Этапы развития технических средств пневмоавтоматики
Развитие современной пневмоавтоматики. Классификация устройств пневмоавтоматики по функциональному назначению, давлению питания. Коренной поворот в построении систем автоматического регулирования с использованием элементов пневмоавтоматики, их типы.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 18.11.2015 |
Размер файла | 449,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Введение
В настоящее время пневмоавтоматика является одной из подотраслей приборостроения.Пневмоавтоматика охватывает технические средства регулирования, управления и контроля, использующие в работе различные эффекты газовой динамики. В историческом развитии технических средств пневмоавтоматики можно проследить четыре поколения.Пневмоавтоматика (от греческого pneuma - дуновение, воздух) - комплекс технических средств, в которых информация представляется и передаётся в виде пневмосигналов. Пневматические устройства, принцип действия которых основан на применении в качестве рабочей среды сжатого воздуха или газа, известны со времен глубокой древности (ветряные двигатели, кузнечные меха, музыкальные автоматы и пр.).
Пневмоавтоматика
Наиболее широкое распространение системы пневмоавтоматики получили в связи с развитием механизации и автоматизации ТП в химической и нефтехимической промышленности, а также в общем машиностроении, в литейном и кузнечном производстве, в судостроении, на транспорте, в ракетно-космической технике и в ряде других производств.
Пневмосистемы наиболее эффективно работают в пожаро- и взрыво- опасных производствах, в условиях агрессивных сред, характеризующихся наличием повышенной температуры, радиации, вибрации, магнитных полей и пр. Пневматические устройства просты по конструкции, надёжны в эксплу- атации и обслуживании. Как правило, пневматические системы дешевле электрических и гидравлических, а по сравнению с последними не требуют замкнутого цикла использования рабочей среды.
Наряду с перечисленными достоинствами пневматические системы имеют и ряд недостатков, обусловленных самой рабочей средой. Это прежде всего сжимаемость воздуха, которая подчас исключает плавность движения рабочих органов исполнительных устройств, а также необходимость очистки воздуха во избежание появления конденсата, что ведет, как следствие, к образованию пробок при низких температурах и коррозии аппаратуры. Кроме того, пневматические устройства, по сравнению с электрическими, имеют меньшую скорость срабатывания, а по сравнению с гидравлическими исполнительными механизмами развивают значительно меньшие усилия.
Предшественниками пневматических систем можно считать паровые приводы, появлению которых способствовало изобретение Джозефом Брахмом уплотнений поршня (1660 г.). В 1790 г. в г. Петрозаводске был построен Александровский завод паровых машин, а в 1870 г. А.Б.Нобель построил аналогичный завод в Петербурге.
Уже в 30-х годах XIX века академик И.И.Артоболевский обращал внимание механиков на необходимость изучения пневматических и гидравлических механизмов, т.е. пневмо- и гидроприводов.
Развитию систем пневмоавтоматики положило начало внедрения в промышленность электродвигателей трехфазного тока, разработанных в 1891 г. М.О. Доливо-Добровольским, что позволило создать компрессор - источник рабочей среды пневмосистем.
На начальном этапе развитие пневмосистем шло по пути применения силового пневмопривода - сжатый воздух от компрессора по импульсным трассам поступал через управляющие устройства к пневмодвигателям поступательного, поворотного или вращательного движения, воздействуя на рабочие органы машин.
Развитие современной пневмоавтоматики началось в 40-е годы XX века в связи с автоматизацией производств и заменой труда человека работой машин, снабженных различными приводами. Первые пневматические регуляторы конца 30-х и начала 40-х годов выполнялись совместно с измерительными приборами общего назначения, в которые встраивался пропорционально-интегральный (ПИ) регулятор. Примером такого устройства является ПИ-регулятор типа 04, решающий задачи стабилизации отдельных параметров (температуры, давления и пр.).
В конце 40-х годов был предложен агрегатный принцип построения систем промышленной пневмоавтоматики, согласно которому каждый блок выполнял вполне определенную функцию, реализуя требуемый закон регулирования (суммирование сигналов, их индикация, регистрация и др.). Разработанная по такому принципу агрегатная унифицированная система (АУС) позволила значительно расширить функциональные возможности пневмоавтоматики. Системы автоматического регулирования температуры, расхода и прочих параметров с регуляторами 4РБ32, РБС-1 и др. успешно выполняли возложенные на них функции. Блоки подготовки воздуха, включающие компрессор, редукторы, регуляторы давления и систему осушки воздуха, обеспечивали питание систем сжатым воздухом на участках и в цехах в случаях отсутствия магистрали со сжатым воздухом. Однако для решения новых задач требовалась разработка новых блоков, на которую уходило 2... 3 года.
Дальнейший успешный путь развития пневмоавтоматики в конце 50-х годов прошлого века, по аналогии с электроникой, был связан с предложенным группой сотрудников Института автоматики и теле механики АН СССР (ныне ИПУ им. В.А. Трапезникова РАН) и завода "Тизприбор" элементным принципом создания новых приборов и пневмосистем. В результате была разработана Универсальная система элементов промышленной пневмоавтоматики (УСЭППА), на базе которой были созданы первые типовые приборы управления и регулирования - системы СТАРТ и ЦЕНТР, входящие в Государственную систему приборов (ГСП).
Аналогичные системы были разработаны и в ряде зарубежных стран: "Дрелоба" и "Самсон" в Германии, "Тримелог" в Венгрии, APCL в США, AIRLOG в Англии.
Устройства пневмоавтоматики можно классифицировать:
1. по функциональному назначению:
системы подготовки и транспортирования воздуха (компрессоры, воздуходувки, фильтры, импульсные трассы, ресиверы, маслораспылители и др.;
системы контроля, преобразования и воспроизведения информации (датчики, преобразователи, измерительные и регистрирующие приборы);
системы регулирования и управления (регуляторы, функциональные блоки, командоаппараты, распределители);
исполнительные устройства (пневмоцилиндры, поворотные однооборотные и многооборотные двигатели, мембранные, шланговые и сильфонные исполнительные механизмы);
2. по давлению питания:
системы низкого давления (до 200 мм вод. ст.);
системы нормального (среднего) давления (0,14±0,014 МПа);
системы повышенного давления (0,4... 1 МПа);
специальные системы высокого давления, применяемые в судостроении и ракетостроении (20...40 МПа).
Пневмосистемы с низким давлением питания строятся на элементах пневмоники (струйной техники) и применяются в основном в системах управления циклическими процессами. Струйные элементы, например, систем "ВОЛГА" и СМСТ не имеют подвижных деталей, работают на частотах в несколько килогерц, просты в изготовлении и имеют малые габариты. В ряде случаев эти элементы объединяются в модули, в том числе в струйно-мембранные (система "ЦИКЛ"). Струйные элементы способны нормально функционировать при низких и высоких температурах (свыше 1000 0С), например система управления летательным аппаратом фирмы "Даймонд" (США).
К системам с нормальным (унифицированным) давлением питания относятся элементы УСЭППА "КЭМП", "Янтарь", "ПЭРА" и др. Элементы "КЭМП" в 1,52 раза меньше элементов УСЭППА.
Система УСЭППА является функционально полной и включает как аналоговые, так и релейные элементы, позволяющие создавать системы управления и регулирования любой сложности. Элементы УСЭППА выполнены на резино-тканевых мембранах, поэтому температура воздуха не должна превышать 60 0С. Элементы монтируются на платах из оргстекла по аналогии с печатным монтажом электрических схем. Частота переключения релейных элементов УСЭППА не превышает 25 Гц. Погрешность аналоговых элементов УСЭППА составляет 0,5... 1,5%.
Системы с повышенным давлением питания представляют собой пневмопривод и предназначены для силового воздействия на рабочие органы машин. В качестве управляющих устройств в таких системах в основном применяются клапанные или золотниковые распределители, а в качестве двигателей - пневмоцилиндры поступательного действия, поворотные и многооборотные двигатели.
Такие системы, наряду с системами электропривода и гидропривода, широко востребованы промышленностью.
Таким образом, в предшествующие настоящему времени годы были разработаны различные по функциональному назначению преобразователи, регуляторы, регистрирующие приборы и исполнительные механизмы, на базе которых были созданы десятки тысяч систем автоматического регулирования в различных отраслях промышленности, но особенно для производств с условиями пожаро- и взрывоопасности.
Коренной поворот в построении систем автоматического регулирования с использованием элементов пневмоавтоматики произошёл с появлением и бурным развитием микропроцессорной техники - ПЛК, интеллектуальных датчиков, систем сбора данных на базе локальных вычислительных сетей. Особая роль в этом принадлежит контроллерам, в том числе встраиваемым, барьерам искрозащиты, системам диагностики и противоаварийной защиты. Современные контроллеры (моноблочные, модульные и PC совместимые) обладают высоким быстродействием, большим объёмом памяти, встроенными многоканальными регуляторами и способны осуществлять сбор, обработку и формирование регулирующих воздействий по многим каналам. Для сбора информации от датчиков и передачи регулирующих воздействий на исполнительные механизмы, которые находятся во взрывоопасной зоне, используются пассивные и активные барьеры искрозащиты с гальванической изоляцией как входов/выходов, так и цепей питания. При этом сами контроллеры и барьеры искрозащиты располагаются во взрывобезопасной зоне, как правило, в операторском помещении.
Таким образом, необходимость в пневматических регуляторах, располагаемых ранее во взрывоопасных зонах, была утрачена. Вторичные пневматические показывающие и регистрирующие приборы, которые также располагались во взрывоопасных зонах, уступили место взрывозащищённым мониторам, рабочим станциям, безбумажным самописцам и др. аппаратуре взрывозащищённого исполнения.
В результате этого сегодня основными элементами пневмоавтоматики остаются системы пневмопривода - пневматические регулирующие клапаны с мембранными исполнительными механизмами, проходные и трёхходовые пневматические запорные клапаны, поршневые исполнительные механизмы. В пневматических регулирующих клапанах используются сплошные, пустотелые и шаровые сегментные клапаны с равно процентной или линейной характеристикой. Шаровые сегментные клапаны обеспечивают диапазон регулирования расходов до 100:1 (например, клапан 3310 фирмы Samson). Проходные и трёхходовые клапаны продолжают находить большое применение в регуляторах температуры прямого действия, а также в регуляторах давления прямого действия, регуляторах расхода и перепада давления прямого действия.
В настоящее время ряд зарубежных фирм таких, как FESTO (Германия), SMS (Япония), ENOTS (Англия), SAMSON (Германия), HI-FLEX (Финляндия), ASCO/Jocomatic, PARKER, CAMOZZI и др., имеющие свои представительства во многих развитых странах, сосредоточили в своих руках разработку и выпуск оборудования пневмоприводов, управляемых от ПЭВМ и контроллеров. В этих фирмах налажен массовый выпуск основных компонентов силовых пневмосистем, в состав которых входят технические средства подготовки сжатого воздуха, пневмораспределители, пневмоцилиндры и контрольно-измерительная аппаратура(рисунок 1).
Так, фирма SAMSON выпускает большую серию регулирующих клапанов (проходных, трехходовых, угловых с Ду 15...200 мм и более), пневматические и электро-пневматические позиционеры, электропневматические и пневмоэлектрические преобразователи, датчики положения, концевые выключатели и пр. К числу выпускаемых цифровых позиционеров относятся HART-позиционер, PROFIBUS-PA позиционер и FOUNDATION Fieldbus-позиционер (рисунок 2). На рисунке 3 представленобщий вид электропневматического позиционера 3703-2 фирмы Samson.Дальнейшим развитием позиционеров является установка в искрозащитные позиционеры функциональных блоков, придающих позиционеру функции регулятора процесса.При этом заданное значение параметра регулятор получает от станции управления, а текущее значение регулируемого параметра - непосредственноот датчика.
Рисунок 1 - Пневмораспределители, пневмоцилиндры и контрольно-измерительные аппаратуры
К числу таких позиционеров относится FoundationFieldbus-позиционер фирмы Samson. Применение барьеров взрывозащиты, устанавливаемых непосредственно в герметичный корпус позиционера, позволяет расширить возможности клапана за счёт обработки сигналов концевых датчиков, перенастройки клапана и др.
Рисунок 2 - HART-позиционер
Среди отечественных производителей пневматических клапанов отметим ПНФ "ЛГ автоматика", которая выпускает отсечные (запорные), регулирующе-отсечные и клеточные регулирующие клапаны с Ду 10.200 мм и условной пропускной способностью 0,06.630 м3/ч на условное давление 1,6.16 МПа (марки КМР, КМО, КМРО), футерованные клапаны для агрессивных сред (УИФ, МИУФ), клапаны высокого давления до 40 МПа (КВДР, КВДО), виброустойчивые угловые клапаны, регулирующие клапаны для малых расходов (ПОУ-7М, ПОУ-8М, ПОУ-9М) и др. Для взрывоопасных производств клапаны комплектуются позиционерами SIPART PS2 фирмы Siemens.
Рисунок 3 - Электропневматический позиционер 3703-2 фирмы Samson
Характеристики пневмоприводов находятся в пределах: диаметр поршня 0,008...0,5 м, величина перемещения штока с поршнем до 3 м, давление питания в пределах 0,4..1,0 МПа (в отдельных случаяхдо 10 МПа), скорость перемещения - до 3 м/с, число циклов доходит до 10 млн.
В настоящее время ввиду достижения высоких показателей надежности и безопасности исполнительные устройства пневмоавтоматики находят широкое применение при создании промышленных роботов, управляемых ПЛК с помощью электропневматических преобразователей.
Например, лабораторией пневмоавтоматики Санкт-Петербургского государственного технологического института созданы роботы типа ПР5-2Э, работающие в совместном цикле и управляемые программируемым микроконтроллером типа МКП-1.
Как в России, так и за рубежом ряд фирм США, Франции, Японии, Италии, Швеции и др. стран наряду с электро- и гидроуправлением выпускают гамму роботов с пневмоприводом для обрабатывающих и сборочных производств. Это роботы РМ-12 фирмы KIKA, MNU 500 фирмы BOSH (Германия), UNIMATE фирмы KAWASAKI (Япония), Е-401 фирмы VERSATRAN (Япония), AUTOPLACE фирмы AUTO-PLACE (США), MECMAN (Франция) и др. Современные сборочные роботы, например, моделей РС-4, РС-5, "Вектор" РС-222 имеют цифровой пневмопривод и систему управления, обеспечивающую связь рабочего цикла сборочного робота с циклом работы обслуживаемого технологического оборудования. Такие роботы успешно применяются в гибких производственных системах (ГПС) сборочных машиностроительных производств и, наряду с другим оборудованием, входят в интегрированные производственные системы, управляемые с помощью ЭВМ.
пневмоавтоматика автоматический регулирование
Заключение
Таково положение дел в пневмоавтоматике сегодня. Что же можно прогнозировать в будущем? Мысленно продолжая вектор развития пневмоавтоматики можно предположить дальнейшее расширение пневматических исполнительных механизмов за счёт еще большей интеграции функциональных узлов клапанов, повышение быстродействия и надежности за счет применения новых материалов, повышение командных давлений, использование адаптивных и нейросетевых регуляторов, повышение долговечности за счет диагностики и самоочистки узлов, находящихся в контакте с агрессивной средой. Наконец, можно предположить с известной долей фантазии, что сверхвысокая надежность системы при управлении, например, летательными аппаратами (самолет, ракеты, зонд и пр.) в условиях полного выхода из строя электрообеспечения может быть достигнута только за счёт пневматического контроллера с питанием от баллона сжатого воздуха. Остаётся надеяться, что до этого дело не дойдет, и сложные алгоритмы управления будут формироваться электронными системами.
Список использованной литературы
1. Березовец Г.Т., Малый А.Я., Наджафов Э.М. Приборы пневматической агрегатной унифицированной системы и их использование для автоматизации производственных процессов. М.: Гостехиздат. 1962.
2. Берендс Т.К., Ефремова Т.К., Тагаевская А.А., Таль А.А. Элементный принцип в пневмоавтоматике // Приборостроение. 1963. №11.
3. Системы и устройства пневмоавтоматики /Под ред. А.А. Таля. М.: Наука. 1969.
4. Богачева А.В. Пневматические элементы систем автоматического управления. М.: Машиностроение. 1996.
5. Берендс Т.К., Ефремова Т.К., Тагаевская А.А., Юдицкий С.А. Элементы и схемы пневмоавтоматики. М.: Машиностроение. 1976.
6. Герц Е.В., Крейкин Г.В. Расчет пневмоприводов. Справочное пособие. М.: Машиностроение. 1975.
7. Герц Е.В. Динамика пневматических систем машин. М.: Машиностроение. 1985.
8. Попов Д.Н. Механика гидро- и пневмоприводов. М.:Изд. МГТУ им. Баумана. 2002.
9. Алексеев П.И., Герасимов А.Г., Давыденко Э.П. и др. Гибкие производственные системы сборки / Под общ. ред. Федотова А.И. Л.: Машиностроение.1989.
10. Замятин В.К. Технология и оснащение сборочного производства машиноприборостроения. Справочник. М.: Машиностроение. 1995.
Перечень сокращенных слов
(ПИ) |
Пропорционально-интегральный |
|
(АУС) |
Агрегатная унифицированная система |
|
(УСЭППА) |
Универсальная система элементов промышленной пневмо- автоматики |
|
(ГСП) |
Государственную систему приборов |
|
(ПЛК) |
Программируемый логический контроллер |
|
(ПЭВМ) |
Персональная электронно вычислительная машина |
|
(ПНФ) |
Проприоцептивная нейромышечная фасилитация |
|
(МКП) |
Микроканальные пластины |
|
(ЭВМ) |
Электронная вычислительная машина |
|
(ГПС) |
Гибкая производственная система |
Размещено на Allbest.ru
...Подобные документы
Обобщение основных элементов непрерывной техники универсальной системы элементов промышленной пневмоавтоматики, к которым относятся дроссели, делители давления, повторители, усилители и элементы сравнения. Анализ принципиальных схем усилителей мощности.
реферат [398,6 K], добавлен 17.01.2012Классификация механизмов по функциональному назначению. Механизмы двигателей и преобразователей, управления, контроля и регулирования, подачи и транспортировки, питания и сортировки обрабатываемых сред и объектов. Передаточные и исполнительные механизмы.
контрольная работа [585,9 K], добавлен 25.02.2011Этапы развития автоматизации производства. История создания и усовершенствования средств для измерения и контроля. Понятие и структурная схема систем автоматического контроля, их компоненты. Особенности и области использования микропроцессорных устройств.
курсовая работа [271,5 K], добавлен 09.01.2013Сравнительный анализ технических характеристик типовых конструкций градирен. Элементы систем водоснабжения и их классификация. Математическая модель процесса оборотного водоснабжения, выбор и описание средств автоматизации и элементов управления.
дипломная работа [1,3 M], добавлен 04.09.2013Описание установки как объекта автоматизации, варианты совершенствования технологического процесса. Расчет и выбор элементов комплекса технических средств. Расчет системы автоматического управления. Разработка прикладного программного обеспечения.
дипломная работа [4,2 M], добавлен 24.11.2014Классификация и особенности приводов. Принципы и критерии их выбора. Типы преобразующих механизмов. Общие сведения, функции и классификация систем управления и средства блокировки. Типы и построение цикловых диаграмм работы механизированных устройств.
контрольная работа [468,4 K], добавлен 16.07.2015Классификация поверхностей деталей по функциональному назначению. Синтез размерного описания и технических условий. Выявление размерных цепей, описывающих формирование заданных показателей точности машины. Номинальные размеры составляющих звеньев.
курсовая работа [1,2 M], добавлен 22.02.2013Динамические свойства объекта регулирования и элементов системы автоматического регулирования. Определение параметров типового закона регулирования. Параметры передаточных функций. Параметры процесса регулирования на границе устойчивости системы.
контрольная работа [1,3 M], добавлен 07.08.2015Адекватность качества переходных процессов систем автоматического регулирования и систем с дифференцированием сигналов. Оптимизация систем на основе экспериментальной переходной характеристики объекта как произведение опережающего участка на инерционный.
курсовая работа [3,1 M], добавлен 25.03.2012Разработка системы автоматического регулирования давления пара в уплотнениях турбины. Выбор структуры автоматической системы и технических средств. Составление заказной спецификации. Проектирование монтажной схемы системы, выбор регулирующего органа.
курсовая работа [198,1 K], добавлен 30.04.2012Анализ конструкции деталей редуктора и синтез их размерного описания и технических требований. Классификация поверхностей деталей по функциональному назначению. Выбор метода достижения требуемой точности радиального биения зубчатого венца шестерни.
курсовая работа [593,9 K], добавлен 27.09.2017Общие сведения и определения теории автоматического управления и регулирования. Математическое описание систем, динамические характеристики звеньев и САУ. Принципы построения и расчёт систем подчинённого регулирования с последовательной коррекцией.
курс лекций [1,8 M], добавлен 04.03.2012Обоснование необходимости внедрения систем автоматического регулирования температуры травильной ванны. Расчет штата работающих, планового фонда заработной платы, сметной стоимости оборудования, себестоимости продукции. Основные виды систем автоматизации.
курсовая работа [939,2 K], добавлен 19.04.2013Классификация моделей по типу отражаемых свойств средств управления. Этапы математического моделирования. Уровни и формы математического описания для системы управления летательного аппарата. Линейная модель многомерных систем в пространстве состояний.
презентация [600,0 K], добавлен 27.10.2013Классификация систем управления и их характеристики. АСУ ТП с вычислительным комплексом в роли советчика. Система автоматического регулирования. Классификация стали и особенности ее производства конверторным, мартеновским и электроплавильным способом.
реферат [40,7 K], добавлен 08.12.2012Определение параметров объекта регулирования. Выбор типового регулятора АСР и определение параметров его настройки. Построение переходного процесса АСР с использованием ПИ-регулятора. Выбор технических средств автоматизации: датчики, контроллер.
курсовая работа [1,5 M], добавлен 30.11.2009Автоматизация производственного процесса. Исследование динамических свойств объекта регулирования и регулятора. Системы автоматического регулирования уровня краски и стабилизации натяжения бумажного полотна. Уравнение динамики замкнутой системы.
курсовая работа [1,4 M], добавлен 31.05.2015Описание технологического процесса отстаивания неоднородных систем. Выбор средств автоматического контроля и регулирования технологических параметров. Расчет ротаметра и сопротивлений резисторов измерительной схемы автоматического потенциометра типа КСП4.
курсовая работа [1,8 M], добавлен 04.10.2013Описание автоматического цикла сверлильного станка. Подбор необходимых элементов электрической принципиальной схемы для управления технологическим процессом: с использованием алгебры логики и без ее применения. Логические функции исполнительных устройств.
курсовая работа [909,4 K], добавлен 15.01.2014Принцип работы систем автоматического регулирования. Определение передаточного коэффициента динамического звена. Построение кривой переходного процесса методом трапецеидальных вещественных характеристик. Оценка показателей качества процесса регулирования.
курсовая работа [830,2 K], добавлен 17.05.2015