Основы взаимозаменяемости деталей машин
Понятие о номинальном, действительном, предельных размере, предельных отклонениях, допусках, посадках. Расчет, выбор посадок с гарантированным зазором. Области применения рекомендуемых посадок с зазором. Система допусков и посадок для подшипников качения.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.08.2015 |
Размер файла | 6,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ОСНОВЫ ВЗАИМОЗАМЕНЯЕМОСТИ ДЕТАЛЕЙ МАШИН
Содержание
1. Понятие о взаимозаменяемости и ее видах
2. Понятие о номинальном, действительном и предельных размерах, предельных отклонениях, допусках, посадках
3 Расчет и выбор посадок с гарантированным зазором
4. Области применения некоторых рекомендуемых посадок с зазором
5. Расчет и выбор переходных посадок
6. Расчет и выбор посадок с гарантированным натягом
7. Система допусков и посадок для подшипников качения
8. Предельные калибры для гладких цилиндрических деталей
9. Взаимозаменяемость, методы и средства контроля зубчатых передач
10. Взаимозаменяемость, методы и средства контроля резьбовых соединений
11. Понятие о размерных цепях. Методы расчета размерных
Цепей
Литература
1. Понятие о взаимозаменяемости и ее видах
Взаимозаменяемостью изделий (машин, приборов, механизмов и т. д.), их частей или других видов продукции (сырья, материалов, полуфабрикатов и т. д.) называют их свойство равноценно заменять при использовании любой из множества экземпляров изделий, их частей или иной продукции другим однотипным экземпляром. Наиболее широко применяют полную взаимозаменяемость, которая обеспечивает возможность беспригоночной сборки (или замены при ремонте) любых независимо изготовленных с заданной точностью однотипных деталей в сборочные единицы, а последних - в изделия при соблюдении предъявляемых к ним (к сборочным единицам или изделиям) технических требований по всем параметрам качества. Полная взаимозаменяемость возможна только тогда, когда размеры, форма, механические, электрические и другие количественные и качественные характеристики деталей и сборочных единиц после изготовления находятся в заданных пределах и собранные изделия удовлетворяют техническим требованиям. Выполнение требований к точности деталей и сборочных единиц изделий является важнейшим исходным условием обеспечения взаимозаменяемости. Кроме этого, для обеспечения взаимозаменяемости необходимо выполнять и другие условия (устанавливать оптимальные номинальные значения параметров деталей и сборочных единиц, выполнять требования к материалу деталей, технологии их изготовления и контроля и т. д.). Комплекс научно-технических исходных положений, выполнение которых при конструировании, производстве и эксплуатации обеспечивает взаимозаменяемость деталей, сборочных единиц и изделий, называют принципом взаимозаменяемости.
Взаимозаменяемыми могут быть детали, сборочные единицы и изделия в целом. В первую очередь такими должны быть детали и сборочные единицы, от которых зависят надежность и другие эксплуатационные показатели изделий. Это требование, естественно, распространяется и на запасные части.
Свойство собираемости и возможности равноценной замены любого экземпляра взаимозаменяемой детали и сборочной единицы любым другим однотипным экземпляром позволяет изготовлять детали в одних цехах машиностроительных заводов серийного и массового производства, а собирать их - в других. При сборке используют стандартные крепежные детали, подшипники качения, электротехнические, резиновые и пластмассовые изделия, а часто их унифицированные агрегаты, получаемые по кооперации от других предприятии. При полной взаимозаменяемости сборку выполняют без доработки деталей и сборочных единиц. Такое производство называют взаимозаменяемым.
При полной взаимозаменяемости упрощается процесс сборки - он сводится к простому соединению деталей рабочими преимущественно невысокой квалификации; появляется возможность точно нормировать процесс сборки во времени, устанавливать необходимый темп работы и применять поточный метод; создаются условия для автоматизации процессов изготовления и сборки изделии, а также широкой специализации и кооперирования заводов, при которых завод-поставщик изготовляет унифицированные изделия, сборочные единицы и детали ограниченной номенклатуры и поставляет их заводу, выпускающему основные изделия; упрощается ремонт изделий, так как любая изношенная или поломанная деталь или сборочная единица может быть заменена новой (запасной).
Полную взаимозаменяемость экономически целесообразно применять для деталей, изготовленных с допусками квалитетов не выше 6 и для сборочных единиц, состоящих из небольшого числа деталей, а также в случаях, когда несоблюдение заданных зазоров или натягов недопустимо даже у части изделий. Иногда для удовлетворения эксплуатационных требований необходимо изготовлять детали и сборочные единицы с малыми экономически неприемлемыми или технологически трудно выполнимыми допусками. В этих случаях для получения требуемой точности сборки применяют групповой подбор деталей (селективную сборку), компенсаторы, регулирование положения некоторых частей машин и приборов, пригонку и другие дополнительные технологические мероприятия при обязательном выполнении требований к качеству сборочных единиц и изделий. Такую взаимозаменяемость называют неполной (ограниченной). Ее можно осуществлять не по всем, а только по отдельным геометрическим или другим параметрам изделия.
Внешняя взаимозаменяемость - это взаимозаменяемость покупных и кооперируемых изделий, монтируемых в другие более сложные изделия, и сборочных единиц по эксплуатационным показателям, а также по размерам и форме присоединительных поверхностей.
Внутренняя взаимозаменяемость распространяется на детали, сборочные единицы и механизмы, входящие в изделие. Например, в подшипнике качения внутреннюю групповую взаимозаменяемость имеют тела качения и кольца.
Уровень взаимозаменяемости производства можно характеризовать коэффициентом взаимозаменяемости Kв, равным отношению трудоемкости изготовления взаимозаменяемых деталей и сборочных единиц к общей трудоемкости изготовления изделия. Значение этого коэффициента может быть различным, однако степень его приближения к единице является объективным показателем технического уровня производства.
Совместимость - это свойство объектов занимать свое место в сложном готовом изделии и выполнять требуемые функции при совместной или последовательной работе этих объектов и сложного изделия в заданных эксплуатационных условиях.
2. Понятие о номинальном, действительном и предельных размерах, предельных отклонениях, допусках и посадках
Основные термины и определения установлены ГОСТ 25346-82.
Номинальный размер (D, d, l и др.) - размер, который служит началом отсчета отклонений и относительно которого определяют предельные размеры. Для деталей, составляющих соединение, номинальный размер является общим. Номинальные размеры находят расчетом их на прочность и жесткость, а также исходя из совершенства геометрических форм и обеспечения технологичности конструкций изделий.
Для сокращении числа типоразмеров заготовок, режущего и измерительного инструмента, штампов, приспособлений, а также для облегчения типизации технологических процессов значения размеров, полученные расчетом, следует округлять (как правило, в большую сторону) в соответствии со значениями.
Действительный размер - размер, установленный измерением с допускаемой погрешностью. Этот термин введен потому, что невозможно изготовить деталь с абсолютно точными требуемыми размерами и измерить их без внесения погрешности. Действительный размер детали в работающей машине вследствие ее износа, упругой, остаточной, тепловой деформаций и других причин отличается от размера, определенного в статическом состоянии или при сборке. Это обстоятельство необходимо учитывать при точностном анализе механизма в целом.
Предельные размеры детали - два предельно допускаемых размера, между которыми должен находиться или которым может быть равен действительный размер годной детали. Больший из них называют наибольшим предельным размером, меньший - наименьшим предельным размером.
Обозначают их соответственно Dmax и Dmin для отверстия, dmax и dmax - для вала (рис. 1). Сравнение действительного размера с предельными дает возможность судить о годности детали.
ГОСТ 25346-82 устанавливает понятия проходного и непроходного пределов размера. Проходной предел - термин, применяемый к тому из двух предельных размеров, который соответствует максимальному количеству материала, а именно верхнему пределу для вала и нижнему пределу для отверстия (при применении предельных калибров речь идет о предельном размере, проверяемом проходным калибром).
Непроходной предел - термин, применяемый к тому из двух предельных размеров, который соответствует минимальному количеству материала, а именно нижнему пределу для вала и верхнему пределу для отверстия (при применении предельных калибров речь идет о предельном размере, проверяемом непроходным калибром).
Для упрощения чертежей введены предельные отклонения от номинального размера: верхнее предельное отклонение ES, es - алгебраическая разность между наибольшим предельным и номинальным размерами; нижнее предельное отклонение EI, ei - алгебраическая разность между наименьшим предельным и номинальным размерами. Для отверстия ES=Dmax-D; EI=Dmin-D; для вала es=dmax-D; ei=dmin-D (рис. 1).
Рис. 1. Поля допусков отверстия и вала при посадке с зазором (отверстия положительны, отклонения вала отрицательны)
Действительным отклонением называют алгебраическую разность между действительным и номинальным размерами. Отклонение является положительным, если предельный или действительный размер больше номинального, и отрицательным, если указанные размеры меньше номинального.
На машиностроительных чертежах номинальные и предельные линейные размеры и их отклонения проставляют в миллиметрах без указания единицы, например 180; угловые размеры и их предельные отклонения - в градусах, минутах или секундах, с указанием единицы, например 0°, 30', 40". Предельные отклонения в таблицах допусков указывают в микрометрах. При равенстве абсолютных значений отклонений их указывают один раз со знаком ± рядом с номинальным размером, например 60±0.2; 120°±20°. Отклонение, равное нулю, на чертежах не проставляют, наносят только одно отклонение - положительное на месте верхнего или отрицательное на месте нижнего предельного отклонения, например 200+0.06
Допуском Т называют разность между наибольшим и наименьшим допускаемыми значениями того или иного параметра. Допуск Т размера - разность между наибольшим и наименьшим предельными размерами или абсолютное значение алгебраической разности между верхним и нижним отклонениями. Допуск всегда положителен. Он определяет допускаемое поле рассеяния действительных размеров годных деталей в партии, т. е. заданную точность изготовления. С увеличением допуска качество изделий, как правило, ухудшается, но стоимость изготовления уменьшается.
Для упрощения допуски можно изображать графически в виде полей допусков (рис. 2). Поле допуска - поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется значением допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии. Нулевая линия - линия, соответствующая номинальному размеру, от которой откладывают отклонения размеров при графическом изображении допусков и посадок. Если нулевая линия расположена горизонтально, положительные отклонения откладывают вверх от нее, а отрицательные - вниз.
Рис. 2. Поля допусков отверстия и вала
Две или несколько подвижно или неподвижно соединяемых деталей называют сопрягаемыми. Поверхности, по которым происходит соединение деталей, называют сопрягаемыми. Остальные поверхности называют несопрягаемыми (свободными). В соответствии с этим различают размеры сопрягаемых и несопрягаемых (свободных) поверхностей. В соединении деталей, входящих одна в другую, есть охватывающие и охватываемые поверхности.
Вал - термин, применяемый для обозначения наружных (охватываемых) элементов (поверхностей) деталей. Отверстие - термин, применяемый для обозначения внутренних (охватывающих) элементов (поверхностей) деталей. Термины отверстие и вал относятся не только к цилиндрическим деталям круглого сечения, но и к элементам деталей другой формы, например, ограниченным двумя параллельными плоскостями (паз, шпонка). Основной вал - вал, верхнее отклонение которого равно нулю (es=0). Основное отверстие - отверстие, нижнее отклонение которого равно нулю (ЕI=0). Допуски размеров охватывающей и охватываемой поверхностей сокращенно называют соответственно допуском отверстия ТD и допуском вала Td.
Посадкой называют характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов. Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению.
В зависимости от взаимного расположения полей допусков отверстия и вала посадка может быть: с гарантированным зазором (рис. 1), с гарантированным натягом или переходной, при которой возможно получение как зазора, так и натяга. Схемы полей допусков для разных посадок даны на рис. 2.
Зазор S - разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей. Наибольший Smax, наименьший Smin и средний Sm зазоры определяют по формулам:
Smax=Dmax-dmin; Smin=Dmin-dmax; Sm=(Smax+Smin)/2.
Натяг N - разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия. Натяг обеспечивает взаимную неподвижность деталей после их сборки. Наибольший Nmax, наименьший Nmin и средний Nm натяги определяют по формулам:
Nmax=dmax-Dmin; Nmin=dmin-Dmax; Nm=(Nmax-Nmin)/2.
Посадка с гарантированным зазором - посадка, при которой обеспечивается зазор в соединении (поле допуска отверстия расположено над полем допуска вала, рис. 3, а). К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала, т. е. Smin=0. Наиболее распространенными посадками с гарантированным зазором являются: F(f), E(e), C(c), D(d).
Посадка с гарантированным натягом - посадка, при которой обеспечивается натяг в соединении (поле допуска отверстия расположено под полем допуска вала, рис. 3, б). Наиболее распространенными посадками с гарантированным натягом являются: P(p), S(s), U(u), Z(z).
Переходная посадка - посадка, при которой возможно получение как зазора, так и натяга (поля допусков отверстия и вала перекрываются частично или полностью, рис. 3, в). Наиболее распространенными переходными посадками являются: K(k), M(m), N(n), Is(is).
Для количественной оценки точности деталей в машино- и приборостроении установлены 19 квалитетов точности: 01, 0, 1, 2, …, 17 (точность уменьшается по мере увеличения номера квалитета).
3. Расчет и выбор посадок с гарантированным зазором
Наиболее распространенным типом ответственных подвижных соединений являются подшипники скольжения, работающие со смазочным материалом. Для обеспечения наибольшей долговечности необходимо, чтобы при работе в установившемся режиме износ подшипников был минимальным. Это достигается при жидкостной смазке, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазочного материала. Наибольшее распространение имеют гидродинамические подшипники, в которых смазочный материал увлекается вращающейся цапфой в постепенно сужающийся (клиновый) зазор между цапфой и вкладышем подшипника, в результате чего возникает гидродинамическое давление, превышающее нагрузку на опору и стремящееся расклинить поверхности цапфы и вкладыша. При этом вал отделяется от поверхности вкладыша и смещается по направлению вращения. При определенной частоте вращения вала (остальные факторы постоянны) создастся равновесие гидродинамического давления и сил, действующих на опору.
Рис. Возможные расположения полей допусков валов в системе отверстия: а - посадки с гарантированным зазором; б - переходные посадки; в - посадки с гарантированным натягом
Положение вала в состоянии равновесия определяется абсолютным е и относительным Х=2e/S эксцентриситетами. Поверхности цапфы и вкладыша подшипника при этом разделены переменным зазором, равным hmin в месте их наибольшего сближения и hmax=S-hmln на диаметрально противоположной стороне. Наименьшая толщина масляного слоя hmin связана с относительным эксцентриситетом X зависимостью:
hmin=0,5S-е=0,5S(1-S).
Для обеспечения жидкостной смазки необходимо, чтобы микронеровности цапфы и вкладыша подшипника не зацеплялись, т.е. чтобы масляный слой не имел разрывов. Это возможно при толщине масляного слоя в самом узком месте, равном
hmin ?hм.с.?Rz1+Rz2+Дф.+Др.+Дизг.+Дд,
где hм.с. - толщина масляного слоя, при котором: обесценивается жидкостная смазка (иногда толщину hм.с. называют критической и обозначают hкр); Rz1, Rz2 - высота неровностей соответственно вкладыша подшипника и цапфы вала; Дф, Др - поправки, учитывающие влияние погрешностей (формы и расположения цапфы и вкладыша; Д - поправка, учитывающая влияние изгиба вала и других деформаций деталей подшипникового узла; Д - добавка, учитывающая отклонения нагрузки, скорости, температуры от расчетных, а также механические включения в масло и другие неучтенные факторы. Для выбора оптимальных посадок необходимо знать зависимость толщины масляного слоя в месте наибольшего сближения цапфы и вкладыша подшипника от зазора S. Гюмбелем получена соответствующая зависимость hmin=f(S) при постоянных значениях отношения l/d и угла охвата подшипника, показанная на рис. 4.
4. Области применения некоторых рекомендуемых посадок с зазором
предельный отклонение допуск зазор
Посадку Н5/h4 (Smin=0, Smax=ТD+TD) назначают для пар с точным центрированием и направлением, в которых допускается проворачивание и продольное перемещение деталей при регулировании. Эти посадки можно использовать вместо переходных (в том числе для сменных частей). Для вращающихся деталей их применяют только при малых скоростях и нагрузках.
Рис. 4. Зависимость наименьшей толщины масляного слоя hmin от диаметрального зазора S
Посадку H6/h5 назначают при высоких требованиях к точности центрирования (например, пиноли в корпусе задней бабки токарного станка, измерительных зубчатых колес на шпинделях зубоизмерительных приборов), посадку Н7/h6 (предпочтительную) - при менее жестких требованиях к точности центрирования (например, сменных зубчатых колес в станках, корпусов под подшипники качения в станках, автомобилях и других машинах, поршня в цилиндре пневматических инструментов, сменных втулок кондукторов и т.п.).
Посадку Н8/h7 (предпочтительную) назначают для центрирующих поверхностей, когда можно расширить допуски на изготовление при несколько пониженных требованиях к соосности.
ЕСДП допускает применение посадок типа Н/h, образованных из полей допусков квалитетов 9-12 для соединений при низких требованиях к точности центрирования (например, для посадки шкивов, зубчатых колес, муфт и других деталей на вал с креплением шпонкой при передаче вращательного движения, при невысоких требованиях к точности механизма в целом и небольших нагрузках).
Посадки H5/g4, H6/g5 и H7/g6 (последняя предпочтительная) имеют наименьший гарантированный зазор из всех посадок с зазором. Их применяют для точных подвижных соединений, требующих гарантированного, но небольшого зазора для обеспечения точного центрирования (например, золотника в пневматической сверлительной машине, шпинделя в опорах делительной головки, в плунжерных парах и т.п.).
Из всех подвижных посадок наиболее распространены Н7/f7 (предпочтительная), Н8/f - и подобные им посадки, образованные из полей допусков квалитетов 6, 8 и 9. Например, посадку H7/f7 применяют в подшипниках скольжения малых и средних по мощности электродвигателей, поршневых компрессорах, в коробках скоростей станков, центробежных насосах, в двигателях внутреннего сгорания и других машинах.
Посадки Н7/е8, Н8/е8 (предпочтительные), Н7/е7 и посадки, подобные им, образованные из полей допусков квалитетов 8 и 9, обеспечивают легкоподвижное соединение при жидкостной смазке. Их применяют для быстровращающихся валов больших машин. Например, первые две посадки применяют для валов турбогенераторов и электромоторов, работающих с большими нагрузками. Посадку Н9/е9 применяют для крупных подшипников в тяжелом машиностроении, свободно вращающихся на валах зубчатых колес и других деталей, включаемых муфтами сцепления, для центрирования крышек цилиндров.
Посадки Н8/d9, H9/d9 (предпочтительные) и подобные им посадки, образованные из полей допусков квалитетов 7, 10 и 11, применяют сравнительно редко. Например, посадку H7/d8 применяют при большой частоте вращения и относительно малом давлении в крупных подшипниках, а также в сопряжении поршень - цилиндр в компрессорах, посадку Н9/d9 - при невысокой точности механизмов.
Посадки Н7/с8 и Н8/с9 характеризуются значительными гарантированными зазорами, используют для соединений с невысокими требованиями к точности центрирования. Наиболее часто эти посадки назначают для подшипников скольжения (с различными температурными коэффициентами линейного расширения вала и втулки), работающих при повышенных температурах (в паровых турбинах, двигателях, турбокомпрессорах, турбовозах и других машинах, в которых при работе зазоры значительно уменьшаются вследствие того, что вал нагревается и расширяется больше, чем вкладыш подшипника).
5. Расчет и выбор переходных посадок
Переходные посадки Н/js, Н/k, Н/m, Н/n используют в неподвижных разъемных соединениях для центрирования сменных деталей или деталей, которые при необходимости могут передвигаться вдоль вала. Эти посадки характеризуются малыми зазорами и натягами, что, как правило, позволяет собирать детали при небольших усилиях (вручную или с помощью молотка). Для гарантии неподвижности одной детали относительно другой соединения дополнительно крепят шпонками, стопорными винтами и другими крепежными средствами.
Переходные посадки предусмотрены только в квалитетах 4-8. Точность вала в этих посадках должна быть на один квалитет выше точности отверстия.
Посадки типа Н/n характеризуются наибольшими средними натягами из всех переходных посадок. Их назначают для соединений, передающих значительные силы, при наличии ударов и вибрации, а также для тонкостенных втулок, не позволяющих применять крепежные детали. Соединения собирают с помощью пресса. Эти посадки назначают преимущественно для соединений, разбираемых только при капитальном ремонте изделия.
Посадки типа Н/m характеризуются меньшими средними натягами, чем посадки типа Н/n, но для разъема соединений с этими посадками необходимы значительные усилия, поэтому их назначают при высоких статических небольших динамических нагрузках, когда разборка-сборка соединения производится редко.
Посадки типа Н/k характеризуются средними зазорами, близкими к нулю, что обеспечивает хорошее центрирование. Их назначают, например, для шпоночных соединений, применяемых для крепления на валах шкивов, зубчатых колес, муфт сцепления.
Посадки типа H/js, дают в соединении преимущественно зазор. Их применяют для часто разбираемых соединений, а также в случаях, когда сборка затруднена. Иногда эти посадки применяют вместо посадок H/h с целью повышения точности центрирования, а также когда при пониженной точности изготовления необходимо получить такую же точность центрирования.
6. Расчет и выбор посадок с гарантированным натягом
Посадки с натягом предназначены в основном для получения неподвижных неразъемных соединений без дополнительного крепления деталей. Иногда для повышения надежности соединения дополнительно используют шпонки, штифты и другие средства крепления, как, например, при креплении маховика на коническом конце коленчатого вала двигателя. Относительная неподвижность деталей обеспечивается силами сцепления (трения), возникающими на контактирующих поверхностях вследствие их деформации, создаваемой натягом при сборке соединения. Благодаря надежности и простоте конструкции деталей и сборки соединений эти посадки применяют во всех отраслях машиностроения (например, при сборке осей с колесами на железнодорожном транспорте, венцов со ступицами червячных колес, втулок с валами, составных коленчатых валов, вкладышей подшипников скольжения с корпусами и т. д.).
Для заданных материалов и размеров соединяемых деталей натяг зависит от давления рmin, которое определяют из условия обеспечения неподвижности соединяемых деталей при эксплуатации, т. е. из условия прочности соединения. Относительного смещения деталей в соединении при нагружении осевой силой Р не произойдет, если расчетное усилие равно или меньше возникающих на поверхности сил трения, т.е.
Р?рDlpf1; откуда Рmin ?Р/(рDlf1),
где l - длина соединения; f1- коэффициент трения (сцепления) при продольном смещении деталей; рDl - номинальная площадь контакта сопрягаемых деталей.
Фактическая площадь контакта зависит от натяга, физико-механических свойств материалов сопрягаемых деталей и других факторов.
При нагружении соединения крутящим моментом это условие имеет вид:
М?рDlpf2D/2; откуда Р ? 2 Мкр./р D2 l f2,
где f2 - коэффициент трения (сцепления) при относительном вращении деталей, D - диаметр сопряжения.
7. Система допусков и посадок для подшипников качения
Подшипники качения - наиболее распространенные стандартные сборочные единицы, изготовляемые на специализированных заводах. Они обладают полной внешней взаимозаменяемостью по присоединительным поверхностям, определяемым наружным диаметром D наружного кольца и внутренним диаметром d внутреннего кольца, и неполной внутренней взаимозаменяемостью между телами качения и кольцами. Вследствие малых допусков зазоров и малой допускаемой разноразмерности комплекта тел качения кольца подшипников и тела качения подбирают селективным методом. Полная взаимозаменяемость по присоединительным поверхностям позволяет быстро монтировать и заменять изношенные подшипники качения при сохранении их хорошего качества; при несоблюдении полной взаимозаменяемости качество подшипников ухудшается.
Качество подшипников при прочих равных условиях определяются: 1) точностью присоединительных размеров d и D, ширины колец В, а для роликовых радиально-упорных подшипников еще и точностью монтажной высоты Т; точностью формы и взаимного расположения поверхностей колец подшипников и их шероховатости; точностью формы и размеров тел качения в одном подшипнике и шероховатостью их поверхностей; 2) точностью вращения, характеризуемой радиальным и осевым биениями дорожек качения и торцов колец.
В зависимости от указанных показателей точности установлено пять классов точности подшипников, обозначаемых (в порядке повышения точности) 0; 6; 5; 4; 2.
Класс точности подшипника выбирают исходя из требований, предъявляемых к точности вращения и условиям работы механизма. Для большинства механизмов общего назначения применяют подшипники класса точности 0. Подшипники более высоких классов точности применяют при больших частотах вращения и в случаях, когда требуется высокая точность вращения вала (например, для шпинделей шлифовальных и других прецизионных станков, для авиационных двигателей, приборов и т. п.). В гироскопических и других прецизионных приборах и машинах используют подшипники класса 2. Класс точности указывают через класс точности 0. Подшипники более высоких классов точности применяют при больших частотах вращения и в случаях, когда требуется высокая точность вращения вала (например, для шпинделей шлифовальных и других прецизионных станков, для авиационных двигателей, приборов и т. п.). В гироскопических и других прецизионных приборах и машинах используют подшипники класса 2. Класс точности указывают через тире перед условным обозначением подшипника, например 6-205 (6 - класс точности подшипника).
Для сокращения номенклатуры подшипники изготовляют с отклонениями размеров внутреннего и наружного диаметров, не зависящими от посадки, по которой их будут монтировать. Для всех классов точности верхнее отклонение присоединительных диаметров принято равным нулю. Таким образом, диаметры наружного кольца Dm и внутреннего кольца dm приняты соответственно за диаметры основного вала и основного отверстия, а следовательно, посадку соединения наружного кольца с корпусом назначают в системе вала, а посадку соединения внутреннего кольца с валом - в системе отверстия. Однако поле допуска на диаметр отверстия внутреннего кольца расположено в «минус» от номинального размера, а не в «плюс», как у обычного основного отверстия, т. е. не «в тело» кольца, а вниз от нулевой линии.
Примеры простановки посадок в подшипниковом узле механизма: по наружному кольцу 52Н8n; по внутреннему кольцу 25K7n.
8. Предельные калибры для гладких цилиндрических деталей
Годность деталей наиболее часто проверяют предельными калибрами. Калибрами проверяют размеры гладких цилиндрических, конусных, резьбовых и шлицевых деталей, глубин и высот выступов, а также расположение поверхностей и другие параметры. Комплект рабочих предельных калибров для контроля размеров гладких цилиндрических деталей состоит из проходного калибра ПР (им контролируют предельный размер, соответствующий максимуму материала проверяемого объекта) (рис. 5 и 6), и непроходного калибра НЕ (им контролируют предельный размер, соответствующий минимуму материала проверяемого объекта).
Pиc. 5. Схема для выбора номинальных размеров предельных гладких калибров
Рис. 6. Односторонние двухпредельные скобы для контроля валов
С помощью предельных калибров определяют не числовое значение контролируемых параметров, а годность детали, т. е. выясняют, выходит ли контролируемый параметр за нижний или верхний предел, или находится между двумя допустимыми пределами. Деталь считают годной, если проходной калибр (проходная сторона калибра) под действием собственного веса или усилия, примерно равного ему, проходит, а непроходной калибр (непроходная сторона) не проходит по контролируемой поверхности детали. В этом случае действительный размер детали находится между заданными предельными размерами. Если проходной калибр не проходит, деталь является исправимым браком, если детали находятся в поле допусков. Таким образом, изделие считают годным, когда погрешности размера, формы и расположения поверхностей находятся в поле допуска.
На практике машино- и приборостроения для контроля предельных размеров деталей используют различные типы калибров, основные типы которых приведены на рис. 7: пробка двухсторонняя со вставками (а); пробка двухсторонняя со вставками (б); пробка проходная (непроходная) со вставками (в); пробка штамповочная проходная (непроходная) с насадками (г); пробка проходная (непроходная) неполная штамповочная (д); пробка проходная (непроходная) неполная (е); пробка односторонняя листовая (ж); шайба полная (з); шайба неполная (и).
Для проходных калибров, которые в процессе контроля изнашиваются, кроме допуска на изготовление, предусматривается допуск на износ. Различают калибры рабочие, приемочные (изношенные рабочие) и контрольные (контркалибры).
9. Взаимозаменяемость, методы и средства контроля зубчатых передач
По эксплуатационному назначению можно выделить четыре основные группы зубчатых передач: отчетные, скоростные, силовые и общего назначения.
К отчетным относят зубчатые передачи измерительных приборов, делительных механизмов металлорежущих станков и делительных машин, счетно-решающих механизмов и т. п. В большинстве случаев колеса этих передач имеют малый модуль и работают при малых нагрузках и скоростях. Основным эксплуатационным показателем делительных и других отчетных передач является высокая кинематическая точность, т. е. точная согласованность углов поворота ведущего и ведомого колес передачи. Для реверсивных отчетных передач весьма существенное значение имеет боковой зазор в передаче и колебание этого зазора.
Скоростными являются зубчатые передачи турбинных редукторов, двигателей турбовинтовых самолетов и др. Окружные скорости зубчатых колес таких передач достигают 60 м/с при сравнительно большой передаваемой мощности (более 40 КВт). Их основной эксплуатационный показатель - плавность работы, т. е. отсутствие циклических погрешностей, многократно повторяющихся за оборот колеса. С увеличением частоты вращения требования к плавности работы повышаются. Передача должна работать бесшумно и без вибрации, что может быть достигнуто при минимальных погрешностях формы и взаимного расположения зубьев.
а |
б |
||
в |
г |
||
д |
е |
ж |
|
з |
и |
Рис. 7. Основные типы калибров-пробок для контроля отверстий
Для тяжело нагруженных скоростных зубчатых передач имеет значение также полнота контакта зубьев. Колеса таких передач обычно имеют средние модули. Для них часто ограничивают также шумовые характеристики работающей передачи, вибрацию, статическую и динамическую неуравновешенность вращающихся масс и т. п.
К силовым относят зубчатые передачи, передающие значительные крутящие моменты при малой частоте вращения (зубчатые передачи шестеренных клетей прокатных станов, подьемно-транспортных механизмов и др.). Колеса для таких передач изготовляют с большим модулем. Основное точностное требование к ним - обеспечение более полного использования активных боковых поверхностей зубьев, т. е. получение наибольшего пятна контакта зубьев. Точность зубчатого зацепления (передачи) характеризуется следующими показателями: кинематической погрешностью, суммарным пятном контакта и плавностью работы. К передачам общего назначения не предъявляют повышенных требований по точности.
Кинематическая погрешность передачи - разность между действительными и номинальными углами поворота ведомого зубчатого колеса передачи.
Допуск на кинематическую погрешносгь зубчатого колеса следует определять как сумму допуска на накопленную погрешность шага колеса в зависимости от степени по нормам кинематической точности и допуска на погрешность профиля зуба, назначаемого в зависимости от степени точности по нормам плавности.
Суммарным пятном контакта называют часть активной боковой поверхности зуба колеса, на которой располагаются следы прилегания зубьев парного колеса (следы надиров или краски) в собранной передаче после вращения под нагрузкой, устанавливаемой конструктором. Пятно контакта определяется относительными размерами (в процентах): по длине зуба - отношением расстояния, а между крайними точками следов прилегания за вылетом разрывов.
Плавность работы передачи определяется параметрами погрешностей, которые многократно циклически проявляются за оборот зубчатого колеса. Аналитически кинематическую погрешность можно представить в виде спектра гармонических составляющих, амплитуда и частота которых зависят oт характера составляющих погрешностей.
В машино- и приборостроении установлено 12 степеней точности зубчатых колес (передач): 1, 2, 3, …, 12 (точность уменьшается с увеличением степени).
В технической документации точность изготовления зубчатых колес и передач задают степенью точности, учитывая вид сопряжения по нормам бокового зазора. Например, степень точности 8-Х означает, что все показатели точности соответствуют 8 степени точности, а зазор между боковыми поверхностями зубьев определяется посадкой Х; 7-8-8-Х означает, что кинематическая точность должна соответствовать 7 степени, а суммарное пятно контакта и плавность работы - 8 при зазоре боковых поверхностей зубьев - Х.
Для контроля зубчатых колес и передач используют различные приборы и устройства. Наибольшее распространение получили эвольвентометры, шагомеры, зубомерные микрометры.
10. Взаимозаменяемость, методы и средства контроля резьбовых соединений
Резьбовые соединения широко распространены в машиностроении (в большинстве современных машин свыше 60% всех деталей имеют резьбы). По эксплуатационному назначению различают резьбы общего применения и специальные, предназначенные для соединения одного типа деталей определенного механизма. К первой группе относятся резьбы:
а) крепежные (метрическая, дюймовая), применяемые для разъемного соединения деталей машин, основное их назначение - обеспечение прочности соединений и сохранение плотности (нераскрытия) стыка в процессе длительной эксплуатации;
б) кинематические (трапецеидальная и прямоугольная), применяемые для ходовых винтов, винтов суппортов станка и столов измерительных приборов и т. п., основное их назначение - обеспечение точного перемещения при наименьшем трении, а также (упорная) для преобразования вращательного движения в прямолинейное в прессах и домкратах; основное их назначение - обеспечение плавности вращения и высокой нагрузочной способности (для точных микрометрических пар применяют метрическую резьбу повышенной точности);
в) трубные и арматурные (трубные цилиндрическая и коническая, метрическая коническая), применяемые для трубопроводов и арматуры, основное их назначение - обеспечение герметичности соединений.
Эксплуатационные требования к резьбе зависят от назначения резьбовых соединений. Общими для всех резьб являются требования долговечности и свинчиваемости без подгонки независимо изготовленных резьбовых деталей при сохранении эксплуатационных качеств соединений.
Наибольшее распространение получили метрические цилиндрические резьбы, параметры которых следующие (рис. 8): d2 - средний диаметр болта; D2 - средний диаметр гайки; d - наружный диаметр болта; D - наружный диаметр гайки; d1 - внутренний диаметр резьбы болта; D1 - внутренний диаметр резьбы гайки; Н - высота исходного треугольника резьбы; Р - шаг резьбы.
Для многозаходной резьбы существует следующая зависимость:
Рn=Р n,
где Рn - ход резьбы, n - число заходов резьбы, Р - шаг профиля резьбы.
Для резьбовых соединений установлены различные посадки, сочетание которых обычно обеспечивает зазор между профилями резьбы.
Установлены степени точности резьбовых соединений: 3, 4,..., 10. Они назначаются в зависимости от условий эксплуатации.
Контроль резьб может быть дифференцируемым или комплексным. Дифференцируемый применяют, когда допуски даны отдельно на каждый параметр резьбы. Этот метод очень трудоемкий и используется для контроля точных резьб.
11. Понятие о размерных цепях. Методы расчета размерных цепей
Размерной цепью называют совокупность размеров, образующих замкнутый контур и непосредственно участвующих в решении поставленной задачи. Например, с помощью размерных цепей можно определить точность взаимного расположения осей и поверхностей одной детали (подетальная размерная цепь) или нескольких деталей в сборочной единице или механизме (сборочная размерная цепь).
Рис. 8. Схема резьбового соединения
Замкнутость размерного контура - необходимое условие для составления и анализа размерной цепи. Однако на рабочем чертеже размеры следует проставлять в виде незамкнутой цепи; не проставляют размер замыкающего звена, так как для обработки он не требуется. Размеры, образующие размерную цепь, называют звеньями размерной цепи.
По взаимному расположению звеньев размерные цепи делят на плоские и пространственные. Размерную цепь называют плоской, если все звенья расположены в одной или нескольких параллельных плоскостях. Пространственной называют размерную цепь, звенья которой непараллельные одно другому и лежат в непараллельных плоскостях. Размерные цепи, звеньями которых являются линейные размеры, называют линейными. Размерные цепи, звеньями которых являются угловые размеры, называют угловыми. При анализе точности электрических и электронных элементов машин и приборов используют цепи, звеньями которых являются значения сопротивлений, емкости, индуктивности, силы тока, напряжений и других физических параметров.
Задачу обеспечения точности изделий при конструировании решают с помощью конструкторских размерных цепей, а при изготовлении - с помощью технологических размерных цепей, выражающих связь размеров обрабатываемой детали по мере выполнения технологического процесса или размеров системы СПИД (станок - приспособление - инструмент - деталь). Когда решается задача измерения величин, характеризующих точность изделия, используют измерительные размерные цепи, звеньями которых являются размеры системы измерительное средство - измеряемая деталь.
Размерная цепь состоит из составляющих звеньев и одного замыкающего. Замыкающим называют размер, который получается последним в процессе обработки детали, сборки узла машины или измерения. Его значение и точность зависят от значений и точности остальных (составляющих) размеров цепи. Составляющее звено - звено размерной цепи, изменение которого вызывает изменение замыкающего звена (но не может и не должно вызывать изменение исходного звена). Составляющие размеры обозначают А1, А2,..., Am-1 (для цепи А), В1, В2,..., Bm-1 (для цепи В) и т. д. Исходное звено - звено размерной цепи, заданные номинальный размер и предельные отклонения которого определяют функционирование механизма и должны быть обеспечены в результате решения размерной цепи. Исходя из предельных значений этого размера рассчитывают допуски и отклонения всех остальных размеров цепи. В процессе сборки исходный размер, как правило, становится замыкающим. В подетальной размерной цепи размер, исходя из точности которого определяется степень точности остальных размеров, также называют исходным.
Замыкающий размер АД в трехзвенной цепи (рис. 9) зависит от размера А1, называемого увеличивающим (чем больше этот размер, тем больше значение АД), и размера А2, называемого уменьшающим (при его увеличении АД уменьшается). Замыкающее звено может быть положительным, отрицательным или равным нулю, размерную цепь можно условно изображать в виде схемы (рис. 9). По схеме удобно выявлять увеличивающие и уменьшающие звенья. Над буквенными обозначениями звеньев принято изображать стрелку, направленную вправо для увеличивающих звеньев и влево - для уменьшающих.
Расчет и анализ размерных цепей позволяет: установить количественную связь между размерами деталей машины, уточнить номинальные значения и допуски взаимосвязанных размеров, исходя из эксплуатационных требований и экономической точности обработки деталей и сборки машины; определить наиболее рентабельный вид взаимозаменяемости (полная или неполная), добиться наиболее правильной простановки размеров на рабочих чертежах, определить операционные допуски и пересчитать конструктивные размеры на технологические (в случае несовпадения технологических баз конструктивными).
Расчет размерных цепей и их анализ - обязательный этап конструирования машин, способствующий повышению качества, обеспечению взаимозаменяемости и снижению трудоемкости их изготовления. Сущность расчета размерной цепи заключается в установлении допусков и предельных отклонений всех ее звеньев, исходя из требований конструкции и технологии. При этом различают две задачи:
1) определение номинального размера, предельных отклонений и допуска замыкающего звена по заданным номинальным размерам и предельным отклонениям составляющих звеньев (в случаях, когда требуется проверить соответствие допуска замыкающего размера допускам составляющих размеров, проставленных на чертеже, - проверочный расчет);
2) определение допуска и предельных отклонений составляющих размеров по заданным номинальным размерам всех размеров цепи и заданным предельным размерам исходного размера (при проектном расчете размерной цепи).
Методы расчета размерных цепей:
1) метод расчета, обеспечивающий полную взаимозаменяемость;
Рис. 9. Схемы размерных цепей
2) метод неполной взаимозаменяемости, выполняемый по технологически обоснованным расширенным допускам на размеры деталей;
3) метод групповой взаимозаменяемости или селективная сборка заключается в изготовлении деталей со сравнительно широкими технологически выполнимыми допусками сортировки этих деталей на равное число групп с более узкими групповыми допусками и сборки их после комплектации по определенным группам;
4) метод регулирования, при котором из совокупности составляющих звеньев выбирают компенсирующее звено, изменением которого достигается заданная точность замыкающего звена, без снятия материала;
5) метод пригонки, при котором намечают одно из составляющих звеньев размерной цепи изменением размеров каждого, путем снятия стружки достигается заданная точность замыкающего звена.
Литература
Димов Ю.В. Метрология, стандартизация и сертификация. Учебник для вузов. 2-е изд. - СПб.: Питер, 2009. - 432 с.
Допуски и посадки: Справочник в 2-х ч. - 7-е изд., перераб. и доп. - Л.: Политехника, 2007.
Кузнецов В.А., Ялунина Г.В. Основы метрологии: Учебное пособие - М.: Изд-во стандартов, 2008, - 280 с.
Сергеев А.Г., Латышев М.В., Терегеря В.В. Метрология, стандартизация и сертификация. Учеб. пособие. - Изд. 2-е, перераб. и доп. - М.: Логос, 2008. - 560 с. ил.
Федеральный закон РФ «О техническом регулировании» от 27.12.2002 № 184-ФЗ.
Закон РФ «Об обеспечении единства измерений» от 27.04.93 №4871-1 (в редакции 2003 г.)
ГОСТ 25346-89. Основные нормы взаимозаменяемости. ЕСДП. Общие положения, ряды допусков и основные отклонения.
Тартаковский Д.Ф. Ястребов А.С. Метрология, стандартизация и технические средства измерений: Учебник для вузов -.М.: Высш. шк., 2009
Нефедов В.И Метрология и радиоизмерения. М: Высш. шк., 2008
Размещено на Allbest.ru
...Подобные документы
Расчет и выбор посадок с зазором. Вероятность зазора и натяга в переходных посадках. Выбор посадок с натягом, посадок подшипника качения. Расчет исполнительных размеров рабочих калибров. Выбор допусков резьбовых соединений. Расчет размерных цепей.
курсовая работа [780,5 K], добавлен 14.04.2014Определение элементов сопряжения, условное обозначение посадок и квалитетов на чертежах и расчет калибров. Выбор посадок с зазором для подшипников жидкостного трения. Расчет допусков и посадок шпоночных соединений. Выбор деталей под подшипник качения.
курсовая работа [98,1 K], добавлен 01.12.2008Расчет и выбор посадок подшипников качения. Выбор посадок для сопряжения узла и их расчет. Построение полей допусков и расчеты размеров рабочих калибров. Определение и выбор посадки с зазором и с натягом. Расчет размерной цепи вероятностным методом.
курсовая работа [426,4 K], добавлен 09.10.2011Описание конструкции и назначение узла. Расчет и выбор посадок подшипников качения. Выбор посадок для сопряжений узла и их расчёт. Выбор средств измерений деталей. Расчёт рабочих и контрольных калибров. Расчёт и выбор посадки с зазором и с натягом.
курсовая работа [430,0 K], добавлен 03.01.2010Определение элементов гладкого цилиндрического соединения. Расчет и выбор посадок с зазором. Расчет и выбор посадок с натягом. Определение допусков и посадки шпоночных соединений. Расчет и выбор посадок подшипников качения. Расчет размерных цепей.
курсовая работа [1,6 M], добавлен 16.09.2017Расчет посадок с зазором и натягом, исполнительных размеров гладких калибров. Проверка прочности соединяемых деталей. Выбор посадок подшипников качения и шпоночных соединений. Определение величины расчетного натяга и исполнительных размеров калибр-пробок.
курсовая работа [336,8 K], добавлен 27.01.2014Изучение особенностей различные соединения деталей: с натягом, с зазором. Техника выполнения расчётов для конструкций подшипников, выбор необходимых стандартных допусков и посадок для более точного изготовления деталей. Осуществление контроля размеров.
курсовая работа [2,1 M], добавлен 01.08.2012Взаимозаменяемость гладких цилиндрических деталей. Отклонения отверстий и валов. Обозначение полей допусков, предельных отклонений и посадок на чертежах. Неуказанные предельные отклонения размеров. Расчет и выбор посадок. Шероховатость поверхности.
реферат [278,6 K], добавлен 13.11.2008Определение зазоров и натягов в соединениях. Схема расположения полей допусков посадки с зазором. Расчет и выбор посадок с натягом. Схема расположения полей допусков соединений с подшипником качения. Выбор посадок шпоночных и шлицевых соединений, эскизы.
курсовая работа [3,1 M], добавлен 28.09.2011Анализ устройства и принципа действия сборочной единицы. Расчет и выбор посадок подшипников качения. Выбор посадок для цилиндрических соединений. Расчет размеров гладких предельных калибров. Точностные характеристики резьбового и зубчатого соединения.
курсовая работа [236,4 K], добавлен 16.04.2011Расчёт и выбор посадок с зазором в подшипниках скольжения, посадок с натягом, посадок для деталей под подшипники качения. Расчёт переходных посадок и размерных цепей. Расчёт и выбор параметров точности цилиндрических эвольвентных зубчатых передач.
курсовая работа [1,1 M], добавлен 13.04.2014Определение допусков и посадок гладких цилиндрических соединений. Описание строения посадки с гарантированным зазором и гарантированным натягом, а также переходной. Расчет размерных цепей РД 50-635-87. Допуски зубчатых колёс механической передачи.
практическая работа [376,3 K], добавлен 24.01.2018Расчет посадок с зазором в подшипниках скольжения и качения. Выбор калибров для контроля деталей гладких цилиндрических соединений, посадок шпоночных и прямобочных шлицевых соединений. Нормирование точности цилиндрических зубчатых колес и передач.
курсовая работа [1,6 M], добавлен 28.05.2015Служебное назначение изделия, детали. Особенности кинематической схемы. Вал-шестерня как объект технического контроля. Расчет и выбор посадок с зазором, с натягом и переходных посадок. Посадки подшипников. Расчет калибров и контрольных калибров.
контрольная работа [575,5 K], добавлен 12.12.2012Описание работы узла - опора вала. Расчет и выбор посадки с зазором, переходной посадки, посадки с натягом, калибров и контркалибров. Определение посадок подшипников качения. Расчет шлицевого и резьбового соединения. Параметры точности зубчатого колеса.
курсовая работа [182,7 K], добавлен 04.10.2011Построение схем допусков для разных посадок деталей. Расчет исполнительных размеров рабочих пробок и скоб. Выбор универсальных средств измерения длины вала. Вычисление посадок для шпоночного соединения и деталей, сопрягаемых с подшипником качения.
курсовая работа [623,6 K], добавлен 10.01.2012Допуски и посадки подшипников качения. Выбор системы образования посадок. Обоснования посадок в гладких цилиндрических соединениях. Выбор конструкции и расчет размеров предельных калибров для контроля. Выбор и обоснование средств измерения зубчатых колес.
курсовая работа [2,8 M], добавлен 05.12.2012Основные положения, понятия, определения в области стандартизации. Общие сведения, порядок расчета и выбора посадок для подшипников качения. Расчет линейных размерных цепей вероятностным методом. Выбор посадок гладких цилиндрических соединений с зазором.
учебное пособие [221,2 K], добавлен 21.01.2012Расчёт посадок подшипников качения, выбор средств измерения. Разработка сборочного узла редуктора, определение посадок с зазором и натягом. Деталировка и нормирование точности резьбовых соединений с расстановкой допусков формы и расположения поверхностей.
курсовая работа [3,0 M], добавлен 04.03.2014Расчет посадок гладких цилиндрических соединений. Выбор и обоснование средств измерений для контроля линейных размеров деталей. Выбор, обоснование и расчет посадки подшипника качения. Расчет допусков и посадок шпоночного и резьбового соединения вала.
курсовая работа [2,2 M], добавлен 04.10.2011