Формовочные материалы применяемые в зубопротезной практике

Формовочные материалы как масса для воспроизведения точной отливки по модели. Обоснование применения и особенности формовочных материалов при изготовлении ортопедических конструкций. Пасты из огнеупорных смесей. Термическая обработка литейной формы.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 18.11.2015
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство здравоохранения Омской области

Бюджетное профессиональное образовательное учреждение Омской области

«Медицинский колледж»

ЦК Стоматологии и физической культуры

Курсовая работа

по ПМ 02 Изготовление несъёмных протезов

тема: «Формовочные материалы применяемые в зубопротезной практике»

Выполнил:

студент 3 курса, группа ЗТ-301

Гарипжанова Регина Дамировна

Руководитель:

преподаватель Колесникова В.А.

Омск 2016

Содержание

Введение

Виды формовочных материалов

Требования

Вспомогательные формовочные материалы

Сырьевые компоненты в составах зуботехнических восков

Режим полимеризации

Выводы

Список используемой литературы

Введение

Цель - обосновать применение и особенности формовочных материалов при изготовлении ортопедических конструкций.

Задачи: формовочный литейный термический

- изучить специальную стоматологическую литературу;

- изучить виды формовочных материалов, их свойства и влияние их на качество изготовления зубных протезов;

Формовочные материалы - это масса для воспроизведения точной отливки по модели. Формовка есть процесс изготовления формы для литья металлов, а формовочная масса служит материалом для этой формы.

Рецептура формовочных масс в технике различна, и технология ее применения также разнообразна, но во всех случаях неизменными остаются связующие вещества и огнеупорный порошок.

В зубном протезировании до применения нержавеющих и тем более кобальто-хромовых сплавов, обладающих высокой температурой плавления, в качестве формовочной массы применялся обычный «минутник» (отмученный порошок глинозема А ЬОз), смешанный с гипсом и замешанный на воде.

Виды формовочных материалов

Формовочные смеси бывают основные и вспомогательные.

Основными называют такие, от свойств, которых зависят главные качественные показатели литьевой формы. Они составляют основу формы, в том числе оболочки, непосредственно контактирующей с материалом протеза. При изготовлении жаростойких литейных форм, как правило, используются две формовочные смеси: одна для изготовления внутренней части формы -- оболочки, выстилающей литейную полость, а другая для заполнения всей опоки или кюветы. Наиболее высокие требования предъявляются к первой -- облицовочной смеси, так как ее структура и свойства в значительной степени обусловливают качество литья. Вторая смесь называется наполнительной. Она составляет основную массу всей опоки. К вспомогательным- относятся материалы, употребляемые для укрепления формы, придания основному формовочному материалу специальных свойств.

В качестве основного компонента большинства огнеупорных смесей используется окись кварца и ее модификации. Для создания литейной формы порошкообразный огнеупорный материал смешивают с жидким или пластичным связывающим компонентом, который может иметь различную химическую природу. В зависимости от вида связующего вещества все формовочные материалы делят на силикатные, сульфатные (гипсовые), фосфатные. В зуботехническом производстве используются различные формовочные материалы.

Одним из таких материалов является гипс. Он с успехом применяется для изготовления форм, заполняемых холодным материалом или нагретым до относительно невысокой температуры, не вызывающей реактивных изменений гипса (формовка пластмасс, литье легкоплавких сплавов).

Силикатные формовочные материалы наиболее полно отвечают всем требованиям, необходимым для получения качественного литья из нержавеющей стали и кобальто-хромовых сплавов.

При литье металлических сплавов, имеющих высокую температуру плавления, используются только огнеупорные формовочные смеси, не разрушающиеся при нагревании.

Требования

Силикатные формовочные материалы наиболее полно отвечают всем требованиям, необходимым для получения качественного литья из нержавеющей стали и кобальто-хромовых сплавов.

При литье металлических сплавов, имеющих высокую температуру плавления, используются только огнеупорные формовочные смеси, не разрушающиеся при нагревании. Эти материалы должны удовлетворять следующим требованиям:

1. Разрушаться и не плавиться при нагревании до температуры, превышающей температуру плавления металла на 200--250°С.

2. Иметь высокую степень дисперсности, позволяющую получать чистые и падкие поверхности изделия.

3. Жидкие пасты из огнеупорных смесей должны иметь хорошую жидкотекучесть, способность смачивать восковые модели, накладываться на них без образования воздушных полостей.

4. Обеспечивать прочность и целостность литейной формы, ее газопроницаемость во время литья.

5.Оказывать какого-либо отрицательного действия на структуру или свойства материала отливки.

6. Обладать способностью к термическому расширению, компенсирующему усадку отливки.

7. Быть безвредным для человека при работе с ними.

Огнеупорные массы (компоненты, свойства)

Силикатные формовочные материалы.

Окись кремния Si02 является химической основой кварцевых песков, которые могут содержать также некоторые примеси. Кварцевые пески, имеющие не больше 2% глинистых примесей, идут для приготовления формовочных смесей, используемых при литье сплавов с высокой температурой плавления (свыше 1000°С).

Окись кремния -- основной компонент смесей. Она придает формовочной массе огнеупорные свойства и в определенных температурных интервалах вызывает расширение литейной формы, способное компенсировать усадку отливки. Из трех известных аллотропических форм окиси кремния (кварц, тридимит и кристобаллит) способностью к расширению при нагревании обладают кварц и кристобаллит. Эти две формы окиси кремния используются при составлении формовочных смесей.

Особенностью аллотропических переходов окиси кремния является их обратимость. Кварц, тридимит и кристобаллит при нормальных температурах имеет а-форму. При нагревании до температур, обозначенных на схеме, происходит переход а-форм в р-формы, при этом кварц и кристобаллит увеличиваются в объеме. Этим важным качеством не обладает тридимит, в связи, с чем он не используется для составления формовочных смесей.

Формовочные материалы, из которых изготавливаются огнеупорные оболочки, должны обладать высокой степенью дисперсности. От величины частиц материала, составляющего оболочку литейной формы, зависит чистота поверхности отливки. Чистота поверхности отливки определяется по высоте неровностей, измеряемой в микронах. Хорошая чистота поверхности достигается при применении кварцевого порошка, проходящего полностью через сито № 140 (с отверстиями диаметром 0,1 мм) и через сито № 270 (отверстия диаметром 0,05 мм) с остатком на нем не более 50%. Такой мелкодисперсный прокаленный порошок называют кварцевой мукой (маршалит). Кварцевая мука должна быть свободной от примесей. Допустимое их присутствие не должно превышать 1,5%. Для этого ее промывают и затем подвергают термической обработке при температуре 900°С в течение 2 ч. Очищенная кварцевая мука должна содержать не меньше 98% Si02. Она является наиболее важным компонентом формовочной смеси, употребляемой для создания облицовочного слоя (огнеупорной рубашки).

Этилсиликат [этиловый эфир ортокремниевой кислоты Si(OC2Hs)4] используется в качестве связующего вещества при изготовлении литейных форм. При смешивании его с порошком окиси кремния образуется сметанообразная масса, из которой получают огнеупорную оболочку восковой модели.

Этилсиликат представляет собой прозрачную жидкость желтовато-зеленого цвета с легким эфирным запахом. Применение этилсиликата, как связующего вещества основано на его способности, при гидролизе образовывать ряд кремнийсодержащих веществ (силоксаны), которые при прокаливании переходят в чистую окись кремния. Таким образом, главная часть литейной формы (облицовочный слой) оказывается состоящей целиком из окиси кремния.

Гидролиз этилсиликата происходит в следующей последовательности :

1) образование силоксанов

2Si(OC2H6)4+H20->(C2H60)Si-0-Sl(OC2H5)+2C2H6OH Si(OC2H5)4 + 4Н20 -v Si(OH)4 + 4С2Н5ОН;

2) разложение полисилоксана и высвобождение окиси кремния

п Si(OH)4 -* (Si02)tt + 2Н20.

Для ускорения процесса гидролиза к воде добавляют этиловый спирт и 0,2-- 0,3% хлористоводородной кислоты.

Кварцевый песок используется в качестве наполнителя литейной опоки (кюветы). Им присыпают облицовочную оболочку сразу же после нанесения ее на поверхность восковой модели. Это задерживает стекание жидкой облицовочной массы и повышает прочность огнеупорной оболочки. Кварцевый песок проходит тщательную очистку: промывку и прокаливание. Допустимое количество глинистых примесей в песке не больше 1,5%.

Дисперсность песка должна обеспечивать хорошую газопроницаемость формы. Таким требованиям удовлетворяют пески, просеивающиеся через сита № 70 (0,25) и № 40 (0,4) (марка К, 40/70). Кварцевый песок подвергается обязательной термической обработке (прокаливанию) при температуре 900°С в течение 2 ч.

Глиноземистый цемент

используется для связи кварцевого песка в опоках (кюветах) и создания достаточно прочной формовочной наполнительной массы.

В состав цемента входит: 35--55% А1203, 5--12% Si02, 35--45% СаО, около 15% Fe203. Затвердевание цемента вызывают алюминаты кальция СаО-А1203. Глиноземистый цемент обладает способностью схватываться и твердеть в течение 1 ч. Он огнеупорен. Прочность на сжатие цемента марки 500 около 450 кгс/см2. Сухая смесь кварцевого песка и глиноземистого цемента составляется в соотношении 6--7:1. Заполнение опоки производится смесью, смоченной водой (4--5 частей смеси и 1 часть воды). Хранить цемент и готовую смесь следует в сухом месте. Во влажной среде цемент поглощает воду, и его способность к схватыванию ухудшается. Жидкое стекло является материалом, способным связывать формовочную смесь. Оно входит в состав ряда рецептов формовочных масс, и до недавнего времени применялось широко.

Жидкое стекло

представляет собой водный раствор силиката натрия или калия Na20-Si02, КгО-БЮа. Плотность жидкого стекла 1,43--1,65 г/см3. Связывающее действие жидкого стекла основано, на способности при химической реакции с хлоридом аммония, образовывать двуокись кремния, которая при высушивании смеси прочно связывает зерна наполнителя Na20 * /iSi02 + 2NH4C1 -* «Si02 -f 2NaCl + 2NH3 + H20.

Формовка с использованием жидкого стекла не отвечает всем современным требованиям, предъявляемым к литейным формам. При литье в такой форме не достигается надлежащая чистота поверхности отливки, так как образующееся в ходе реакции вещество (хлорид натрия) вызывает коррозию облицовочной оболочки.

Калиевое жидкое стекло обладает некоторыми преимуществами перед натриевым стеклом: большей жидкотекучестью, термоустойчивостью. Оно используется как вспомогательный материал при сухой формовке для удерживания формовочной массы в опоке.

Сульфатные (гипсовые) формовочные материалы.

Формовочные материалы, в которых связывающим веществом является гипс, называются гипсовыми. Основными компонентами их могут быть окись кремния и окись алюминия (минутник).

Гипсовые формовочные смеси

находят применение при литье сплавов, имеющих температуру плавления до 1100°С. При литье сплавов с более высокой температурой плавления, пользоваться такими смесями не следует. Уже при температурах свыше 400--500°С наступает частичное разложение гипса с образованием сернистого газа, сероводорода и других газообразных продуктов.

Однако при температурах плавления сплавов до 1100°С применение гипса для связи огнеупорных наполнителей допустимо, так как действие высокой температуры за очень короткое время практически не успевает вызвать ризрушение оболочки и на качестве небольшой по массе отливки не сказывается.

Следует учитывать некоторые особенности гипсовых формовочных материалов, связанных со свойствами гипса.

1.При затвердевании формовочной массы происходит ее расширение вследствие уменьшения плотности массы, вызванного задержкой воды между кристаллами огнеупорного наполнителя. Если заполненную опоку в начальной стадии затвердевания погрузить в воду, то произойдет насыщение формовочной массы водой. Это приведет к еще большему расширению массы. Суммарная величина гигроскопического расширения может достигнуть 1-2%.

2.При термической обработке литейной формы, проводимой с целью выжигания воска и прокаливания огнеупорного наполнителя, происходит дегидратация гипса и он дает усадку до 2%.

3.Термическое расширение формовочной массы, способное существенно компенсировать усадку металла, достигается при использовании в качестве огнеупорного наполнителя окиси кремния (кристобаллит или кварц). Применение кристобаллита, имеющего большую способность к термическому расширению, дает возможность при литье в горячую форму (температура около 350-- 400°С) получить расширение ее до 1,25%, что может компенсировать усадку сплавов, имеющих относительно небольшую усадку при затвердении (сплавы на основе золота, палладия и т. д.). Фосфатные формовочные материалы. В фосфатных формовочных материалах в качестве связующего вещества используются фосфаты, по составу подобные фосфат-цементам, применяемые в стоматологии.

При смешивании окислов металлов (цинк, магний, алюминий), входящих в состав порошка, с жидкостью (фосфорная кислота) происходит образование фосфатов, которые прочно связывают частички наполнителя формовочной смеси (кристобаллит, кварц и т. д.). В результате термической обработки фосфаты переходят из орто- в пироформу, обладающую большой термоустойчивостью при температуре 1200--1600°С. Компенсационное расширение формы при использовании этих формовочных масс может быть получено только за счет наполнителя (окиси кремния).

Формовочные массы, выпускаемые промышленностью.

Ленинградским заводом медицинских полимеров «Медполимер» для литья сплавов на основе золота выпускается масса «Силаур». Это гипсовый формовочный материал. Основу массы составляют кремнезем и гипс. Обычное соотношение их 3:1. Замешивание массы производится с водой, схватывание происходит через 10--30 мин. Для отливки мелких деталей повышенной точности (вкладки, полукоронки и т. д.) используется масса силаур № 3-Б, для получения более крупных деталей применяют силаур № 9. При литье золотых сплавов применяют формовочные массы других составов на основе окиси кремния (кристобаллита) и гипса. К таким массам относится также чехословацкий препарат «Эксподента». Для получения отливок из золотых сплавов, не требующих большой точности, часто используют смесь 1 части гипса с 2 частями чистого кварцевого песка. Перечисленные формовочные массы используются также для литья серебряно-палла-диевых сплавов.

Для литья деталей из нержавеющей стали и кобальто-хромовых сплавов промышленность выпускает массу «Формолит». Она состоит из материалов для изготовления огнеупорной оболочки (пылевидный кварц и этилси-ликат) и наполнительной массы для заполнения кюветы (формовочный песок и глиноземистый цемент).

Облицовочную массу

приготавливают смешиванием пылевидного кварца с этилсиликатом. Полученную смс-танообразную массу наносят на восковую форму. Массу для заполнения кюветы составляют из формовочного песка и глиноземистого цемента в соотношении 10:1 и замешивают на воде. Вместо глиноземистого цемента может быть использована борная кислота НЗВОЗ в том же соотношении. Качественное литье нержавеющей стали получают также при использовании формовочных масс, состоящих из жидкого стекла, кварцевой муки и кварца.

Формовочные массы для изготовления огнеупорных моделей. В последние годы широкое распространение получили методы литья металлических сплавов на огнеупорных моделях. Такими методами получают наиболее сложные конструкции, отличающиеся большой точностью размеров и высокой чистотой поверхности. Огнеупорные модели изготавливают из различных модификаций окиси кремния, способных при нагревании расширяться, с добавлением к ним связующих веществ на основе фосфатов или силикатов.

Огнеупорная масса (бюгелит) относится к силикатным формовочным материалам. Она состоит из огнеупорного порошка (наполнителя) и жидкого связующего компонента (гидролизованного этилсили-ката). Отвердителем массы служит раствор едкого натра. Порошок и жидкость для получения модели берутся в соотношении 4:1. Масса начинает схватываться через 3--4 мин и затвердевает полностью через 40-- 60 мин. При нагревании до 800°С термическое расширение бюгелита около 1,8%.

Огнеупорная масса «Силамин» относится к фосфатным формовочным материалам. Масса представляет собой порошкообразную огнеупорную композицию, в состав которой входит фосфатная связка. Для формовки массу смешивают с водой. Схватывание массы происходит через 7--ю мин. Окончание затвердевания наступает через 50--60 мин. Термическое расширение при температуре 800°С около 1,4%.

Огнеупорная масса «Кристасил-2»

является огнеупорным материалом, состоящим из порошка-наполнителя--кристобаллита и фосфатной связки. При смешивании с водой получается пластичная масса, начинающая твердеть через 5--7 мин и окончательно затвердевающая через 40--45 мин. При затвердевании массы происходит ее расширение на 0,4-- 0,5%. Термическое расширение кристасила-2 при нагревании до 700°С составляет 0,8--1%. Суммарное расширение модели может достигать 1,2-- 1,5%.

Огнеупорные массы бюгелит, силамин, кристасил-2 обладают хорошей термической стойкостью в температурном интервале 1400--1700°С, химически устойчивы, обладают достаточной прочностью. Термическое расширение этих масс при обжиге опоки (кюветы) способно компенсировать сокращение объема кобальтохромовых и других сплавов, имеющих близкие величины усадки (1,5-1,8%).

Фосфатные формовочные материалы состоят из порошка (цинкфосфатный цемент, кварц молотый, кристобалит, окись магния, гидрат окиси алюминия и др.) и жидкости (фосфорная кислота, окись магния, вода, гидрат окиси алюминия).

Эти материалы компенсируют усадку при охлаждении нержавеющих сталей, которые имеют температурный коэффициент объемного расширения примерно 0,027 °С-1. Усадка золотых сплавов составляет примерно 1,25%, и эту усадку компенсирует гипсовая форма. Схватывание фосфатных форм в зависимости от состава продолжается 10-15 мин.

Силикан -- универсальная формовочная масса на основе фосфатного вяжущего материала, кварца и кристобалита производства фирмы «Спофа Дентал» (Чехия) применяется для литья высокоплавких (хромокобальтовых) сплавов. Для улучшения качества приготовления массы целесообразно использование вибратора.

Силикан-Р -- фосфатная формовочная масса, содержит самые чистые сорта кварца и жаростойкого вяжущего материала. Зернистость формовочной массы выбрана с таким расчетом, чтобы продолжительность затвердевания, прочность формы после обжига и изменения объема были оптимальными для применяемого лабораторного изготовления протезов из высокоплавких сплавов.

Для замешивания Силикона можно использовать воду (соотношение 1:1), но для предотвращения возможной деформации формы в этом случае необходимо применить бумажную манжету. Наиболее целесообразным для замешивания является использование золькремниевой кислоты (жидкость Силисан), так как литейная форма в этом случае компенсирует температурные изменения сплава. Применение золя способствует также повышению прочности формы, что сказывается в повышенной устойчивости формы при нагревании. За 6-8 мин смесь застывает в твердую массу прочностью до 20 МПа.

Безуглеродистую тонкозернистую фосфатную формовочную массу Уолдвест (фирма «Уолд Эллайз», США), расфасованную в упаковки по 60 и 100 г в комплекте со специальной жидкостью, применяют для безопорочного литья сплавов металлов. При отливке каркасов протезов в металлической опоке следует использовать специальную бумажную прокладку (манжету).

Пауэр Кэст -- это тонкозернистый, свободный от углерода формовочный материал, обеспечивающий быстрое выгорание и создающий безопочным методом литьевую форму, не имеющую трещин. Он выдерживает быстрый подъем температуры, легко разбивается, позволяет получить точные отливки с высокой чистотой поверхности, очистка и обработка которой требует минимальных затрат времени.

Вспомогательные формовочные материалы

Для изготовления модели будущего протеза применяют материалы, основанные на различных восковых композициях, называемые моделировочными или стоматологическими (зуботехническими) восками. Восковые моделировочные материалы используют для изготовления моделей вкладок, коронок, штифтов, частичных и полных протезов. Из воска изготавливают специальные валики, с помощью которых определяют прикус, его можно применять для снятия оттиска с участков полости рта, лишенных зубов. Кроме того, воски применяются во многих технологических процессах на этапах изготовления зубных протезов.

Стоматологические воски классифицируют по назначению. Различают моделировочные, технологические или технические вспомогательные и оттискные воски.

К моделировочным воскам относится воск для вкладок, литьевой и базисный воски. Восковые модели применяются для изготовления протезов из металлов методом литья по выплавляемым моделям.

Воски для вкладок типа I - твердые. Их применяют для изготовления вкладок по прямому методу. Вкладочные воски типа II - мягкие, и их используют для изготовления восковых вкладок на моделях (по непрямому методу). Кроме того, вкладочные воски иногда применяют для моделирования аттачменов (замковых креплений) в комбинированных протезах.

Литьевые воски применяют для моделирования тонких деталей частичных протезов и коронок в мостовидных протезах. Они особенно подходят для изготовления колпачков и кламмеров, в которых необходимо воссоздать однородные тонкие элементы.

Базисный пластиночный воск применяется для моделирования полных съемных зубных протезов (базисов протезов). Различают три типа базисного воска. Тип 1 - мягкий базисный воск для внешних поверхностей и контуров модели протеза. Тип II - воск средней твердости, предназначенный для моделей протезов, примеряемых в полости рта. Тип III - самый твердый воск, также предназначенный для примерок модели во рту, но в условиях жаркого тропического климата. Базисный воск применяют также для моделирования временных мостовидных протезов и в качестве прикусных валиков. Этот воск иногда используют в ортодонтии.

Показатель твердости определяют по величине текучести воска при температуре 45 °С. К технологическим вспомогательным воскам относятся паковочный, липкий, соединительный, белый и универсальный или воск для общих работ. Паковочный или ящичный (boxing) воск используют в качестве емкости для отливки модели. Его также применяют для моделирования отсутствующих зубов во временных протезах. Липкий воск применяют для временного крепления деталей модели протеза. Соединительный - для соединения элементов конструкции при моделировании протезов и для паяния. Вспомогательным дополнительным воском заполняют пустоты и поднутрения при моделировании съемных частичных протезов. Белым моделируют виниры. Универсальный применяют при выполнении различных зуботехнических этапов моделирования.

В последние годы появились моделировочные материалы на основе светоотверждаемых полимеров. Полимерные моделировочные материалы характеризуются более высокой прочностью и стабильностью, хорошей размерной точностью и способностью выгорать без остатка.

Оттискные воски характеризуются высокой текучестью и деформируются при удалении из поднутрений. Поэтому в качестве оттискного материала воски применяют ограниченно, только для беззубых участков полости рта.

Воски плавятся не при определенной температуре, а в широком температурном диапазоне. Они имеют самый высокий коэффициент термического расширения по сравнению с любым другим материалом.

Текучесть воска в твердом состоянии определяет его способность к деформации под действием внешних сил, например силы тяжести, и иначе называется ползучестью. Текучесть воска в нагретом состоянии характеризуется вязкостью расплавленной восковой композиции. Такая текучесть необходима, чтобы точно воспроизвести рельеф, например, препарированного под вкладку зуба, но при охлаждении до комнатной температуры или до температуры полости рта, текучесть полученной восковой модели должна быть минимальной, чтобы не допустить искажения этой модели.

Сырьевые компоненты в составах зуботехнических восков

Для достижения требуемого качества состав зуботехнических восков включает много компонентов. Но основой являются

собственно воски, т.е. органические полимеры, состоящие из углеводов и их производных. Средняя молекулярная масса восковых материалов колеблется от 400 до 4000, что существенно ниже молекулярной массы акриловых полимеров.

Стоматологические воски представляют собой смеси натуральных и синтетических восков, природных полимеров (например, даммаровая смола), масел, жиров, камедей (гуммиарабика) и красителей. В качестве восков используют парафин, пчелиный, карнаубский и спермацетовый воски.

Существенный вклад в размерную точность будущего протеза вносят формовочные материалы - материалы для изготовления формы, в которой происходит замена временного моделировочного воскового материала на постоянный восстановительный материал для зубных протезов, пластмассу, керамику, металл.

Наибольшие сложности возникают при изготовлении формы для литья различных конструкций зубных протезов из металлических сплавов. Например, для вкладки не допустимы отклонения размеров на величину более 0,1%. Если учесть, что размер вкладки в среднем составляет 4 мм, такое отклонение составит всего 4 мкм (1/10 толщины человеческого волоса). Следует подчеркнуть, что процесс изготовления зубного протеза любой конструкции включает технологические этапы, которые по своей природе и механизму протекания обязательно сопровождаются размерными изменениями. Для восковой модели характерна усадка за счет тепловых воздействий и связанных с ними превращений восковых композиций. Литье сплавов также сопровождается усадкой отливки. При охлаждении отливки от температуры солидуса до комнатной возникает термическая усадка, которая в зависимости от вида сплава и конфигурации протеза может колебаться в диапазоне от 1,25 до 1,7%. Применение специальных формовочных материалов позволяет компенсировать эти усадочные изменения размеров отливок.

Формовочные вспомогательные материалы для литья стоматологических сплавов должны отвечать следующим требованиям:

1) не содержать веществ, которые могут ухудшить качество отливки, реагируя с ней (например, фосфор, серу и т.п.);

2) не сращиваться с отливкой;

3) обеспечивать гладкую поверхность отливки, повторяющую гладкость поверхности восковой модели;

4) образовывать пористую оболочку, чтобы через поры обеспечить выход газов, образующихся в процессе литья металлов;

5) иметь определенную прочность, предохраняющую форму от растрескивания при нагревании и при литье;

6) иметь определенную величину расширения (гигроскопического, термического), обеспечивающую компенсацию усадки остывающей отливки.

Режим полимеризации

Основные методы получения пластмасс - полимеризация и поликонденсация. При полимеризации молекулы мономеров связываются в полимерные цепи без высвобождения побочных продуктов реакции (вода, спирт и др.). При поликонденсации происходит образование некоторых побочных, не связанных с полимером веществ.

Полимеризация имеет три стадии.

1. Активация молекул мономера (разрыв двойных связей, распад инициатора па радикалы, имеющие свободные валентности, по месту которых и происходит рост полимерных цепей).

2. Рост полимерной цепи из активных центров (на концах цепей постоянно присутствуют свободные радикалы, обеспечивающие рост полимерной цепи). При соединении мономолекул с одной двойной связью образуются линейные полимеры. Если мономеры имеют больше одной двойной связи или под воздействием активных веществ образуются поперечные связи, полимер приобретает “сшитый” вид.

3. Окончание процесса полимеризации, обрыв полимерной цепи при прекращении действия факторов, вызывающих полимеризацию.

Полимеры, полученные при полимеризации различных мономеров, обладающих несходными свойствами, носят название сополимеров.

На основании своих исследований М. М. Гернер с соавт. рекомендует следующий режим полимеризации формовочной массы. Вода, в которую помещена гипсовая форма, нагревается от комнатной температуры до 65°С в течение 30 минут. Такая температура обеспечивает полимеризацию формовочной массы под воздействием теплоты реакции. В результате саморазогрева температура массы достигает примерно 100°С, что обеспечивает хорошую конверсию мономера. Вода, температура которой поддерживается на уровне 60-65°С, предотвращает снижение температуры пластмассы. После 60 минут выдержки воду подогревают до 100°С в течение 30 минут и выдерживают 1-1,5 часа. По завершении полимеризации форму медленно охлаждают на воздухе.

После полимеризации полимеризат всегда содержит остаточный мономер. Количество его зависит от природы инициатора, температуры, времени полимеризации и др. Выдержка гипсовой формы в кипящей воде способствует не только повышению молекулярной массы, но и уменьшению содержанию остаточного мономера. Часть оставшегося мономера связана с макромолекулами (связанный мономер), другая часть находится в свободном состоянии (свободный мономер). Свободный мономер мигрирует к поверхности изделия и растворяется в средах, контактирующих с зубным протезом. Поскольку экстрагируемые жидкими средами из пластмассы остаточные продукты могут оказывать вредное общее и местное воздействие на организм пациента, необходимо добиваться минимального содержания остаточного мономера в пластмассах. Нагрев до 100°С резко сокращает количество остаточного мономера, однако добиться полного его отсутствия практически невозможно. В пластмассах горячей полимеризации его содержится около 0,5%, а в самоотвердеющих - 3-5%. Остаточный мономер оказывает существенное влияние на прочностные и другие свойства полимера. Содержание остаточного мономера в пластмассах горячей полимеризации более 3% резко снижает их прочность. Пластмассы быстро стареют, у них наблюдается повышенное водо-масло-спиртопоглощение.

Различают следующие виды пористости:

1. Газовая. Она возникает в результате испарения мономера внутри полимеризующейся формовочной массы. Реакция полимеризации является экзотермической. Выделяющаяся теплота полимеризации не может быть быстро отведена от полимеризующейся массы, так как она и гипс являются плохими проводниками тепла. Температура кипения мономера 100,3°С, а температура, которая развивается в массе за счет экзотермичности процесса, может составлять !20°С и более. В этих условиях мономер закипает и его пары, не имея выхода наружу, вызывают пористую структуру материала. Газовая пористость проявляется в глубине материала и тем значительнее, чем больше масса, поэтому в протезах нижней челюсти она наблюдается чаще. Газовую пористость можно избежать, если соблюдать правильный температурный режим, т. с. постепенный нагрев полимеризующейся массы от комнатной температуры.

2. Пористость сжатия. Она возникает в результате уменьшения объема полимеризующейся тестообразной массы. К пористости сжатия приводит недостаточное давление (вследствие чего остаются пустоты) или недостаток формовочной массы. Пористость сжатия возникает всегда в тех местах, где нет достаточного давления как плохое структурирование материала, она наблюдается при недостатке мономера. Мономер летуч и быстро испаряется с открытой поверхности тестообразной формовочной массы, в результате чего при прессовании не получается однородной гомогенной массы. Гранулярная пористость может возникнуть при открывании кюветы для контроля количества внесенной в форму массы. Она наблюдается обычно в тонких участках протеза, так как на этих участках испарившийся мономер не может восполниться за счет его миграции изнутри к поверхности изделия.

Выводы

Качество отливок в значительной степени зависит от свойств формовочных материалов, поэтому необходим тщательный контроль их. Контроль формовочных материалов осуществляется в цеховой или заводской лаборатории по стандартным методикам.

Стандарты (ГОСТ 23409.0--78-f-ГОСТ 23409.26--78) на методы испытаний формовочных песков, а также формовочных и стержневых смесей включают 26 видов контроля: содержания примесей (оксидов кальция, магния, железа, титана, алюминия), влаги, прочности смесей при комнатной и высоких температурах, газопроницаемости, осыпаемости, гигроскопичности, текучести при динамическом и статическом уплотнениях, газотворности.

Предусмотрены методики определения формуемости смесей, содержания глинистой составляющей, объемного расширения и спекаемости песков, а также формы зерен и гранулометрического состава, модуля мелкости и среднего размера их зерен. Для контроля жидких самотвердеющих смесей (ЖСС) предусмотрены методики определения их подвижности и пенообразующей способности, а также устойчивости пены растворов поверхностно-активных веществ.

Список используемых источников

Нормативно-правовые акты:

1. О мерах по повышению эффективности оказания ортопедической стоматологической помощи населению [Электронный ресурс]: приказ Министерства здравоохранения СССР от 3.07.1985 № 884 // СПС Консультант Плюс.

Книги:

1. Вязьмитина А. В. Материаловедение в стоматологии: справочник [Текст] / А. В. Вязьмитина, Т. Л. Усевич. - Ростов на Дону: Феникс, 2002. - 352 с. - (Учебники и учебные пособия)

2. Жулёв Е.Н. Материаловедение в ортопедической стоматологии [Текст]: учеб, пособие / Е.Н. Жулёв. - 2-е изд. - Нижний Новгород: Издательство НГМА, 2000. - 136 с.

3. Зубопротезная техника [Текст]: учеб, для мед, училищ и колледжей / под. ред. М. М. Расулова, Т. И. Ибрагимова, И.Ю. Лебеденко. - 2-е изд., испр. и доп. - Москва: ГЭОТАР-Медиа, 2011. -384 с.

4. Каширин В.Н. Зуботехническое материаловедение [Текст]: учеб, для мед, училищ / В.Н. Каширин. - 3-е изд. - Москва: «Медицина», 1973. - 232с.

5. Лебеденко И.Ю. Ортопедическая стоматология [Текст]: учеб, для студ. мед, вузов /И.Ю. Лебеденко, Э.С. Каливраджиян. - Москва: ГЭОТАР - Медиа, 2012. - 640 с.

6. Ломиашвили Л. М. Искусство моделирования и реставрации зубов [Текст] / Л. М. Ломиашвили, Л. Г. Аюпова. - Омск: Полиграф, 2011. - 384 с.

7. Миронова М. Л. Съемные протезы [Текст]: учеб, пособие для мед, училищ и колледжей / М. Л. Миронова. - Москва: ГЭОТАР - Медиа, 2012. - 464 с.

8. Ортопедическая стоматология [Текст]: учебник для студентов вузов / Н.Г. Аболмасов, Н.Н. Аболмасов, В.А.Бычков, А.Аль-Хаким. - Москва: МЕДпресс-информ,2003. - 496 с.

9. Сидоренко Г. И. Зуботехническое материаловедение [Текст]: учебное пособие. -- Киев: Выщашк. Головное изд-во, 1988. -- 184 с.

10. Стоматологическое материаловедение [Текст]: учеб, пособие / В. А. Попков, О. В. Нестерова, В. Ю. Решетняк. - Москва: МЕДпресс-информ, 2010. - 384 с.

Размещено на Allbest.ru

...

Подобные документы

  • Технологический процесс получения отливок в литейном цехе, используемые формовочные материалы и приспособления. Свойства формовочных материалов и их применение в зависимости от требуемого результата. Отливочные модели и требования, предъявляемые к ним.

    реферат [37,7 K], добавлен 12.07.2009

  • Основные свойства формовочных материалов: огнеупорность, газопроницаемость и пластичность. Свойства песка и глины, виды специальных добавок. Термический, механический и химический пригар. Приготовление формовочных смесей, их влияние на качество отливки.

    лекция [18,3 K], добавлен 21.04.2011

  • Методика разработки технологического чертежа детали с элементами литейной формы. Выбор положения отливки при заливке и выбор плоскости разъема. Припуски на механическую обработку детали. Формовочные уклоны, галтели и определение размеров стержня.

    курсовая работа [239,3 K], добавлен 23.05.2016

  • Разработка технологического процесса изготовления отливки "Кокиль" из чугуна в соответствии с техническими требованиями на литую деталь. Расчет элементов литейной формы, выбор состав формовочных и стержневых смесей и красок, определение состав шихты.

    дипломная работа [218,7 K], добавлен 29.12.2013

  • Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.

    презентация [4,7 M], добавлен 25.09.2013

  • Выбор материала детали, описание эскиза и оценка технологичности конструкции. Разработка технологического процесса изготовления стальной отливки литьем в разовые песчаные формы. Точность отливки и определение допусков на её размеры, формовочные уклоны.

    курсовая работа [268,4 K], добавлен 26.02.2015

  • Характеристика сплава отливки. Анализ технологичности конструкции детали. Выбор плоскости разъема формы. Обоснование выбора способа изготовления форм и стержней. Выбор формовочных и стержневых смесей. Расчет продолжительности затвердевания отливки.

    курсовая работа [2,2 M], добавлен 06.04.2015

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

  • Анализ изготовления отливки. Выбор и обоснование способа и метода изготовления литейной формы. Разработка технологической оснастки. Установление параметров заливки литейной формы. Расчет литниковой системы и технология плавки. Контроль качества отливок.

    курсовая работа [252,8 K], добавлен 02.11.2011

  • Расчет рабочей лопатки. Объем одного участка оребрения. Изготовление лопатки при помощи 3D прототипирования. Параметры точности отливки и припуски на обработку. Приготовления формовочных смесей в центробежном лопаточном смесителе непрерывного действия.

    дипломная работа [2,2 M], добавлен 27.05.2014

  • Обработка металла посредством нагрева (термическая резка). Процесс кислородной резки, применяемые материалы. Оборудование и аппаратура для газокислородной резки. Механизация процесса и контроль качества резки. Организация безопасных условий труда.

    курсовая работа [1,6 M], добавлен 14.06.2011

  • 3D-моделирование в литейном производстве и системы для создания 3D-моделей. Выбор материала для изготовления прототипа отливки детали "зуб ковша ЭКГ 4.6 ДП 2203203.13.03". Обработка модели полученной путем 3D-сканирования. Исправление ошибок в STL-файле.

    курсовая работа [674,9 K], добавлен 27.09.2022

  • Термическая обработка деталей и область применения ступенчатой и изотермической закалки. Понятие собственной и примесной электропроводимости полупроводников. Составляющие элементы литейной формы. Увеличение производительности при токарной обработке.

    контрольная работа [1,4 M], добавлен 07.12.2010

  • Характерные особенности полумуфт, спектр их форм, размеров, характеристик и материалов для изготовления. Применение в прокатных станах, станках, двигателях, бытовых приборах. Выбор и обоснование марки стали, термическая обработка полумуфты, качество.

    контрольная работа [330,2 K], добавлен 07.10.2009

  • Техническо-экономическое обоснование выбора технологического процесса отливки детали "шкив". Выбор формовочных и стержневых смесей. Выбор плавильного агрегата и расчет шихты. Расчет литниковой системы. Очистка и обрубка отливок. Карта литейного процесса.

    курсовая работа [61,2 K], добавлен 14.05.2013

  • Построение кривых охлаждения для сплавов с заданным количеством углерода с использованием диаграммы железо-цементит. Состав, свойства и примеры применения легированных сталей, чугуна, высокопрочного сплава. Термическая обработка деталей. Газовая сварка.

    контрольная работа [277,4 K], добавлен 01.03.2016

  • Кинематический и силовой расчет привода. Материалы и термическая обработка колес. Выбор допускаемых напряжений при расчете цилиндрических зубчатых передач. Расчет диаметра валов. Материалы валов и осей. Расчетные схемы валов. Расчёты на прочность.

    курсовая работа [587,6 K], добавлен 12.11.2003

  • История создания, производство и некоторые виды продукции предприятия ООО "Каменный пояс". Изготовление и химико-механическая обработка мастер-модели, литейной формы и качественных отливок декоративных моделей. Выбор способа изготовления промодели.

    отчет по практике [1,6 M], добавлен 17.08.2010

  • Изготовление отливки "Рычаг"; технология процесса: выполнение чертежа, выбор способа, материалов и оборудования для изготовления форм; определение литниково-питающей системы и литейной оснастки; расчет времени охлаждения отливки в форме и нагружения опок.

    курсовая работа [165,8 K], добавлен 19.02.2013

  • Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.

    презентация [5,0 M], добавлен 23.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.