Структурные технологии материалов и материаловедения

Строение металлов, разница между аморфным и кристаллическим телом. Определение твердости металлов и сплавов методами Бринелля, Роквелла и Виккерса. Дефекты строения кристаллических тел: точечные, линейные, поверхностные. Особенности аморфных веществ.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 30.09.2015
Размер файла 799,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Морская академия Литвы

Структурные технологии материалов и материаловедения

Подготовил: студент группы 14-MI-60

Сергей Мирзаев

Клайпеда, 2015

План

1. Строение металлов, разница между аморфным и кристаллическим телом

2. Механические свойства металлов

3. Определение твердости металлов и сплавов методом Бринелля, методом Роквелла и методом Виккерса

4. Кристаллическое строение металлов

5. Дефекты строения кристаллических тел

5.1 Точечные дефекты

5.2 Линейные дефекты

5.3 Поверхностные дефекты

6. Аморфные вещества

1. Строение металлов, разница между аморфным и кристаллическим телом

В технике все металлы и сплавы принято делить на черные и цветные. К черным металлам относятся железо и сплавы на его основе. К цветным -- все остальные металлы и сплавы. Для того чтобы правильно выбрать материал для изготовления деталей машин с учетом условий их эксплуатации, механических нагрузок и других факторов, влияющих на работоспособность и надежность машин, необходимо знать внутреннее строение, физико-химические, механические и технологические свойства металлов.

Металлы и их сплавы в твердом состоянии имеют кристаллическое строение. Их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке и образуют пространственную кристаллическую решетку.

Наименьший комплекс атомов, который при многократном повторении в пространстве воспроизводит решетку, называется элементарной кристаллической ячейкой.

Форма элементарной кристаллической ячейки определяет совокупность свойств металлов: блеск, плавкость, теплопроводность, электропроводность, обрабатываемость и анизотропность (различие свойств в различных плоскостях кристаллической решетки) .

Пространственные кристаллические решетки образуются при переходе металла из жидкого состояния в твердое. Этот процесс называется кристаллизацией.

Кристаллизация состоит из двух стадий. В жидком состоянии металла его атомы находятся в непрерывном движении. При понижении температуры движение атомов замедляется, они сближаются и группируются в кристаллы. Образуются так называемые центры кристаллизации (первая стадия). Затем идет рост кристаллов вокруг этих центров (вторая стадия). Вначале кристаллы растут свободно. При дальнейшем росте кристаллы отталкиваются, рост одних кристаллов мешает росту соседних, в результате чего образуются неправильной формы группы кристаллов, которые называют зернами.

Размер зерен существенно влияет на эксплуатационные и технологические, свойства металлов. Крупнозернистый металл имеет низкую сопротивляемость удару, при его обработке резанием возникает трудность в получении малой шероховатости поверхности деталей. Размеры зерен зависят от природы самого металла и условий кристаллизации.

Методы изучения структуры металла. Исследование структур металлов и сплавов производится с помощью макро- и микроанализа, а также другими способами.

Методом макро-анализа изучается макроструктура, т. е. строение металла, видимое невооруженным глазом или с помощью лупы. Макроструктуру определяют по изломам металла или по макрошлифам.

Макрошлиф представляет собой образец металла или сплава, одна из сторон которого отшлифована и протравлена кислотой или другим реактивом. Этим методом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри, неравномерность распределения примесей в металле и т. д.

Микроанализ позволяет определить размеры и форму зерен, структурные составляющие, качество термической обработки, выявить микродефекты.

Микроанализ проводится по микрошлифам с помощью микроскопа (современные металлографические микроскопы дают увеличение до 2000, а электронные -- до 25 000).

Микрошлиф -- это образец металла, имеющий плоскую полированную поверхность, подвергнутую травлению слабым раствором кислоты или щелочи для выявления микроструктуры. Свойства металлов. Свойства металлов обычно подразделяют, на физико-химические, механические и технологические.

2. Механические свойства металлов

Под механическими свойствами, как известно, понимают способность металла или сплава сопротивляться воздействию внешних сил. К механическим свойствам относят прочность, вязкость, твердость и др.

Прочность характеризует свойство металла или сплава в определенных условиях и пределах, не разрушаясь, воспринимать те или иные воздействия внешних сил.

Важным свойством металла является ударная вязкость -- сопротивление материала разрушению при ударной нагрузке.

Под твердостью понимают свойство материала сопротивляться внедрению в него другого, более твердого тела.

Механические свойства материалов выражаются через ряд показателей (например, пределы прочности при растяжении, относительное удлинение и сужение и т.д.)

Пределом прочности при растяжении, или временным сопротивлением разрыву, называется условное напряжение, соответствующее максимальной нагрузке, которую выдерживает образец в процессе испытания до разрушения

3. Определение твердости металлов и сплавов методом Бринелля, методом Роквелла и методом Виккерса

Твердость металлов и сплавов определяют в основном с помощью трех методов, названных по именам их изобретателей: метод Бринелля, метод Роквелла и метод Виккерса. I Измерение твердости по методу Бринелля заключается в том, что с помощью твердомера ТШ в поверхность испытуемого металла вдавливается стальной закаленный шарик диаметром 2,5 5 или 10 мм под действием статической -нагрузки Р. Отношение нагрузки к площади поверхности отпечатка (лунки) дает значение твердости, обозначаемое НВ.

Измерение твердости по Роквеллу осуществляется с помощью прибора ТК вдавливанием в испытуемый металл шарика диаметром 1,59 мм (1/16 дюйма) или алмазного конуса с углом при вершине 120° (для особо твердых сталей и сплавов). Показания твердости определяются по индикатору прибора.

Измерение твердости по Виккерсу производится с помощью прибора ТП вдавливанием в металл алмазной четырехгранной пирамиды с углом при вершине а= 136°. По длине диагонали полученного отпечатка с помощью таблицы находят число твердости HV.

Применение того или иного метода зависит от твердости испытуемого образца, его толщины или толщины испытуемого слоя. Например, методом Виккерса пользуются для измерения твердости закаленных сталей, материалов деталей толщиной до 0,3 мм и тонких наружных цементированных, азотированных и других поверхностей деталей.

К основным технологическим свойствам металлов и сплавов относятся следующие:

Ковкость--свойство металла подвергаться ковке и другим видам обработки давлением;

Жидкотекучесть -- свойство расплавленного металла заполнять литейную форму во всех ее частях и давать плотные отливки точной конфигурации;

Свариваемость -- свойство металла давать прочные сварные соединения;

Обрабатываемость резанием -- свойство металлов подвергаться обработке режущими инструментами для придания деталям определенной формы, размеров и шероховатости поверхности.

4. Кристаллическое строение металлов

Общее свойство металлов и сплавов -- их кристаллическое строение, характеризующееся определенным закономерным расположением атомов в пространстве. Для описания атомно-кристаллической структуры используют понятие кристаллической решетки, являющейся воображаемой пространственной сеткой с ионами (атомами) в узлах.

Атомно-кристаллическая структура может быть представлена не рядом периодически повторяющихся объемов, а одной элементарной ячейкой. Так называется ячейка, повторяющаяся во всех трех измерениях. Трансляцией этого наименьшего объема можно полностью воспроизвести структуру кристалла.

В кристалле элементарные частицы (атомы, ионы) сближены до соприкосновения. Для упрощения пространственное изображение принято заменять схемами, где центры тяжести частиц представлены точками. В точках пересечения прямых линий располагаются атомы; они называются узлами решетки. Расстояния a, bи c между центрами атомов, находящихся в соседних узлах решетки, называют параметрами, или периодами решетки. Величина их в металлах порядка 0,1-0,7 нм, размеры элементарных ячеек -- 0,2-0,3 нм.

В 1848 г. французский ученый Бравэ показал, что изученные трансляционные структуры и элементы симметрии позволяют выделить 14 типов кристаллических решеток. Для характеристики кристаллических решеток вводят понятия координационного числа и коэффициента компактности. Координационным числом Iкназывается число атомов, находящихся на наиболее близком и равном расстоянии от данного атома.

Типы элементарных ячеек кристаллических решеток металлов и схемы упаковки в них атомов:

а) гранецентрированная кубическая (ГЦК);

б) объемноцентрированная кубическая (ОЦК);

в) гексагональная плотноупакованная (ГП) решетка

Если принять, что атомы в решетке представляют собой упругие соприкасающиеся шары, то нетрудно видеть, что в решетке, помимо атомов, имеется значительное свободное пространство. Плотность кристаллической решетки, т. е. объем, занятый атомами, характеризуется коэффициентом компактности.

Коэффициент компактности Q равен отношению суммарного объема атомов, входящих в решетку, к объему решетки:

где R -- радиус атома (иона); n -- базис, или число атомов, приходящихся на одну элементарную ячейку; V -- объем элементарной ячейки.

твердость металл дефект аморфный

5. Дефекты строения кристаллических тел

Идеальная кристаллическая решетка представляет собой многократное повторение элементарных кристаллических ячеек. Для реального металла характерно наличие большого количества дефектов строения, нарушающих периодичность расположения атомов в кристаллической решетке. Эти дефекты оказывают существенное влияние на свойства материала.

Различают три типа дефектов кристаллического строения: точечные, линейные и поверхностные.

5.1 Точечные дефекты

Точечные дефекты характеризуются малыми размерами во всех трех измерениях. Величина их не превышает нескольких атомных диаметров. К точечным дефектам относятся:

а) свободные места в узлах кристаллической решетки -- вакансии (дефекты Шоттки);

б) атомы, сместившиеся из узлов кристаллической решетки в межузельные промежутки -- дислоцированные атомы (дефекты Френкеля);

в) атомы других элементов, находящиеся как в узлах, так и в междоузлиях кристаллической решетки -- примесные атомы.

Точечные дефекты образуются в процессе кристаллизации под воздействием тепловых, механических, электрических воздействий, а также при облучении нейтронами, электронами, рентгеновскими лучами.

Вакансии и дислоцированные атомы могут появляться вследствие тепловых движений атомов. В характерных для металлов решетках энергия образования дислоцированных атомов значительно больше энергии образования тепловых вакансий. Поэтому основными точечными дефектами в металлах являются тепловые вакансии. При комнатной температуре концентрация вакансий сравнительно невелика и составляет около 1 на 1018 атомов, но резко повышается при нагреве, особенно вблизи температуры плавления. Точечные дефекты не закреплены в определенных объемах металла, они непрерывно перемещаются в кристаллической решетке в результате диффузии.

Ориентировка кристаллических решеток: а) в зернах литого металла; б) после обработки давлением

Точечные дефекты в кристаллической решетке: а) вакансия; б) дислоцированный атом

Присутствие вакансий объясняет возможность диффузии -- перемещения атомов на расстояния, превышающие средние межатомные расстояния для данного металла. Перемещение атомов осуществляется путем обмена местами с вакансиями. Различают самодиффузию и гетеродиффузию. В первом случае перемещения атомов не изменяют их концентрацию в отдельных объемах, во втором -- сопровождаются изменением концентрации. Гетеродиффузия характерна для сплавов с повышенным содержанием примесей.

Точечные дефекты приводят к локальным изменениям межатомных расстояний и, следовательно, к искажениям кристаллической решетки. При этом увеличивается сопротивление решетки дальнейшему смещению атомов, что способствует некоторому упрочнению кристаллов и повышает их электросопротивление.

Вакансии, дислоцированные атомы и другие точечные дефекты обнаружены при исследовании металлов с помощью автоионного микроскопа, дающего увеличение свыше 106 раз.

5.2 Линейные дефекты

Линейные дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Наиболее важный вид линейных дефектов -- дислокации (лат. dislocation -- смещение). Теория дислокаций была впервые применена в середине тридцатых годов ХХ века физиками Орованом, Поляни и Тейлором для описания процесса пластической деформации кристаллических тел. Ее использование позволило объяснить природу прочности и пластичности металлов. Теория дислокаций дала возможность объяснить огромную разницу между теоретической и практической прочностью металлов.

На рис. 1.6 приведена схема участка кристаллической решетки с одной «лишней» атомной полуплоскостью, т. е. краевой дислокацией. Линейная атомная полуплоскость PQQ'Р' называется экстраплоскостью, а нижний край экстраплоскости -- линией дислокации. Если экстраплоскость находится в верхней части кристалла, то дислокацию называют положительной и обозначают знаком «», если в нижней -- то отрицательной и обозначают знаком «-». Различие между дислокациями чисто условное. Перевернув кристалл, мы превращаем положительную дислокацию в отрицательную. Знак дислокации позволяет оценить результат их взаимодействия. Дислокации одного знака отталкиваются, а противоположного -- притягиваются.

Помимо краевых дислокаций в кристаллах могут образовываться и винтовые дислокации (рис. 1.7).

Винтовые дислокации могут быть получены путем частичного сдвига атомных слоев по плоскости Q, который нарушает параллельность атомных слоев. Кристалл как бы закручивается винтом вокруг линии EF. Линия EF является линией дислокации. Она отделяет ту часть плоскости скольжения, где сдвиг уже завершился, от той части, где сдвиг еще не происходил. Винтовая дислокация, образованная вращением по часовой стрелке, называется правой, а против часовой стрелки -- левой.

Вблизи линии дислокации атомы смещены со своих мест и кристаллическая решетка искажена, что вызывает образование поля напряжений: выше линии дислокации решетка сжата, а ниже растянута.

Рис 1.6. Краевая дислокация

Рис 1.7. Винтовая дислокация

Дислокации образуются уже при кристаллизации металлов, а также в ходе пластической деформации и фазовых превращений. Плотность дислокаций может достигать большой величины. Под плотностью дислокаций r обычно понимают суммарную длину дислокаций S l, приходящуюся на единицу объема V кристалла: r= S l/V. Таким образом, размерность плотности дислокаций r: см/см3, или см-2. Для отожженных металлов плотность дислокаций составляет величину 106-103 см-2, после холодной деформации она увеличивается до 1011-1012 см-2, что соответствует примерно 1 млн километров дислокаций в 1 см3.

Использование теории дислокаций позволило объяснить большое расхождение между теоретической и фактической прочностью металлов. Теоретическая прочность должна быть пропорциональна произведению сил межатомной связи на число атомов в сечении кристалла.

Расчетное усилие для смещения одной части кристалла относительно другой оказалось на 2-3 порядка выше фактически затрачиваемого при пластической деформации металла. Так, теоретическая прочность железа составляет около 13 000 МПа, а фактическая -- всего 250 МПа.

Такое расхождение теоретической и фактической прочности объясняется тем, что деформация происходит не путем одновременного смещения целых атомных плоскостей, а путем постепенного перемещения дислокаций. Влияние дислокаций на процесс пластической деформации на примере краевых дислокаций показано на рис. 1.8. Пластический сдвиг является следствием постепенного перемещения дислокаций в плоскости сдвига. Распространение скольжения по плоскости скольжения происходит последовательно. Каждый элементарный акт перемещения дислокации из одного положения в другое совершается путем разрыва лишь одной вертикальной атомной плоскости. Для перемещения дислокаций требуется значительно меньшее усилие, чем для жесткого смещения одной части кристалла относительно другой в плоскости сдвига. При движении дислокации вдоль направления сдвига через весь кристалл происходит смещение верхней и нижней его частей лишь на одно межатомное расстояние. В результате перемещения дислокация выходит на поверхность кристалла и исчезает. На поверхности остается ступенька скольжения.

В лекции о роли дислокаций Орован в качестве аналогии движения дислокаций приводил примеры перемещения таких представителей животного мира, как дождевой червь или змея. Они скользят по поверхности земли, последовательно перемещая участки своего тела. При этом участки, через которые прошла волна возмущения, восстанавливают исходную форму. В случае пластического сдвига позади переместившейся дислокации атомная структура верхних и нижних слоев восстанавливает свою исходную конфигурацию.

Рис 1.8. Схема пластической деформации путем последовательного перемещения дислокации в простой кубической решетке:

а) исходное состояние краевой дислокации (^);

б) контур Бюргерса вокруг дислокации;

в) контур Бюргерса для неискаженной решетки после скольжения.

Другой аналогией движения дислокаций является перемещение складки на ковре. Последовательное перемещение складки потребует значительно меньше усилий, чем перемещение всего ковра по поверхности пола, хотя в обоих случаях будет достигнут один и тот же результат -- ковер переместится на одинаковое расстояние (рис. 1.9).

Дислокации легко перемещаются в направлении, перпендикулярном экстраплоскости. Чем легче перемешаются дислокации, тем ниже прочность металла, тем легче идет пластическая деформация.

Пластическая деформация кристаллических тел связана с количеством дислокаций, их шириной, подвижностью, степенью взаимодействия с дефектами решетки и т. д. Характер связи между атомами влияет на пластичность кристаллов. Так, в неметаллах с их жесткими направленными связями дислокации очень узкие, они требуют больших напряжений для старта -- в 103 раз больших, чем для металлов. В результате хрупкое разрушение в неметаллах наступает раньше, чем сдвиг.

Таким образом, причиной низкой прочности реальных металлов является наличие в структуре материала дислокаций и других несовершенств кристаллического строения. Получение бездислокационных кристаллов приводит к резкому повышению прочности материалов (рис. 1.10).

Левая ветвь кривой соответствует созданию совершенных бездислокационных нитевидных кристаллов (так называемых «усов»), прочность которых близка к теоретической.

При ограниченной плотности дислокаций и других искажений кристаллической решетки процесс сдвига происходит тем легче, чем больше дислокаций находится в объеме металла.

С ростом напряжений возрастает число источников дислокаций в металле и их плотность увеличивается. Помимо параллельных дислокаций возникают дислокации в разных плоскостях и направлениях. Дислокации воздействуют друг на друга, мешают друг другу перемешаться, происходит их аннигиляция (взаимное уничтожение) и т. д., что позволило Дж. Гордону образно назвать их взаимодействие в процессе пластической деформации «интимной жизнью дислокаций». С повышением плотности дислокаций их движение становится все более затрудненным, что требует увеличения прилагаемой нагрузки для продолжения деформации. В результатеметалл упрочняется, что соответствует правой ветви кривой на рис. 1.11.

Упрочнению способствуют и другие несовершенства кристаллического строения, также тормозящие движение дислокаций. К ним относятся атомы растворенных в металле примесей и легирующих элементов, частицы выделений второй фазы, границы зерен или блоков и т. д. На практике препятствие движению дислокаций, т. е. упрочнение, создается введением других элементов (легирование), наклепом, термической или термомеханической обработкой. Снижение температуры также препятствует свободному перемещению дислокаций. При низких температурах прочность растет, а пластичность падает. Металл становится более прочным, но хрупким.

Таким образом, повышение прочности металлов и сплавов может быть достигнуто двумя путями: 1) получением металлов с близким к идеальному строением кристаллической решетки, т. е. металлов, в которых отсутствуют дефекты кристаллического строения или же их число крайне мало; 2) либо, наоборот, увеличением числа структурных несовершенств, препятствующих движению дислокаций.

5.3 Поверхностные дефекты

Поверхностные дефекты имеют малую толщину и значительные размеры в двух других измерениях. Обычно это места стыка двух ориентированных участков кристаллической решетки. Ими могут быть границы зерен, границы фрагментов внутри зерна, границы блоков внутри фрагментов. Соседние зерна по своему кристаллическому строению имеют неодинаковую пространственную ориентировку решеток. Блоки повернуты друг по отношению к другу на угол от нескольких секунд до нескольких минут, их размер 10-5 см. Фрагменты имеют угол разориентировки не более 5°. Если угловая разориентировка решеток соседних зерен меньше 5°, то такие границы называются малоугловыми границами. Такая граница показана на рис. 1.11. Все субзеренные границы (границы фрагментов и блоков) -- малоугловые. Строение границ зерен оказывает большое влияние на свойства металла.

Рис 1.9. Схема движения дислокации по аналогии с перемещением складки на ковре

Рис 1.10. Влияние искажений кристаллической решетки на прочность кристаллов

Рис 1.11. Схема малоугловой границы между блоками

На рис. 1.12 показано, что границы зерен и фаз могут совпадать (когерентные), совпадать частично (полукогерентные) и не совпадать (некогерентные).

Граница между зернами представляет собой узкую переходную зону шириной 5-10 атомных расстояний с нарушенным порядком расположения атомов. В граничной зоне кристаллическая решетка одного зерна переходит в решетку другого (рис. 1.13). Неупорядоченное строение переходного слоя усугубляется скоплением в этой зоне дислокаций и повышенной концентрацией примесей.

Плоскости и направления скольжения в соседних зернах не совпадают. Скольжение первоначально развивается в наиболее благоприятно ориентированных зернах. Разная ориентировка систем скольжения не позволяет дислокациям переходить в соседние зерна, и, достигнув границы зерен, они останавливаются. Напряжения от скопления дислокаций у границ одних зерен упруго распространяются через границы в соседние зерна, что приводит в действие источники образования новых дислокаций (источники Франка--Рида). Происходит передача деформации от одних зерен к другим, подобно передаче эстафеты в легкоатлетических соревнованиях.

Рис 1.12. Схема межфазных границ: а) когерентные; б) полукогерентные; в) некогерентные

Рис 1.13. Схема строения зерен и границ между ними

Вследствие того, что границы зерен препятствуют перемещению дислокаций и являются местом повышенной концентрации примесей, они оказывают существенное влияние на механические свойства металла.

Под размером зерна принято понимать величину его среднего диаметра, выявляемого в поперечном сечении. Это определение условно, так как действительная форма зерна в металлах меняется в широких пределах -- от нескольких микрометров до миллиметров. Размер зерна оценивается в баллах по специальной стандартизованной шкале и характеризуется числом зерен, приходящихся на 1 мм2 поверхности шлифа при увеличении в 100 раз (рис. 1.14).

Процесс пластического течения, а, следовательно, и предел текучести зависят от длины свободного пробега дислокаций до «непрозрачного» барьера, т. е. до границ зерен металла. Предел текучести sТ связан с размером зерна d уравнением Холла--Петча:

sТ = sо + kd-1/2

где sо и k -- постоянные для данного металла. Чем мельче зерно, тем выше предел текучести и прочность металла. Одновременно при измельчении зерна увеличиваются пластичность и вязкость металла. Последнее особенно важно для металлических изделий, работающих при низких температурах. Повышенные пластичность и вязкость обусловлены более однородным составом и строением мелкозернистого металла, отсутствием в нем крупных скоплений, структурных несовершенств, способствующих образованию трещин.

Рис 1.14. Шкалы для определения величины зерна

Рост зерен аустенита эффективно затрудняет дисперсные частицы второй фазы -- карбидов, нитридов, неметаллических включений. Частицы нитрида AlN, содержащиеся в спокойных сталях, раскисленных алюминием, препятствуют росту аустенитных зерен.

В легированных сталях рост зерен аустенита тормозится карбидами и карбонитридами легирующих элементов V, Ti, Nb, микродобавки которых в количестве около 0,1 % специально вводят в стали с целью сохранения мелкого зерна аустенита вплоть до 1000 °С. Использование этих элементов одновременно обеспечивает мелкозернистую структуру и снижение критической температуры хрупкости.

Помимо перечисленных дефектов в металле имеются макродефекты объемного характера: поры, газовые пузыри, неметаллические включения, микротрещины и т. д. Эти дефекты снижают прочность металла.

6. Аморфные вещества

Главный признак аморфного (от греческого "аморфос" - бесформенный) состояние вещества - отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.

В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.

Аморфные тела изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие твердости. Метод вдавливания твердого наконечника. Измерение твердости по методу Бринелля, Виккерса и Роквелла. Измерение микротвердости. Порядок выбора оборудования. Проведение механических испытаний на твердость для определения трубных свойств.

    курсовая работа [532,5 K], добавлен 15.06.2013

  • Классификация дефектов кристаллической решетки металлов. Схема точечных дефектов в кристалле. Дислокация при кристаллизации или сдвиге. Расположение атомов в области винтовой дислокации. Поверхностные или двухмерные дефекты. Схема блочной структуры.

    лекция [4,4 M], добавлен 08.08.2009

  • Рассмотрение правил проведения макро- и микроанализа металлов и сплавов, определению твердости, исследованию структур и свойств сталей и чугунов, цветных сплавов и пластмасс. Практические вопросы термической и химико-термической обработки металлов.

    учебное пособие [4,4 M], добавлен 20.06.2012

  • Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.

    презентация [1,3 M], добавлен 29.09.2013

  • Точечные дефекты в кристаллической решетке реальных металлов: вакансии, дислоцированные атомы и примеси. Образование линейных дефектов (дислокаций). Роль винтовой дислокации в формировании растущего кристалла. Влияние плотности дислокаций на прочность.

    презентация [205,4 K], добавлен 14.10.2013

  • Основные типы решеток, точечные и линейные дефекты. Связь строения кристаллической решетки с механическими и физическими свойствами материала. Реальное строение кристаллов, формы пластической деформации. Свойства металлов, применяемых в строительстве.

    реферат [218,2 K], добавлен 30.07.2014

  • Типы кристаллических решёток металлов и дефекты их строения. Свойства и области применения карбида кремния. Электропроводность жидких диэлектриков и влиянии на неё различных факторов. Виды, свойства и применение неметаллических проводниковых материалов.

    контрольная работа [1,5 M], добавлен 09.10.2010

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.

    курсовая работа [871,7 K], добавлен 03.07.2015

  • Определение механических свойств конструкционных материалов путем испытания их на растяжение. Методы исследования качества, структуры и свойств металлов и сплавов, определение их твердости. Термическая обработка деформируемых алюминиевых сплавов.

    учебное пособие [7,6 M], добавлен 29.01.2011

  • Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.

    презентация [2,4 M], добавлен 19.02.2015

  • Испытания на твердость металла с помощью метода измерения по Бринеллю. Устройство и принцип работы твердомера. Поиск предела прочности и текучести материала. Связь между напряжениями и деформациями. Поверхностная и объемная твердость материалов.

    контрольная работа [700,4 K], добавлен 06.11.2012

  • Изучение строения металла с помощью макроскопического анализа. Выявление макроструктуры болта, полученного горячей штамповкой. Определение глубины цементованного слоя и величины зерна стали. Микроструктурный метод исследования металлов и сплавов.

    контрольная работа [432,2 K], добавлен 17.08.2011

  • Физико-химические основы термической и химико-термической обработки материалов. Структуры и превращения в системе железо-углерод. Защитно-пассивирующие неорганические и лакокрасочные покрытия. Основы строения вещества. Кристаллизация металлов и сплавов.

    методичка [1,2 M], добавлен 21.11.2012

  • Описание технологии производства чугуна и стали: характеристика исходных материалов, обогащение руд, выплавка и способы получения. Медь, медные руды и пути их переработки. Технология производства алюминия, титана, магния и их сплавов. Обработка металлов.

    реферат [101,6 K], добавлен 17.01.2011

  • Сущность и назначение термической обработки металлов, порядок и правила ее проведения, разновидности и отличительные признаки. Термомеханическая обработка как новый метод упрочнения металлов и сплавов. Цели химико-термической обработки металлов.

    курсовая работа [24,8 K], добавлен 23.02.2010

  • Влияние высокотемпературной термомеханической обработки на тонкую кристаллическую структуру аустенитных сталей и сплавов. Закономерности роста зерен металлов и сплавов при высоких температурах. Влияние температуры на характеристики металлов.

    курсовая работа [534,9 K], добавлен 28.12.2003

  • Условия получения крупнозернистой структуры при самопроизвольно развивающейся кристаллизации. Диаграмма состояния системы свинец-олово. Линейные несовершенства кристаллического строения и их влияние на свойства металлов. Устранение остаточного аустенита.

    контрольная работа [2,0 M], добавлен 11.01.2011

  • Проектирование современного цеха по производству отливок из сплавов черных металлов. Выбор оборудования и расчет производственной программы этого цеха. Особенности технологических процессов выплавки стали. Расчет площади складов для хранения материалов.

    курсовая работа [125,6 K], добавлен 13.05.2011

  • Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.

    реферат [25,4 K], добавлен 25.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.