Построение диаграммы состояния железоуглеродистых сплавов и микростурный анализ углеродистых сталей в равновесном состоянии
Превращения в углеродистых сталях при медленном непрерывном охлаждении. Микроструктура углеродистых сталей в равновесном состоянии. Влияние содержания углерода на механические свойства медленно-охлажденных сталей. Диаграмма состояния системы Fe-Fe3C.
Рубрика | Производство и технологии |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 14.10.2015 |
Размер файла | 35,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ЛАБОРАТОРНАЯ РАБОТА № 4
построение диаграммы состояния железоуглеродистых сплавов и микростурный анализ углеродистых сталей в равновесном состоянии
Цель работы
1. Ознакомиться с диаграммой состояния железоуглеродистых сплавов и изучить природу превращений в углеродистых сталях при медленном непрерывном охлаждении.
2. Изучить микроструктуру углеродистых сталей в равновесном состоянии.
3. Изучить влияние содержания углерода на механические свойства медленно-охлажденных сталей.
Задание
1. Построить диаграмму состояния системы Fe-Fe3C.
2. Построить кривую охлаждения для сплава с содержанием углерода, указанным преподавателем.
3. Исследовать с использованием микроскопа контрольные шлифы сталей, определить их фазовый состав, структуру и примерное содержание углерода. Зарисовать микроструктуры исследованных сталей.
Основные сведения
Принципиально важным для железо-углеродистых сплавов является то, что основной компонент - железо существует в двух аллотропических модификациях: объемноцентрированного куба (Fe) и гранецентрированного куба (Fe). Из кривой охлаждения чистого железа (рис.1) видно, что Fe существует в двух интервалах температур : ниже 911°С и от 1392 до 1539°С. Достигнув при охлаждении температуры 1392°С, Fe претерпевает аллотропическое превращение, в процессе которого кристаллическая решетка объемно-центрированного куба при постоянной температуре перестраивается в решетку гранецентрированного куба Fe. Второе аллотропическое превращение в процессе охлаждения происходит при температуре 911°С, когда Fe (решетка гранецентрированного куба) перестраивается в объемноцентрированную кубическую решетку Fe.
При температуре 768°С, называемой точкой Кюри, железо испытывает магнитное превращение: ниже 768°С железо становится магнитным.
Размещено на http://www.allbest.ru/
Магнитное превращение есть особый вид превращения и имеет ряд особенностей, отличающих его от аллотропического превращения.
Железо с углеродом образует твердые растворы внедрения и химические соединения.
В зависимости от содержания углерода железо-углеродистые сплавы делятся на два класса: стали и чугуны.
Сталями называются сплавы, содержащие до 2,14% углерода. Чугуны имеют в своем составе от 2,14 до 6,67% углерода.
В зависимости от содержания углерода и структуры сталей различают:
- техническое железо - сплавы, содержащие до 0,02% углерода.
- доэвтектоидные стали - сплавы, содержащие от 0,02 до 0,8% углерода,
- эвтектоидные стали - сплавы, содержащие 0,8% углерода,
-заэвтектоидные стали - сплавы, содержащие от 0,8 до 2,14% углерода.
углеродистый сталь охлаждение механический
Первичная и вторичная кристаллизация стали
При изучении превращений в железо-углеродистых сплавах в процессе медленного охлаждения и их микроструктуры в равновесном состоянии пользуются диаграммой состояния "железо-цементит" (рис.2), основы для разработки которой были впервые даны Д.К.Черновым в 1886 г.
Диаграмма состояния ''железо-цементит", как и другие диаграммы состояния для двухкомпонентных систем, построена в координатах "температура-концентрация углерода в %”. Максимальная концентрация углерода на диаграмме состояния составляет 6,67 %, что соответствует 100% цементита.
Первичная кристаллизация - это переход металла из жидкого состояния в твердое, т.е. процесс образования твердых кристаллов непосредственно из жидкого расплава.
Для углеродистых сталей этот процесс начинается при охлаждении, когда температура достигает значений, соответствующих линии АВС, и заканчивается на линии HJE . После окончания первичной кристаллизации и достижения температуры, соответствующей линии HJE, сталь, независимо от содержания в ней углерода, имеет полиэдрическую структуру аустенита, который при дальнейшем медленном охлаждении сохраняется до линии GS -- в доэвтектоидных сталях и до линии SE - в заэвтектоидных.
В отличие от первичной кристаллизации процесс выделения вторичных кристаллов из твердой фазы носит название вторичной кристаллизации.
Сущность вторичной кристаллизации для углеродистых сталей состоит в распаде аустенита при охлаждении стали и образовании новых фаз: феррита и цементита.
Вторичная кристаллизация в доэвтектоидных сталях начинается
выделением феррита при достижении уровня температур при охлаждении, соответствующих линии GS. Из диаграммы состояния видно, что температура начала вторичной кристаллизации не постоянна.
В доэвтектоидных сталях она понижается с увеличением содержания углерода.
В области GSP структура состоит из двух фаз: ауcтенита и феррита. По мере охлаждения от линии GS к линии PS количество феррита постепенно увеличивается, а количество аустенита уменьшается; при этом в оставшемся аустените концентрация углерода увеличивается по линии GS в направлении к точке S и достигнет 0,8 % при 727°С (линия PS ).
При охлаждении заэвтектоидных сталей из аустенита по линии ES начинает выделяться вторичный цементит. При дальнейшем охлаждении между линиями ES и SK структура стали состоит из аустенита и вторичного цементита, количество которого непрерывно возрастает. Охлаждаясь, аустенит обедняется углеродом и достигает эвтектоидного состава ( 0,8 %С ) при температуре 727° С ( линия SK ).
Таким образом в доэвтектоидных, эвтектоидных и заэвтектоидных сталях при температуре 727°С аустенит содержит 0,8 %С и распадается при постоянной температуре на две фазы: феррит и цементит:
А0,8%С (Ф0,02%С + Ц6,67%С) ,
структура образующейся механической смеси называется перлитом.
Структура углеродистой стали в равновесном состоянии
Согласно диаграмме состояния сплавы, содержащие до 0,01% углерода, являются однофазными сплавами и имеют структуру чистого феррита. При содержании углерода от 0,01% до 0,02% структура сплавов состоит из феррита и третичного цементита, выделяющегося из феррита по линии PQ . Ввиду очень малого количества третичного цементита в структуре он обычно не наблюдается.
Структура доэвтектоидной стали, содержащей углерода более 0,02 %, состоит из феррита и перлита. С увеличением содержания углерода количество перлита увеличивается, а количество феррита уменьшается.
В доэвтектоидных сталях по микроструктуре можно с достаточной точностью определить содержание углерода, считая, что весь углерод находится в перлите. Для определения содержания углерода необходимо определить, какую часть поля зрения на шлифе занимают перлитные участки, и умножить полученную величину на 0,8. Например, если 40% всей площади занято перлитом, то содержание углерода в стали
40: 100 х 0,8 = 0,32 %.
Структура эвтектоидной стали - перлит, т.е. механическая смесь двух фаз - феррита и цементита, в которой частицы цементита равномерно распределены в массе феррита. В зависимости от формы выделений цементита различают пластинчатый и зернистый перлит.
Структура заэвтектоидной стали состоит из перлита и вторичного цементита. С увеличением содержания углерода в стали количество вторичного цементита также увеличивается, в заэвтектоидной отали вторичный цементит выделяется главным образом в виде тонкой сетки по границам зерен перлита. При обычном травлении четырехпроцентным раствором азотной кислоты в спирте цементитная сетка имеет такую же светлую окраску, как и ферритная сетка в доэвтектоидных сталях. Для того, чтобы в сомнительных случаях убедиться, что включениями является цементит, шлиф заново полируется и подвергается травлению специальным раствором пикрата натрия, который окрашивает в темный цвет цементит и не окрашивает феррит.
Механические свойства медленноохлажденных сталей
Увеличение содержания углерода приводит к увеличению перлита в структуре доэвтектоидных сталей и вторичного цементита в структуре заэвтектоидных сталей.
Таким образом, с увеличением содержания углерода в структуре медленноохлажденных сталей количество цементита в них увеличивается, а количество феррита уменьшается. Такие изменения в структуре стали приводят к изменению ее механических свойств. Феррит имеет невысокую прочность ( 250 МПа), небольшую твердость (НВ 80) и высокую пластичность ( 50%). Цементит имеет высокую твердость (НВ 800) и практически не обладает пластическими свойствами.
На рис.3 приведены зависимости механических свойств горячекатаной cтали, для которой окончательное формирование структуры, а следовательно и свойств, определяется относительно медленным охлаждением после горячей прокатки, от содержания углерода. Приведенные значения механических свойств являются осредненными и могут колебаться в пределах 10 % в зависимости от условий охлаждения после прокатки, содержания примесей и др.
Из приведенных зависимостей видно, что с увеличением содержания углерода в медленноохлажденной стали ее твердость и прочность возрастают, а пластичность (относительное удлинение и относительное сужение ) - понижается.
Понижение предела прочности при увеличении содержания углерода выше 1% связано с появлением в структуре стали хрупкой сетки вторичного цементита по границам зерен перлита.
Порядок оформления отчета
В отчете приводятся:
1. Цель работы и задание по ее выполнению.
2. Кривая охлаждения для стали с заданной концентрацией углерода.
3. Рисунки микроструктур - доэвтектоидной, эвтектоидной и заэвтектодной углеродистой стали и их анализ.
Размещено на http://www.allbest.ru/
Литература
1. Солнцев Ю.п., Пряхин Е.И., Войткун Ф. Материаловедение. - М.: 1999, 477 с.
2.Лахтин Ю.М. Металловедение и термическая обработка металлов. - М.: Металлургия, 1993, 447 с.
Размещено на Allbest.ru
...Подобные документы
Классификация углеродистых сталей по назначению и качеству. Направления исследования превращения в сплавах системы железо–цементит и сталей различного состава в равновесном состоянии. Определение содержания углерода в исследуемых сталях и их марки.
лабораторная работа [1,3 M], добавлен 17.11.2013Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.
презентация [1,5 M], добавлен 21.12.2010Правило фаз (закон Гиббса) в термодинамике, его применение для построения кривых охлаждения железоуглеродистых сплавов и анализа превращений. Определение структурных составляющих углеродистых сталей в равновесном состоянии (после полного отжига).
реферат [2,2 M], добавлен 28.06.2012Изменение механических, физических и химических свойств углеродистых конструкционных и инструментальных сталей в результате химико–термической обработки. Марки сталей, их назначение и свойства. Структурные превращения при нагреве и охлаждении стали.
контрольная работа [769,1 K], добавлен 06.04.2015Фазы в железоуглеродистых сплавах: аустенит, феррит, цементит. Структурные составляющие в сталях. Микроструктура стали и схема ее зарисовки. Схема строения перлита. Микроструктура углеродистых сталей после отжига. Состав и структура эвтектоидной стали.
реферат [960,5 K], добавлен 12.06.2012Свойства стали, ее получение и области применения. Классификация углеродистых сталей в зависимости от назначения, структуры, содержания углерода, качества. Качественные конструкционные углеродистые стали, их химический состав и механические свойства.
контрольная работа [999,9 K], добавлен 17.08.2009Классификация, свойства, применение, маркировка углеродистых и легированных сталей. Влияние углерода и примесей на их свойства. Термическая обработка сплава 30ХГСА. Измерение твёрдости методом Роквелла. Влияние легирующих элементов на рост зерна стали.
дипломная работа [761,3 K], добавлен 09.07.2015Схема строения стального слитка. Влияние углерода и легирующих элементов на положение мартенситных точек. Достоинства углеродистых качественных сталей. Назначение синтетических защитных покрытий подвижного состава. Процесс закалки быстрорежущих сталей.
контрольная работа [1,6 M], добавлен 29.03.2010Описание порядка применения закалки углеродистых сталей и определение температуры закалки согласно заданию. Вычисление необходимой продолжительности закалки. Назначение отжига и определение его времени согласно заданию. Правила составления протокола.
лабораторная работа [15,3 K], добавлен 12.01.2010Характерные группы сплавов сталей при кристаллизации, их основные свойства, температуры плавления и кристаллизации. Твердофазные превращения в сталях. Построение кривой охлаждения и изменения микроструктуры при кристаллизации малоуглеродистой стали.
контрольная работа [229,7 K], добавлен 17.08.2009Общие сведения об электрической сварке плавлением. Механические свойства металла шва и сварного соединения. Типичная форма углового шва при сварке под флюсом стали. Особенности технологии сварки низколегированных низкоуглеродистых сталей, ее режим.
реферат [482,7 K], добавлен 21.10.2016Назначение и особенности эксплуатации инструментальных сталей и сплавов, меры по обеспечению их износостойкости. Требования к сталям для измерительного инструмента. Свойства углеродистых и штамповых сталей для деформирования в различных состояниях.
контрольная работа [432,5 K], добавлен 20.08.2009Определение классификации конструкционных сталей. Свойства и сфера использования углеродистых, цементуемых, улучшаемых, высокопрочных, пружинных, шарикоподшипниковых, износостойких, автоматных сталей. Стали для изделий, работающих при низких температурах.
презентация [1,8 M], добавлен 14.10.2013Повышение механических свойств стали путем введения в нее легирующих элементов. Классификация стали в зависимости от химического состава. Особенности сварки углеродистых и легированных сталей. Причины возникновения трещин. Типы применяемых электродов.
курсовая работа [33,2 K], добавлен 06.04.2012Кристаллизация и твердофазные превращения в белых чугунах, их характеристика, структура и свойства, эвтектические превращения, содержание цементита. Виды диаграмм состояния железо-углеродистых сплавов. Понятия чистое техническое железо, сталь и чугун.
контрольная работа [1,2 M], добавлен 17.08.2009Диаграмма состояния системы алюминий-медь, железоуглеродистых сталей. Взаимодействия компонентов в жидком и твердом состояниях. Технология термической обработки деталей. Время, необходимое для распада твердого раствора. Механические свойства сплава.
контрольная работа [973,4 K], добавлен 05.07.2008Классификация и разновидности железоуглеродистых сплавов в зависимости от содержания в них углерода. Кристаллизация заэвтектического чугуна, этапы данного процесса и его конечные продукты. Формирование структуры при охлаждении сталей и серых чугунов.
презентация [3,7 M], добавлен 29.09.2013Классификация литейных сплавов. Технологические свойства материалов литых заготовок, их обрабатываемость. Классификация отливок из углеродистых и легированных сталей в зависимости от назначения и качественных показателей. Эксплуатационные свойства чугуна.
презентация [61,7 K], добавлен 18.10.2013Определение причин и описание механизма необратимости пластичной деформации металлов. Изучение структурных составляющих сплавов железа с углеродом, построение кривой охлаждения сплава. Описание процессов закаливаний углеродистых сталей, их структура.
контрольная работа [596,1 K], добавлен 18.01.2015Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.
презентация [3,3 M], добавлен 06.04.2014