Виды расчетов теплообменных аппаратов, их классификация и устройство
Методика повышения эффективности теплообмена в трубном пространстве. Основные вещества, используемые в качестве охлаждающего агента для кристаллизаторов. Порядок определения неизвестного массового расхода масла и основных параметров теплоносителей.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 22.08.2015 |
Размер файла | 53,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
В процессах нефте- и газопереработки для обеспечения необходимой температуры в аппаратах требуется подводить и отводить тепло. Для этого на технологических установках широко используются специальные аппараты, называемые теплообменными или теплообменниками.
В аппаратах, предназначенных для нагрева или охлаждения, происходит теплообмен между двумя потоками, при этом один из них нагревается, а другой охлаждается. Поэтому вне зависимости от того, что является целевым назначением аппарата: нагрев или охлаждение, их называют теплообменными аппаратами.
Применительно к нефтегазоперерабатывающей промышленности теплообменные аппараты классифицируются по способу передачи тепла и назначению,
В зависимости от способа передачи тепла аппараты делятся на следующие группы.
Поверхностные теплообменные аппараты, в которых передача тепла между теплообменивающимися средами осуществляется через поверхность, разделяющую эти среды.
Аппараты смешения, в которых передача тепла между теплообменивающимися средами происходит при их непосредственном контакте.
В зависимости от назначения аппараты делятся на следующие группы.
Теплообменники - в них один поток нагревается за счет использования тепла другого, получаемого в технологическом процессе и подлежащего в дальнейшем охлаждению.
Нагреватели, испарители, кипятильники - в них нагрев или частичное испарение осуществляется за счет использования высокотемпературных потоков нефтепродуктов или специальных теплоносителей (водяной пар, масло и др.).
Холодильники и конденсаторы - они предназначены для охлаждения потока или конденсации паров с использованием специального охлаждающего агента (вода, воздух, испаряющийся аммиак, пропан и др.).
Кристаллизаторы предназначены для охлаждения соответствующих жидких потоков до температур, обеспечивающих образование кристаллов некоторых составляющих смесь веществ. В качестве охлаждающего агента используются вода или специальные хладагенты в виде охлажденных рассолов, испаряющихся аммиака, пропана и др.
В зависимости от характера направления потоков теплообменные аппараты делятся на прямоточные, противоточные, смешанного и перекрестного тока.
Теплообменные аппараты типа «труба в трубе» по конструкции делятся на однопоточные (неразборные и разборные) и многопоточные.
Во многих случаях аппараты типа «труба в трубе» работают с более высокими тепловыми показателями, чем кожухотрубчатые теплообменники.
В теплобменных аппаратах разборной конструкции внутренние трубы в ряде случаев с наружной поверхности выполняются с оребрением, позволяющим в 4-5 раз увеличить их поверхность теплообмена. Оребрение внутренних труб используют, как правило, в тех случаях, когда со стороны одной из теплообменивающихся сред трудно обеспечить высокий коэффициент теплоотдачи (движется газ, вязкая жидкость, поток имеет ламинарный характер и т.п.).
Для повышения эффективности теплообмена в трубном пространстве используют методы воздействия на поток устройствами, разрушающими и турбулизирующими движение потока в трубе.
Недостатками теплообменных аппаратов типа «труба в трубе» по сравнению с кожухотрубчатыми аппаратами являются большие габариты, а также более высокий расход металла на единицу поверхности нагрева.
Теплообменные аппараты типа «труба в трубе» жесткой конструкции, так же как и кожухотрубчатые с неподвижными решетками, используются при сравнительно небольшой разности температур теплообменивающихся сред и при теплообмене незагрязненных жидкостей.
В теплообменных аппаратах типа «труба в трубе» разборной конструкции сравнительно легко очищаются внутренняя и наружная поверхности труб; эти аппараты обладают высоким коэффициентом теплопередачи и являются надежными в эксплуатации.
Кристаллизатор типа «труба в трубе» предназначен для получения и роста кристаллов, поэтому в аппарате должен быть обеспечен оптимальный тепловой и гидродинамический режим. В кристаллизаторах по внутренней трубе движется охлаждаемый раствор масла, а по кольцевому пространству - охлаждающая среда. Во избежание отложения парафина на внутренней поверхности трубы кристаллизаторы снабжены вращающимся валом со скребками, удаляющими парафин. Это необходимо, чтобы повысить эффект теплообмена.
В последнее время все более широкое применение находят поверхностные теплообменники из листового материала, главным образом спиральные и пластинчатые.
В инженерной практике при выборе теплообменного аппарата необходимо провести конструктивный и проверочный тепловые расчеты, а также гидравлический расчет теплообменных аппаратов.
Конструктивный тепловой расчет проводится для того, чтобы выбрать теплообменный аппарат при их серийном производстве на заводах или спроектировать новый аппарат. В результате конструктивного расчета выбирается тип аппарата, его конструкция, схема течения теплоносителей, материал для изготовления отдельных элементов и определяется размер и масса теплообменного аппарата.
Проверочный тепловой расчет проводится с целью определить мощность теплообменного аппарата и конечные температуры теплоносителей, омывающих поверхность нагрева теплообменного аппарата, конструкция и площадь поверхности нагрева которого известны. Проверочный расчет обычно выполняется тогда, когда необходимо выяснить возможность использования уже установленного или проектируемого теплообменного аппарата в условиях, отличных от расчетных.
Гидравлический расчет теплообменного аппарата необходим для определения перепадов давлений теплоносителей и мощностей насосов и компрессоров, перекачивающих теплоносители. Скорости течения теплоносителей при этом выбираются такими, чтобы перепады давлений не превышали допустимых значений, указанных в проектном задании.
1. Конструктивный тепловой расчет
Определение неизвестного массового расхода масла G1 и параметров теплоносителей.
Табл. 1
Теплоноситель |
G, кг/с |
t`, C |
t``, C |
tср , C |
|
Горячий теплоноситель (мазут) |
? |
169 |
87 |
128 |
|
Холодный теплоноситель (нефть) |
11 |
21 |
93 |
57 |
1) Для нахождения мощности ТА записываем уравнение теплового баланса:
Q1 = Q2
мощность теплообменного аппарата Q по исходным данным:
- коэффициент, учитывающий потери тепла в окруж. среду.
Выписываем теплофизические свойства при tср:
Табл. 2
tcр, єС |
,, |
||||||
Горячий теплоноситель- мазут |
128 |
2200 |
100 |
7*10-6 |
875 |
0,12 |
|
Холодный теплоноситель- нефть |
57 |
2050 |
75 |
5,5*10-6 |
840 |
0,114 |
Bмазут = 6*10-4 (К-1)
Внефть= 7*10-4 (К-1)
Направляем нефть в трубное пространство, а мазут в межтрубное.
2) Средней разности температур между теплоносителями по уравнению Грасгофа:
a) оптимального диапазона площадей проходных сечений трубного пространства ТА:
;
где и максимальная и минимальная рекомендуемые скорости потоков теплоносителей: wmin= 0,5 м/c и wmax= 1 м/c
b) Mинимального индекса противоточности Рmin ТА:
Выбираем противоток
P > Pmin ; 1 > 0,2
c) Определение водяного эквивалента:
3) Площади поверхности F теплообмена теплообменного аппарата:
,
где и коэффициенты теплоотдачи в трубном и межтрубном пространстве. Принимаем =300 для нефти и =400для мазута. Толщина стенки: =2*10-3, = 57,7
Сталь 08.
Определим расчетную площадь поверхности теплообмена:
2. Предварительный выбор теплообменного аппарата по каталогу
а) Выбираем теплообменник с неподвижными трубчатыми решетками.
б) По значениям вязкости и плотности теплоносителей нефть в трубное, а мазут в межтрубное пространство.
в) По диапазону площадей проходных сечений трубного пространства, а также по величине расчетной площади поверхности теплообмена, предварительно выбираем шестиходовой аппарат с площадью теплообмена .
Табл. 3. Конструктивные характеристики выбранного аппарата
Диаметр кожуха , мм Наружный Внутренний |
- 800 |
|
Наружный диаметр теплообменных труб , мм |
20 |
|
Число ходов по трубам, |
6 |
|
Площади проходного сечения одного хода: |
||
По трубам , |
2,0·10-2 |
|
В вырезе перегородки , |
6,5·10-2 |
|
Между перегородками , |
7,0·10-2 |
Расчет коэффициентов теплоотдачи от горячего теплоносителя к стенке б1 и от стенки к холодному теплоносителю б2 , термических сопротивлений стенки трубы и загрязнений .
Рассчитаем и .
где Re, Pr - числа подобия теплоносителя, движущегося в трубах ТА, при среднеарифметической температуре потока. Prc - число Прандтля теплоносителя, движущегося в теплообменных трубах ТА при средней температуре стенки труб. - коэффициент теплопроводности теплоносителя, движущегося в трубах ТА. и - наружный диаметр и толщина стенки теплообменных труб.
Средняя скорость теплоносителя в трубном пространстве:
Число Рейнольдса:
-ламинарный режим
Число Грасгофа:
Коэф-ент Pr для нефти при tcр неф.=57 єС: Pr=75
Gr*Pr = 85921*75 = 6444091 > 80 000
Из таблицы определяем следующие константы:
C=0.15; j=0.33; y=0.43; i=0,1;
Определим стенки из таблицы при :
Подставим:
Рассчитаем коэффициент теплоотдачи теплоносителя в межтрубном пространстве:
,
где значения коэффициентов С, Сz, C1, m, n выбираются из таблицы в зависимости от расположения труб в пучке и значения числа Рейнольдса:
Выберем расположение труб в пучке в виде треугольника.
Вычислим среднюю скорость теплоносителя в межтрубном пространстве:
Посчитаем число Рейнольдса:
Коэф-ент Pr для мазута при tcр1.=128 єС: Pr=100
Выбираем коэффициенты из таблиц в конце методички:
m=0,5; n=0,36; C1=0,71
C=0,659; Cz=1; Cn=1,039; =0.737; =0.861 , Zn=16;
Выбираем из графика для мазута при
Рассчитаем
Уточняем k:
Уточняем Fрасч.:
;
Окончательный выбор теплообменника:
Так как расчетная площадь ТА не соответствует предварительному рассчитанному значению, выбираем другой ТА с теми же параметрами за счет изменения длины труб:
Табл. 4
Диаметр кожуха , мм Наружный Внутренний |
- 800 |
|
Наружный диаметр теплообменных труб , мм |
20 |
|
Число ходов по трубам, |
6 |
|
Площади проходного сечения одного хода: |
||
По трубам , |
2,0·10-2 |
|
В вырезе перегородки , |
6,5·10-2 |
|
Между перегородками , |
7,0·10-2 |
Площадь поверхности теплообменника равна 349 м2, Длина трубы:
l = 9 м.
Используемая литература
кристаллизатор трубный теплоноситель
1) «Расчет и выбор конструкции кожухотрубного теплообменного аппарата» Калинин А.Ф., Москва, «РГУ нефти и газа им. И.М. Губкина» 2002.
2) «Термодинамические и теплофизические свойства рабочих тел теплоэнергетических установок» Трошин А.К., Москва, «МПА - Пресс» 2006.
3) «Термодинамика и теплопередача» Поршаков Б.П., Москва, «Недра» 1987.
4) Конспект лекций по курсу «Термодинамика и теплотехника».
Размещено на Allbest.ru
...Подобные документы
Общая характеристика теплообменных аппаратов, их виды и классификация. Проектирование аппарата воздушного охлаждения масла по исходным данным, с проведением гидравлических расчетов, определением мощности вентилятора и насоса для продувки агрегата.
курсовая работа [473,3 K], добавлен 01.10.2011Применение теплообменных аппаратов типа "труба в трубе" и кожухотрубчатых для нагрева уксусной кислоты и охлаждения насыщенного водяного пара. Обеспечение должного теплообмена и достижения более высоких тепловых нагрузок на единицу массы аппарата.
курсовая работа [462,6 K], добавлен 06.11.2012Основная роль теплообменных аппаратов при работе современных двигателей внутреннего сгорания (ДВС). Классификация теплообменных аппаратов ДВС. Охладители воды и масла. Водо-водяные и воздухо-водяные охладители. Охладители наддувочного воздуха ДВС.
реферат [611,2 K], добавлен 20.12.2013Классификация теплообменных аппаратов и теплоносителей. Конструкции трубчатых, пластинчатых и спиральных аппаратов поверхностного типа. Определение поверхности нагрева, длины и количества секций прямоточного водяного обогревателя горячего водоснабжения.
курсовая работа [961,6 K], добавлен 23.04.2010Расчет кожухотрубчатого теплообменника, средней разницы температур между теплоносителями, объемного и массового расхода теплоносителя, тепловой нагрузки на аппарат, массового и объемного расхода хладагента. Теплофизические свойства теплоносителей.
контрольная работа [342,0 K], добавлен 08.10.2008Определение поверхности теплообмена и конечных температур рабочих жидкостей. Расчетные уравнения теплообмена при стационарном режиме - уравнение теплопередачи и уравнение теплового баланса. Расчёт кожухотрубчатого и пластинчатого теплообменных аппаратов.
курсовая работа [5,2 M], добавлен 03.01.2011Методика проверки шпонок колеса на смятие, используемые при этом параметры и критерии. Порядок определения размеров корпуса редуктора. Смазка зубчатых колес, выбор сорта масла, количество, контроль уровня масла. Назначение уплотнительных устройств.
контрольная работа [10,2 K], добавлен 11.11.2010Отвод теплоты, охлаждение водой и низкотемпературными жидкими хладоагентами. Воздух в качестве охлаждающего агента, его использование в химической технологии. Методы охлаждения и ассортимент хладоагентов, интервал температур. Основные виды хладоагентов.
реферат [269,5 K], добавлен 15.10.2011Изучение устройства и определение назначения теплообменных аппаратов, основы их теплового расчета. Конструкторское описание основных элементов криогенных машин и установок, их назначение. Понятие теплообмена и изучение основных законов теплопередачи.
контрольная работа [486,6 K], добавлен 07.07.2014Основные виды теплообменных аппаратов, применяемых в химической промышленности. Основы процесса, протекающего в кожухотрубчатом теплообменнике. Расчет энтальпии нефти на выходе в теплообменник, тепловой баланс и противоточная схема процесса теплообмена.
курсовая работа [735,3 K], добавлен 07.09.2012Произведение расчетов расходов и параметров теплоносителей (турбины, пара в отборах, греющего пара на входе подогревателя, питательной воды) в системе регенеративного подогрева ПТ-135-130. Геометрические характеристики поверхности теплообмена ПВД-7.
курсовая работа [2,1 M], добавлен 18.04.2010Понятие и классификация теплообменных аппаратов. Определение площади поверхности теплообмена и коэффициента теплопередачи. Расчет гидравлических и механических характеристик устройства. Обоснование мероприятий по снижению гидравлического сопротивления.
курсовая работа [83,2 K], добавлен 17.07.2012Классификация теплообменных аппаратов (ТА) по функциональным и конструктивным признакам, схемам тока теплоносителей. История развития ТА. Сетевые подогреватели: назначение и схемы включения, конструкции. Тепловой и гидродинамический расчёт подогревателя.
курсовая работа [1,5 M], добавлен 16.03.2012Классификация теплообменных аппаратов. Проведение поверочного теплового и гидравлического расчётов нормализованного кожухотрубного теплообменного аппарата, предназначенного для охлаждения масла водой с заданной начальной и конечной температурой.
контрольная работа [64,1 K], добавлен 16.03.2012Классификация теплообменных аппаратов. Расчёт гидравлического сопротивления теплообменника. Расчет холодильника первой ступени. Вычисление средней разности температур теплоносителей. Расчет конденсатора паров толуола и поверхности теплопередачи.
курсовая работа [688,1 K], добавлен 17.11.2009Ознакомление с конструкцией теплообменных аппаратов нефтепромышленности; типы и конструктивное исполнение кожухотрубчатых установок. Описание технологического и механического расчета оборудования. Выбор конструкционных материалов и фланцевого соединения.
дипломная работа [3,3 M], добавлен 17.04.2014Назначение и химизм процессов гидроочистки. Тепловой эффект реакции. Классификация теплообменных аппаратов. Теплообменник типа "труба в трубе". Химический состав нержавеющей стали ОХ18Н10Т по ГОСТ 5632-72. Анализ вредных и опасных факторов производства.
дипломная работа [2,4 M], добавлен 21.05.2015Устройство и принцип действия основного и дополнительного оборудования. Выбор и обоснование режимов сушки и влаготеплообработки. Расчет продолжительности цикла сушки, количества камер. Определение параметров агента сушки, а также расхода теплоты.
курсовая работа [139,6 K], добавлен 23.04.2015Проектирование рекуперативных теплообменных аппаратов. Тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника, а также тепловой расчёт пластинчатого теплообменника. Расчет гидравлических сопротивлений при движении теплоносителей.
курсовая работа [562,3 K], добавлен 29.12.2010Технология ремонта центробежных насосов и теплообменных аппаратов, входящих в состав технологических установок: назначение конденсатора и насоса, описание конструкции и расчет, требования к монтажу и эксплуатации. Техника безопасности при ремонте.
дипломная работа [3,8 M], добавлен 26.08.2009