Определение степени защищенности от коррозии объектов транспорта газа, расположенных в зонах воздействия геомагнитных аномалий
Неблагоприятные природные факторы, вызывающие разрывы труб: геодинамическая активность недр, разломы, эманации глубинных агрессивных газов, магнитные и электрические поля, приводящие к коррозии металла. Распространенность аварий и их профилактика.
Рубрика | Производство и технологии |
Вид | доклад |
Язык | русский |
Дата добавления | 16.11.2015 |
Размер файла | 17,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Доклад
Определение степени защищенности от коррозии объектов транспорта газа, расположенных в зонах воздействия геомагнитных аномалий
Россия вторая страна в мире (после США) по протяженности трубопроводов различного назначения и первая по их изношенности. Перспективы увеличения продолжительности «жизни» трубопроводных систем нефтегазового комплекса страны, что признается сейчас важнейшей научной, технической и экономической задачей. Действительно, нефтегазодобыча и переработка являются одним из основных стратегических приоритетов социально-экономического развития России.
Угрозой здесь являются разрывы труб из-за таких неблагоприятных природных факторов как: «геодинамическая активность недр, разломы, эманации глубинных агрессивных газов, и наконец, магнитные и электрические поля, приводящие к коррозии металла [3]». Последняя проблема встает на первый план уже несколько десятилетий из-за старения трубопроводных систем. Срок службы газопроводов определен в 33 года, и сейчас этот возраст достигнут почти для 20% трубопроводов Газпрома и еще больше для нефтепроводов. При этом более 30-40% аварий на газопроводах связывается с наружной коррозией металла труб (коррозией растрескивания под напряжением), и эта стресс-коррозия стала последние годы одной из наиболее серьезных причин разрывов на магистральных газопроводах, в то же время она наименее изучена.
Количество аварий в России на подземных трубопроводах различного назначения РФ согласно данным МЧС ежегодно увеличивается в геометрической прогрессии [1], и при этом коррозия, как природный фактор аварийности, - одна из основных причин аварий как на нефте- и газопроводах, так и на водоводах. Данные показатели для России в разы превышают западноевропейские. Так, на российских трубопроводах из-за коррозионных процессов относительная частота отказов составляет в среднем около 30% от их полного числа, а в Западной Европе вдвое меньше - примерно 15%. Коррозионные повреждения отечественных трубопроводов начинают появляться уже спустя 5-10 лет с начала их эксплуатации, приводя к резкому нарастанию частоты отказов, а в Западной Европе это происходит после 25-30 лет эксплуатации. Но такие сроки и являются нормальными с точки зрения материаловедения, ведь плановые сроки службы магистральных газопроводов составляют сейчас 33 года [3].
Итак, на современном этапе развития нефтегазотрубопроводных систем самой актуальной является задача увеличения их долговечности и безопасности (в том числе в экологическом аспекте). Покажем, что эта задача для отечественных магистральных нефтегазотрубопроводов не может быть решена без определенных организационно-информационных разработок, направленных на учет Космической погоды при их эксплуатации.
Действительно, зарубежные специалисты-космофизики из Северной Европы, Северной Америки, Австралии давно работают по заказу владельцев своих больших трубопроводных и электрических систем. Основное внимание при этом уделяется созданию моделей воздействия эффектов мировых магнитных бурь на магистральные трубопроводы и большие электрические сети. Помимо коммерческого приложения такие работы имеют строгое научное обоснование в рамках Европейской программы COST 724 «Развитие научных основ для мониторинга, моделирования и предсказания Космической погоды» с участием представителей России. При обосновании постановки работ по данной программе большое внимание уделялось как раз влиянию Космической погоды, прежде всего солнечных вспышек и геомагнитных бурь, на технологические системы, включая коррозию трубопроводов, когда станции катодной защиты выходят из строя или отключены. Основным элементом такого воздействия являются геомагнитно-индуцированные токи (ГИТ) (входящие в разряд теллурических токов), генерируемые при достаточно сильных геомагнитных бурях на наибольшей части территории России. Существующий поход здесь состоит в том, что ни теллурические токи, ни тем более ГИТы даже не упоминаются в действующих ГОСТах. Это согласно результатам нашего анализа и является в основном источником тех промахов в эксплуатации трубопроводов, которые привели к их аномально скоротечному коррозионному износу.
Действительно, каждый год наблюдается до 50-100 сильных геомагнитных бурь с величиной планетарного индекса геомагнитной активности Кр, равной 6 и более. При этом эффекты бури проявляются уже на геомагнитных широтах 50°, что соответствует линии, проходящей южнее Братска, Новосибирска, Тулы. Вся территория к северу от этой линии охвачена бурей, включая зону полярных сияний примерно одна, еще более сильная геомагнитная буря (с Кр, равным 7 и выше), происходит раз в 10-15 дней и тогда уже практически вся Россия подвержена ее влиянию.
Таким образом, как правило, в среднем происходит каждую неделю как минимум по одной большой буре. Одним из главных проявлений мощных магнитных бурь является вторжение потоков энергичных корпускул в ионосферу Земли на средних и высоких широтах. Эти корпускулы (в основном электроны, а также протоны) высыпаются из радиационных поясов и прямо из магнитосферы и производят сильную добавочную ионизацию в верхних слоях атмосферы, являющуюся причиной генерации ГИТов.
Под влиянием высыпающихся во время геомагнитных бурь электронов образуются ионосферные токовые системы, которые в свою очередь и создают геомагнитно-индуцированные токи как в земной поверхности, так и в различных проводящих системах, расположенных над и в грунте (почве). Именно поверхностное электрическое поле является источником ГИТов, протекающих и по трубопроводам различного назначения.
В период типичной мировой магнитной бури наиболее сильные возрастания потоков электронов килоэлектронвольтных энергий на умеренных и высоких геомагнитных широтах происходят в главную фазу бури (в течение двух-четырех часов) и на фазе восстановления, когда фиксируются рекуррентное возрастание, иногда до наивысших уровней, в течение десятков часов. Усиления высыпающихся в ионосферу электронных потоков (и как следствие - ГИТов) в опасные для дополнительной коррозии фазы магнитной бури происходят в 300 раз и более, при этом в главную фазу такие изменения идут очень быстро. Внезапные появления и затухания мощных сияний в верхней атмосфере в главную фазу магнитной бури наблюдались и космонавтами. Такие всплески ведут к мгновенным изменениям потенциалов, что особенно опасно влияет на электрохимическую коррозию. Следовательно, отключения катодной защиты во время магнитной бури даже на одни сутки способно увеличить почти вдвое годовой эффект электрохимической коррозии трубопровода. В то же время основной отечественный нормативный документ ГОСТ Р 51164-98 «Трубопроводы стальные магистральные. Общие требования к защите от коррозии» так разрешает отключение катодной защиты трубопроводной системы, функционирующей в рабочем состоянии: «Перерыв в действии каждой установки систем электрохимической защиты допускается при проведении регламентных и ремонтных работ не более одного раза в квартал (до 80 ч). При проведении опытных или исследовательских работ допускается отключение электрохимической защиты на суммарный срок не более 10 суток в год». За такой срок могут произойти две или более мировые магнитные бури, при этом повышенные в сотни раз ГИТы будут воздействовать на трубопровод с отключенной системой катодной защиты несколько суток. За эти периоды на несколько годовых (плановых) норм возрастает электрохимическая стресс-коррозия.
Поскольку интенсивность потока высыпающихся электронов сильно меняется с широтой, увеличиваясь от средних к высоким широтам зоны полярных сияний, то величины электрического поля и индуцированных токов наиболее значительно меняются именно для трубопроводов меридионального направления. При этом ГИТы могут достигать сотен ампер. Согласно [2] аварийность выше более чем в 3 раза на магистральных газопроводах, чем на нефтепроводах АК «Транснефть». Следует при этом отметить, что более половины нефтепроводов и около 50% газопроводов находятся в эксплуатации больше чем 25 лет, а около 15% из них - сверх норматива в 33 года [2].
Поэтому предлагается посредством предупреждения эксплуатационников трубопроводных систем о мировых магнитных бурях, как периодах особо интенсивной коррозии, привести реальные скорости коррозии на отечественных трубопроводах различного назначения к зарубежным нормам. Для этого предусматривается:
1) Прогноз за двое суток периодов возрастания воздействия ГИТов (во время магнитных бурь) на процесс коррозии;
2) Определение «окон спокойствия» для проведения тестов и ремонта с технологическим отключением СКЗ.
Наблюдения на северо-востоке Австралии за скоростью геомагнитно-индуцированной коррозии газовых магистралей показали, что в отсутствие электрохимической защиты требуется в 4 раза чаще менять трубы, а по зарубежным оценкам стоимость одного километра самой трубы для магистрального газопровода превышает 2 млн. долларов.
Реальное отключение катодной защиты на суммарный период в одни сутки во время геомагнитной бури действительно может привести к «годовому эффекту коррозии» в квартал. Для этого достаточно отключить СКЗ на период действия одной мировой бури, включая период рекуррентных возрастаний интенсивности корпускулярных высыпаний из радиационных поясов. В течение года это как раз приводит к четырехкратному усилению скорости коррозии по сравнению со скоростью при штатной работе станций катодной защиты, что и было получено в австралийском эксперименте.
Предлагаемый здесь учет ГИТов при использовании и эксплуатации станций катодной защиты важен не только для нефтегазопроводов, но и везде, где применяется такая электрохимическая защита:
- на предприятиях коммунального хозяйства, обслуживающих городские коммуникации, трубопроводы тепловых и газовых сетей;
- на предприятиях химического, энергетического и промышленного комплекса, в других организациях, имеющих металлические коммуникации в области почв с повышенной электрохимической активностью.
Но для магистральных газопроводов, особенно меридионального направления, настоящее предложение наиболее актуально, прежде всего из-за повышенной взрывоопасности при аварийных ситуациях.
Литература
труба коррозия авария магнитный
1. Бобылев Л. Если в трубе прорыв… Нефть России, 2000, №12, с. 40-42.
2. Иванцов О.М. Как продлить «жизнь» трубопроводных систем. Нефть России, №10, 2000, 48-51.
3. Рокитянский Я.Г. Судьбоносные загадки нефтегазовой отрасли. Беседа с директором Института проблем нефти и газа РАН академиком А.Н. Дмитриевским. Вестник РАН. 78, 8, 2008, с. 704-711.
Размещено на Allbest.ru
...Подобные документы
Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.
контрольная работа [422,9 K], добавлен 21.04.2015Качественные и количественные методы исследования коррозии металлов и ее оценки. Определение характера и интенсивности коррозионного процесса с помощью качественного метода с применением индикаторов. Измерение скорости коррозии металла весовым методом.
лабораторная работа [18,1 K], добавлен 12.01.2010Формула расчета защитного эффекта. Состав исследуемых вод. Контроль скорости коррозии. Влияние магнитного поля на эффективность омагничивания воды. Анализ результатов лабораторного изучения влияния магнитной обработки воды на ее коррозионную активность.
статья [100,8 K], добавлен 19.01.2013Классификация, особенности и механизм возникновения влажной атмосферной коррозии. Конденсация влаги на поверхности корродирующего металла. Влажность воздуха как один из главных факторов образования коррозии. Методы защиты от влажной атмосферной коррозии.
реферат [1,1 M], добавлен 21.02.2013Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.
презентация [734,6 K], добавлен 09.04.2015Общее понятие о коррозии. Виды и технологии нанесения изоляционных покрытий труб в заводских и трассовых условиях и их характеристики. Производственная и экологическая безопасность при выполнении работ по переизоляции участка магистрального нефтепровода.
дипломная работа [2,0 M], добавлен 26.12.2013Виды коррозии, ее причины. Факторы агрессивности грунтов. Математическое моделирование коррозионных процессов трубной стали под воздействием свободных токов. Методы предотвращения коррозионного воздействия на трубопровод при его капитальном ремонте.
дипломная работа [5,6 M], добавлен 22.11.2015Катодные включения в атмосфере. Влажность воздуха при атмосферной коррозии. Примеси в атмосфере (газы). Особенности процесса морской коррозии. Защита металлов и сплавов от атмосферной коррозии. Применение контактных и летучих (парофазных) ингибиторов.
реферат [40,2 K], добавлен 01.12.2014Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.
реферат [50,7 K], добавлен 19.12.2012Применение и классификация стальных труб. Характеристика трубной продукции из различных марок стали, стандарты качества стали при ее изготовлении. Методы защиты металлических труб от коррозии. Состав и применение углеродистой и легированной стали.
реферат [18,7 K], добавлен 05.05.2009Рассмотрение механизма протекторной защиты от коррозии, ее преимуществ и недостатков. Построение схемы протекторной защиты. Определение параметров катодной защиты трубопровода, покрытого асфальтобитумной изоляцией с армированием из стекловолокна.
контрольная работа [235,4 K], добавлен 11.02.2016Факторы, оказывающие негативное воздействие на состояние погружных металлических конструкций. Электрохимический метод предотвращения коррозии глубинно-насосного оборудования. Защита от коррозии с помощью ингибирования. Применение станций катодной защиты.
курсовая работа [969,5 K], добавлен 11.09.2014Классификация цветных металлов, особенности применения и обработки. Эффективные методы защиты цветного металла от атмосферной коррозии. Алюминий и алюминиевые сплавы. Металлические проводниковые и полупроводниковые материалы, магнитные материалы.
курсовая работа [491,9 K], добавлен 09.02.2011Определение аварий при бурении, их классификация и профилактика. Прихват предметами, упавшими в скважину. Факторы, способствующие возникновению аварий. Технологические, организационные и геологические причины аварий. Наиболее часто встречающиеся аварии.
реферат [256,4 K], добавлен 16.12.2013Анализ причин коррозии трубопроводов, происходящей как снаружи под воздействием почвенного электролита, так и внутри, вследствие примесей влаги, сероводорода и солей, содержащихся в транспортируемом углеводородном сырье. Способы электрохимической защиты.
курсовая работа [4,7 M], добавлен 21.06.2010Требования к качеству материалов труб для газопроводов. Определение параметров трещиностойкости основного металла. Исследование механических свойств металла трубы опытной партии после полигонных пневмоиспытаний. Протяжённые вязкие разрушения газопроводов.
дипломная работа [4,7 M], добавлен 24.01.2013Физическая, химическая, электрохимическая и биологическая коррозии. Коррозия выщелачивания, магнезиальная, углекислотная, сульфатная, сероводородная. Эксплуатационно-профилактическая, конструктивная, строительно-технологическая защита бетона от коррозии.
реферат [16,2 K], добавлен 26.10.2009Способы получения алюминия. История открытия металла. Разложение электрическим током окиси алюминия, предварительно расплавленной в криолите. Механическая обработка, применение металла в производстве. Изучение его электропроводности, стойкости к коррозии.
презентация [420,5 K], добавлен 14.02.2016Классификация методов лабораторных коррозионных испытаний, способы удаления продуктов коррозии после их проведения. Растворы и режимы обработки для химического и электрохимического методов. Составление протокола (отчета) по удалению продуктов коррозии.
курсовая работа [769,0 K], добавлен 06.03.2012Газовая коррозия как процесс разрушения материалов в газовых средах при высоких температурах в отсутствии влаги. Общая характеристика распространенных причин катастрофической коррозии. Знакомство с графиком зависимости коррозионного тока от времени.
контрольная работа [116,1 K], добавлен 01.02.2016