лопастные, шестеренные и червячно-винтовые машины. Это обусловлено тремя качествами: их быстроходностью, относительно малыми габаритами, простотой и надежностью регулирования.

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика схемы аксиально-поршневого насоса с наклонным блоком цилиндров и диском. Анализ основных этапов расчета и проектирования аксиально-поршневого насоса с наклонным блоком. Рассмотрение конструкции универсального регулятора скорости.

    курсовая работа [4,1 M], добавлен 10.01.2014

  • Анализ преимуществ гидропередач по сравнению с механическими передачами. Классификация и принцип работы гидроприводов. Определение внутреннего диаметра трубопровода, потери давления в местных сопротивлениях. Радиально-поршневые насосы и гидромоторы.

    контрольная работа [102,6 K], добавлен 10.02.2015

  • Описание работы схемы объемного гидропривода. Расчет и выбор насоса. Основные требования при выборе параметров гидроаппаратов и кондиционеров рабочей жидкости. Потери давления в гидролиниях и гидроаппаратах. Усилия и скорости рабочих органов насоса.

    курсовая работа [337,0 K], добавлен 12.01.2016

  • Гидропривод как совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости, находящейся под давлением. Знакомство с этапами проектирования объемного гидропривода землеройно-транспортной машины.

    курсовая работа [803,5 K], добавлен 28.05.2019

  • Описание схемы и принципа действия гидравлической рулевой машины. Проектирование силового цилиндра и золотникового распределителя. Расчёт скорости движения поршня и расхода жидкости. Определение диаметра сопла. Построение регулировочной характеристики.

    курсовая работа [1,2 M], добавлен 11.12.2021

  • Расчет основных параметров объемного гидропривода: выбор трубопровода, рабочей жидкости и давления в системе; определение загрузочного момента на валах, скорости их вращения и перемещения, рабочего усилия на штоках; подбор насоса и гидродвигателя.

    курсовая работа [454,5 K], добавлен 26.10.2011

  • Расчет и выбор элементов силовой части электропривода. Построение статических характеристик разомкнутого электропривода. Синтез и расчет параметров регуляторов, моделирование переходных процессов скорости и тока электропривода с помощью MATLAB 6.5.

    курсовая работа [903,7 K], добавлен 10.05.2011

  • Разработка чертежа отливки. Выбор машины для литья под давлением. Технологический процесс изготовления детали "Крышка". Проектирование пресс-формы. Расчет количества машин для литья под давлением. Расчет расхода электроэнергии, сжатого воздуха, воды.

    дипломная работа [1,5 M], добавлен 09.02.2012

  • Классификация центробежных насосов, скорость жидкости в рабочем колесе. Расчет центробежного насоса: выбор диаметра трубопровода, определение потерь напора во всасывающей и нагнетательной линии, полезной мощности и мощности, потребляемой двигателем.

    курсовая работа [120,8 K], добавлен 24.11.2009

  • Единицы измерения давления, основное уравнение гидростатики, параметры сжимаемости жидкости, уравнение Бернулли. Расход жидкости при истечении через отверстие или насадку, режимы движения жидкости. Гидравлические цилиндры, насосы, распределители, баки.

    тест [525,3 K], добавлен 20.11.2009

  • Взаимодействие рабочих органов машин с грунтом. Землеройно-транспортные машины: бульдозеры, среперы. Классификация и функции экскаваторов: одноковшовые строительные, полноповоротные экскаваторы с механическим и гидравлическим приводом, планировщики.

    реферат [1,6 M], добавлен 11.01.2014

  • Составление принципиальной гидросхемы и описание ее работы в автоматическом режиме. Расчет параметров и выбор гидроаппаратуры. Потери давления в гидросистеме. Максимально необходимый расход жидкости двумя насосами. Диаметр трубопровода в линии нагнетания.

    курсовая работа [246,1 K], добавлен 29.10.2012

  • Строение и свойства полиэтилентерефталата (ПЭТ), его получение и применение. Основные разновидности литья пластмасс под давлением. Выбор термопластавтомата, технология производства ПЭТ-преформ. Расчет пластификационной производительности литьевой машины.

    контрольная работа [56,5 K], добавлен 08.01.2013

  • Напорная характеристика насоса (напор, подача, мощность на валу). График потребного напора гидравлической сети. Расчет стандартного гидроцилиндра, диаметра трубопровода и потери давления в гидроприводе. Выбор насоса по расходу жидкости и данному давлению.

    контрольная работа [609,4 K], добавлен 08.12.2010

  • Проектирование объемной гидропередачи привода рабочего органа строительно-дорожной машины. Разработка принципиальной гидравлической схемы. Описание принципа действия гидропередачи, подбор и назначение ее гидроагрегатов. Расчет диаметра трубопровода.

    курсовая работа [3,1 M], добавлен 26.10.2011

  • Строение, разновидности автовышек. Системы управления гидроопорами. Безопасность. Особенности эксплуатации машины в зависимости от времени года. Рабочие жидкости для гидросистем: водомаслянные эмульсии и синтетические жидкости на различных основах.

    реферат [728,4 K], добавлен 17.11.2008

  • Устройство и принцип работы гидропривода станка. Расчет расходов в магистралях с учетом утечек жидкости. Выбор гидроаппаратуры и гидролиний. Определение производительности насоса, потерь давления на участках гидросистемы, толщины стенок трубопровода.

    курсовая работа [819,5 K], добавлен 19.10.2014

  • Вычисление параметров гидродвигателя, насоса, гидроаппаратов, кондиционеров и трубопроводов. Выбор рабочей жидкости, определение ее расхода. Расчет потерь давления. Анализ скорости рабочих органов, мощности и теплового режима объемного гидропривода.

    курсовая работа [988,0 K], добавлен 16.12.2013

  • Производительность лентосоединительной машины UNIlap и норма обслуживания оператора машины. Расчет производительности гребнечесальной машины: нормировочная карта и вычисление повторяемости рабочих приемов. Расчет производительности кольцевой прядильной.

    курсовая работа [163,2 K], добавлен 19.08.2014

  • Расчет и подбор основных параметров гидродвигателей. Определение полезных перепадов давления и расходов рабочей жидкости. Вычисление гидравлических потерь в напорной и сливной магистралях. Выбор насоса и расчет мощности приводного электродвигателя.

    курсовая работа [318,3 K], добавлен 26.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.