Математическое описание процесса сушки

Влияние количественного соотношения воды в продукте на выбор параметров сушки. Анализ изотерм сорбции и десорбции для картофеля. Гигроскопическое влагосодержание для плодов и овощей. Расчет объемной усадки пищевых растительных материалов при сушке.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 29.11.2015
Размер файла 119,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Изотермы сорбции и десорбции

Количественное соотношение воды и сухих веществ в продукте оказывает существенное влияние на выбор параметров сушки и на условия хранения сухого продукта. Если в продукте, предназначенном для сушки, содержится много белков, то максимальная температура сушки не должна вызывать их денатурацию. Количество в продукте сахаров определяет количество воды, которое можно удалить при сушке, чтобы не происходило реакций меланоидинообразования при хранении.

С биологической точки зрения решающей характеристикой продуктов является не количественное содержание в них воды, а ее состояние. Состояние влаги в продукте (способность материала удерживать воду) характеризуется равновесным влагосодержанием.

Равновесное влагосодержание - то, при котором давление водяного пара над продуктом будет равно парциальному давлению водяного пара в окружающей среде. При этом температура продукта равна температуре окружающего воздуха.

Равновесное влагосодержание определяет способность продукта удерживать влагу и играет большую роль при сушке. По значению этого показателя определяют связь влаги с материалом; потенциальную возможность воздуха, как сушильного агента; условия хранения высушенных продуктов; вид тары для упаковки сушеных продуктов. Значение равновесного влагосодержания входит в уравнение продолжительности сушки, так как удаление влаги при сушке происходит только до равновесного влагосодержания, которое соответствует определенным параметрам сушильного агента.

Удаляемая влага при сушке (Wу) определяется как равность влагосодержания продукта (W) и равновесная влажность (Wр):

Wу = W - Wр (1.5)

Равновесное влагосодержание зависит от влажности и температуры воздуха и способа достижения его равновесия. Графически зависимость между равновесным влагосодержанием продукта и влажностью воздуха при определенных постоянных значениях температуры называется изотермой сорбции или десорбции продукта.

Если равновесие достигнуто путем поглощения влаги из окружающего воздуха, то получается изотерма сорбции. Если же равновесие достигнуто при отдаче влаги продуктом окружающему воздуху, то образуется изотерма десорбции (сушка).

Равновесное влагосодержание определяется экспериментально по изотермам сорбции и десорбции, так как различные формы связи влаги с материалом и разнообразие структур продуктов не позволяют определить его аналитическим путем. При определении равновесной влажности продукт выдерживают в воздушной среде с постоянной влажностью и температурой до равновесного состояния.

Рис. 1.1. Изотермы сорбции и десорбции для картофеля

Изотермы сорбции и десорбции для картофеля представлены на рисунке 1.1. Изотермы сорбции и десорбции растительных продуктов имеют S-образный характер. Для одного и того же продукта они совпадают только при очень малых и очень больших значениях относительной влажности воздуха, при других значениях - не совпадают. При этом образуется площадь гистерезиса.

Изотермы сорбции располагаются выше, чем изотермы десорбции и равновесное влагосодержание при одинаковом значении относительной влажности воздуха при десорбции больше, чем при сорбции.

Причины гистерезиса для растительных продуктов заключаются в том, что в капиллярно-пористых материалах в капиллярах содержится воздух. Это уменьшает смачиваемость капилляров при сорбции. Поэтому, если предварительно выдержать сухой материал в глубоком вакууме перед сорбцией, то площадь гистерезиса уменьшается или исчезает совсем, и кривая сорбции приближается или совпадает с кривой десорбции.

Характер изотерм зависит от вида связи влаги с материалом. Для капиллярно-пористых материалов S-образные изотермы сорбции и десорбции сначала в области малых значений (ц = 10-20 %) обращены выпуклостью к оси абсцисс. Это соответствует мономолекулярной адсорбции. При реальной сушке материала влага, связанная мономолекулярной адсорбцией, не удаляется. Затем выпуклость кривой обращена к оси ординат (ц = 60-80 %). На этом участке происходит полимолекулярная адсорбция. В дальнейшем изотерма плавно переходит к пологой кривой, наклоненной к оси абсцисс. Это соответствует переходу к осмотически и кипиллярно-связанной влаге. На пологом участке происходит поглощение воды макрокапиллярами при непосредственном соприкосновении материала с водой. Равновесное влагосодержание, которое соответствует максимальной степени насыщения воздуха парами воды (ц = 100 %) называется гигроскопическим влагосодержанием. С повышением температуры значение гигроскопического влагосодержания уменьшается.

Гигроскопическое состояние пищевых продуктов охватывает значительный диапазон влажности и на удаление этой влаги приходится значительная часть времени сушки, т.к. в этот период удаляется наиболее прочно связанная влага. Значение гигроскопического влагосодержания приведено в таблице 1.1.

Таблица 1.1 - Гигроскопическое влагосодержание для плодов и овощей

Наименование продуктов

Гигроскопическое влагосодержание, %

Картофель

50-130

Морковь

47-80

Лук

53-90

Свекла столовая

80-100

Зеленый горошек

47-82

Яблоки

42-74

На основании экспериментальных данных выведены зависимости для определения равновесного влагосодержания некоторых продуктов.

Для круп и бобовых при производстве пищеконцентратов равновесное влагосодержание определяется по уравнению:

Wр = (K1 - K2*t)*.

где: К1 и К2 - константы круп и бобовых до и после гидротермической обработки. Значение констант приведено в таблице 1.2.

Уравнение 6 действует в пределах относительной влажности воздуха от 20 до 70 % при температурах воздуха от 10 до 90 0С.

Таблица 1.2 - Значения констант для круп и бобовых

Наименование продуктов

Значения К1

Значения К2

Крупа гречневая

1,10

0,007

Крупа пшеничная

1,05

0,006

Крупа перловая

1,15

0,008

Горох плющеный

0,93

0,007

Крупа рисовая

1,22

0,0065

Крупа пшено

1,17

0,0055

Для картофеля равновесное влагосодержание определяется по уравнению.

Wр = 1,65*.

Равновесное влагосодержание для овощных порошков распылительной сушки определяется по формуле:

Wр = (а + b*ц)2.

Значения коэффициентов а и b для порошков приведены в таблице 1.3.

Таблица 1.3 - Значения коэффициентов а и b для порошков

Наименование продуктов

Значение коэффициентов

а

b

Шпинат

1,2

0,0354

Зеленый горошек

1,4

0,0347

Кабачки

1,05

0,056

Основные компоненты плодов и овощей - сахароза, крахмал, пектин и клетчатка оказывают различное влияние на связь влаги с материалом. Величина равновесного влагосодержания при одинаковой относительной влажности и температуре воздуха наибольшая у пектина (а, следовательно, наибольшая и энергия связи), несколько меньшая у крахмала и самая меньшая у сахарозы. Поэтому влага наиболее прочно связывается пектином, затем крахмалом, клетчаткой и сахарозой. Содержание этих компонентов в растительных материалах оказывает существенное влияние на продолжительность процесса сушки.

2. Кривая сушки и ее анализ

В процессе сушки влажных материалов происходят взаимосвязанные процессы тепло- и массообмена между материалом и сушильным агентом. Наружные процессы характеризуются внешним массообменном - испарением влаги, т.е. движением пара от поверхности материала в окружающее воздушное пространство и внешним теплообменом между нагретым газом и поверхностью материала. При испарении влаги с поверхности нарушается равновесие. Внутренние части продукта имеют более высокую влажность и, соответственно, более низкую температуру по сравнению с поверхностными слоями. За счет разности влагосодержание поверхностных и внутренних слоев возникает градиент влагосодержания. Это приводит к процессам внутреннего тепло- и массообмена, при которых происходит перемещение влаги из внутренних, более влажных слоев, к поверхностным и оттуда уже происходит ее испарение. Благодаря наличию градиента влагосодержания происходит непрерывное уменьшение влажности во всем объеме высушиваемого продукта.

На перемещение влаги внутри продукта влияет также и термодиффузия, которая обусловлена перепадом температур. Под ее влиянием влага перемещается от участков с более высокой температурой к участкам с более низкой температурой. При низкотемпературной сушке термодиффузия не имеет существенного значения, но при высокотемпературной сушке она оказывает существенное влияние на процесс сушки. Так, например, при конвективной сушке явление термодиффузии препятствует перемещению влаги из внутренних слоев к поверхности, так как температура внутренних слоев (за счет более высокого влагосодержания) ниже. Поэтому в таких случаях рекомендуется применять осциллирующий режим сушки с поочередной подачей холодного и горячего воздуха. Это вызывает совпадение направления диффузии и термодиффузии влаги и процесс сушки ускоряется. При ускоренных методах сушки (при температурах выше 100 0С) испарение влаги происходит равномерно по всему объему продукта, и влага внутри перемещается в виде пара. Это приводит к появлению градиента давления, так как скорость превращения воды в пар выше, чем скорость выхода его из продукта. За счет этого ускоряется перемещение влаги.

Процессы внутреннего и внешнего тепло- и массообмена между собой взаимосвязаны и приводят к изменению массы продукта в процессе сушки. По изменению массы продукта в процессе сушки нельзя сравнивать работу различных сушильных установок. Для этого пользуются графическим изображением изменения влагосодержания по времени (W-ф), которое называется кривой сушки.

Анализируя кривую сушки, можно выделить ряд участков. Участок АВ - период подогрева продукта. В этот период влагосодержание изменяется незначительно. Этот период можно выделить при низкотемпературных режимах сушки продуктов в высоком слое. Участок ВС - период постоянной скорости сушки. Он характеризуется постоянными скоростью снижения влагосодержания (за равные промежутки времени удаляется одинаковое количество влаги) и температурой материала. В этот период удаляется преимущественно свободная влага. Этот период продолжается до наступления критического влагосодержания (wк). На кривой сушки этому моменту соответствует точка С. Критическое влагосодержание - граница между периодом постоянной (1-й период) и падающей (2-й период) скоростями сушки.

В периоде постоянной скорости сушки интенсивность процесса определяется только параметрами сушильного агента и не зависит от влагосодержания и физико-химических свойств продукта.

В периоде падающей скорости сушки (участок СД на кривой сушки) скорость сушки уменьшается по мере снижения влагосодержания продукта. Температура продукта увеличивается и к концу периода приближается к температуре сушильного агента. Процесс сушки продолжается до достижения равновесного влагосодержания, после этого удаления влаги прекращается. В этот период удаляется связанная влага, и постепенное снижение скорости сушки объясняется увеличением энергии связи влаги с материалом. В этот период процесс удаления влаги зависит от влагосодержания, характера связи влаги с материалом, физико-химический свойств материала и параметров сушильного агента.

По кривым сушки определяют скорость сушки в любой период времени. Скорость сушки определяется как тангенс угла наклона касательной, проведенной через данную точку кривой сушки, соответствующую определенному влагосодержанию материала.

tgу =

Максимальная скорость в период постоянной скорости сушки определяется по формуле.

tgумакс.. = ()макс. = N (%/ч или %/мин).

К концу процесса при равновесной влажности скорость сушки равна 0.

Процесс сушки можно охарактеризовать по методу приведенной скорости сушки. На основании этого метода можно определить продолжительность сушки. Приведенная скорость сушки - отношение скорости сушки при данном влагосодержании материала к максимальной скорости первого периода. Она определяется по уравнению.

Ш = : ()макс. =

Значения приведенной скорости сушки изменяются от 0 до 1. Для периода постоянной скорости сушки при w ? wк; ш = 1, а в конце сушки при достижении равновесного влагосодержания w=wк; ш = 0.

Метод приведенной скорости сушки позволяет исключить влияние параметров сушильного агента на интенсивность процесса сушки. Зависимость метода приведенной скорости сушки только от физико-химических свойств материала и вида связи с материалом позволяет использовать уравнение продолжительности сушки в расчетах сушильных установок любой производительности. На основании уравнения путем интегрирования от начального влагосодержания до критического определяют продолжительность процесса сушки.

Продолжительность сушки ф (мин) определяется по уравнению.

ф = .

Показатель степени m является постоянной величиной для данного материала, не зависит от формы и размера частиц, влагосодержания, способа и параметров процесса сушки. Он характеризует вид связи влаги с материалом, физико-химические свойства материала. Поэтому при испарении свободной влаги в периоде постоянной скорости сушки m=0. Установлены 4 значения показателя m для пищевых материалов: m = 0,5 - для хурмы, клубники, укропа, томатов, перца. m = 1 - для картофеля, моркови, свеклы, петрушки, лука, сельдерея, капусты, зеленого горошка, абрикосов, яблок, груш, винограда. m = 2 - для всех видов круп после гидротермической обработки и гороха.

При известных значениях показателя степени m уравнение имеет следующий вид.

При m = 0,5:

ф = .

При m=1:

ф =.

При m=2:

ф=.

где: W1, Wk, W2, Wр - влагосодержание материала начальное, критическое, конечное и равновесное, %;

А и в - массообменные коэффициенты, определяющие перемещение влаги внутри материала. Величины этих коэффициентов зависят от размера и формы частиц (т.е. длины пути перемещения влаги внутри частицы), а также от фазового состояния перемещаемой влаги (т.е. от температуры и потенциала сушильного агента). Величина коэффициента А с повышением температуры сушки уменьшается. Величина коэффициента в для одного и того же материала может иметь либо положительное, либо отрицательное значение в зависимости от фазового состояния перемещаемой влаги.

Коэффициенты А и в можно рассчитать по уравнениями:

А = с - dEср.

в =еЕср. - f.

где: Еср. - среднеинтегральное значение потенциала сушки воздуха, определяется по формуле.

Еср.= (tс - tм)ср.

где: tc и tм - температура воздуха, измеренная сухим и мокрым термометром, 0С.

с, d, e, f - постоянные коэффициенты, зависящие от вида материала, формы и размера частиц. Значения этих коэффициентов приведены в таблице 2.1.

Таблица 2.1 - Значения коэффициентов с, d, e, f

Наименование материала

Размер частиц, мм

Значения коэффициентов

с

d

e

f

Абрикосы

15х15х15

445

1,35

0,0293

2,40

Айва

15х15х15

520

5,20

0,0282

2,00

Баклажаны

12х12х12

5000

38,50

0,0430

4,73

Груши

15х15х15

490

3,77

0,0227

1,75

Зеленый горошек

-

920

7,85

-

-

Кабачки

8х8х8

2750

27,8

-

-

Кабачки

12х12х12

2340

15,6

-

-

Кабачки

15х15х15

2550

17,6

-

-

Картофель

8х8х8

700

4,83

0,0191

2,20

Лук

D=3

43

0,265

0,0012

-0,82

Морковь

10х10х10

75

0,528

0,00112

-0,842

Пастернак

12х12х12

940

6,6

-

-

Хурма

10х10х10

421

4,1

0,306

30,50

Хурма

20х20х20

305

2,28

0,127

16,55

Цикорий

8х8х8

890

9,9

-

-

Цикорий

10х10х10

1100

10,0

-

-

Цикорий

15х15х15

1290

10,8

-

-

Яблоки

15х15х15

650

5,0

0,0575

-2,5

Крупа гречневая

-

1500

11,5

-0,042

1,4

Крупа перловая

-

1530

10,65

-

-

Крупа рисовая

-

1170

7,4

-0,002

0,85

Крупа пшенная

-

1710

12,7

-0,0023

1,6

Крупа пшеничная

-

1400

9,0

-0,004

1,6

Горох

-

2530

23,0

0,0303

2,9

Скорость постоянного периода сушки определяется либо по кривой сушки , либо по уравнению.

N = a + bEср.хс(F/Mc).

где: а и b - постоянные коэффициенты, определяемые видом материала, формой и размером частиц; хс - массовая скорость воздуха, кг/(м2*с). При сушке в неподвижном слое следует массовую скорость подставить в виде выражения: ; F/Mc - величина, обратная удельной нагрузке материала, м2/кг.

Критическое влагосодержание определяется по уравнению:

Wк = k - lЕср.

где: k и l - коэффициенты, зависящие от вида материала, формы и размера частиц.

Если сушка происходит в кипящем слое, то значение критического влагосодержания не зависит от величины массовой скорости воздуха и удельной нагрузки материала.

Значения равновесного влагосодержания Wр следует принимать в зависимости от температуры сушильного агента.

При температуре 100 0С и выше равновесное влагосодержание равно 0.

При температуре 90 0С равновесное влагосодержание равно 1.

При температуре 80 0С равновесное влагосодержание равно 3.

При температуре 60-70 0С равновесное влагосодержание равно 5.

Полученные зависимости позволяют быстро и достаточно точно определить продолжительность сушки пищевых продуктов.

Таблица 2.2 - Значения коэффициентов а и b

Наименование материала

Размер частиц, мм

Значения коэффициентов

а

b

Абрикосы

15х15х15

4,6

1,27

Айва

15х15х15

8,8

2,00

Баклажаны

12х12х12

40,0

1,44

Груши

15х15х15

0

1,42

Зеленый горошек

-

7,3

0,73

Кабачки

8х8х8

100,0

0,94

Капуста

D=3

20,0

15,40

Картофель

8х8х8

5,4

0,54

Картофель

12х12х12

2,0

0,905

Картофель

15х15х15

11,0

0,36

Лук

D=3

22,0

0,90

Морковь

10х10х10

12,4

0,454

Свекла

10х10х10

0

0,799

Хурма

10х10х10

6,7

0,306

Хурма

20х20х20

8,2

0,174

Цикорий

8х8х8

4,6

0,836

Цикорий

10х10х10

9,5

0,35

Цикорий

15х15х15

0

0,58

Цикорий

20х20х20

0

0,497

Крупа гречневая

-

0

0,5

Крупа перловая

-

0

0,308

Крупа рисовая

-

0

0,46

Крупа пшенная

-

0

0,69

Крупа пшеничная

-

0

0,76

Крупа кукурузная

-

5

1,265

Горох

-

0

0,192

Таблица 2.3 - Значения коэффициентов k и l

Наименование материала

Размер частиц, мм

Значения коэффициентов

k

l

Абрикосы

15х15х15

795

6,25

Груши

15х15х15

360

0,78

Зеленый горошек

-

300

1,16

Кабачки

8х8х8

1800

10,0

Капуста

D=3

960

7,6

Картофель

8х8х8

250

1,1

Картофель

10х10х10

292

1,08

Лук

D=3

542

2,7

Морковь

12х12х12

630

4,1

Свекла

15х15х15

850

6,5

Хурма

10х10х10

795

6,25

Хурма

20х20х20

730

5,0

Цикорий

8х8х8

337

2,55

Цикорий

10х10х10

255

1,33

Цикорий

15х15х15

310

1,75

Яблоки

15х15х15

377

1,23

Крупа гречневая

-

125

0,9

Крупа перловая

-

172

1,58

Крупа рисовая

-

36

0,17

Крупа пшенная

-

48

0,3

Крупа пшеничная

-

40

0,2

Крупа кукурузная

-

155

0,92

3. Факторы, влияющие на процесс сушки

Основные факторы, влияющие на процесс сушки это: температура сушильного агента, скорость воздушного потока, относительная влажность воздуха, давление, степень измельчения материала, толщина слоя.

Температура сушильного агента. В начале сушки увеличение температуры сушильного агента приводит к ускорению процесса сушки. Но одновременно увеличиваются тепловые потери, которые наиболее существенны в конце сушки, когда материал имеет низкую влажность. Максимально допустимые температуры зависят от вида материала и способа сушки.

При сушке материала в неподвижном слое нижний слой высушиваемого материала соприкасается с сушильным агентом, который нагрет до максимальной температуры и с сушильной сеткой, это приводит к местным перегревам (максимальная температура не более 70-75С).

При сушке в «кипящем слое» происходит непрерывное движение и перемешивание материала, местных перегревов не происходит и максимально допустимые температуры сушильного агента и материала могут быть повышены (максимальная температура может достигать 140-180 0С).

Температура при распылительной сушке определяется направлением движения сушильного агента и материала. В начальный период сушка интенсивнее протекает при прямотоке (движение высушиваемого материала и сушильного агента направлены в одну сторону). В конце сушки - более интенсивна сушка протекает при противотоке (движение высушиваемого материала и сушильного агента направлены в разные стороны). Температура высушиваемого материала в конце процесса сушки при прямотоке приближается к температуре уходящего воздуха, а при противотоке - к температуре поступающего воздуха. Поэтому конечная температура материала значительно выше при противотоке и может оказаться выше допустимой. Чтобы этого избежать, необходимо при сушке термолабильных материалов применять противоточное движение воздуха и высушиваемого материала. При прямоточном движении воздуха для сушки используется воздух с температурой 180-200С, а при противоточном движении - эта температура не должна превышать 140С. Более экономичным является прямоточное движение воздуха и высушиваемого материала.

Скорость воздушного потока - оказывает влияние на скорость сушки только на участке постоянной скорости (при постоянной температуре и относительной влажности). Чем выше скорость воздушного потока, тем выше скорость сушки. Это влияние заметно до скорости воздушного потока 5 м/с. Дальнейшее увеличение скорости воздушного потока ограничивается тем, что струя воздуха «срывает» с сушильной поверхности мелкие кусочки высушиваемого материала. Это свойство воздушного потока используется при сушке в «кипящем слое», когда скорость воздушного потока составляет 5-15 м/с. В конце сушки скорость воздушного потока не оказывается существенного влияния на скорость сушки. На данном участке скорость не более 1 м/с.

Относительная влажность воздуха. При постоянной температуре и скорости воздушного потока снижение скорости сушки на первом этапе прямо пропорционально увеличению относительной влажности воздуха. Затем эта зависимость уменьшается и снова возрастает на конечном этапе сушки. В этот момент зависимость процесса сушки от относительной влажности воздуха определяется значением равновесного влагосодержания, которое соответствует остаточной влажности высушиваемого материала.

Атмосферное давление. Понижение давления ускоряет процесс сушки, но только на первом этапе.

Степень измельчения материала - значительно сокращает продолжительность сушки. Этот фактор используется в распылительных сушилках, где хорошо измельченный материал (размеры частиц не превышают нескольких микрон) высушивается за несколько секунд.

Толщина слоя или удельная нагрузка. Увеличение толщины слоя снижает скорость сушки, в основном, на первом этапе. По мере высыхания толщина слоя уменьшается, и скорость сушки повышается. Это позволяет устанавливать не ленточных сушилках более низкую скорость движения нижних лент (12 см/мин) по сравнению с верхними (20 см/мин). Для равномерной сушки загрузка материала на ленте должна быть равномерная. В ленточных сушилках это обеспечивается наличием специального оборудования (ворошителей). Удельная нагрузка влияет и на производительность сушильного оборудования. С увеличением толщины слоя производительность будет возрастать, но до определенного предела удельной нагрузки материала, затем это приводит к снижению производительности сушильного оборудования. Кроме того, увеличение толщины слоя связано с увеличением расхода электроэнергии на вентилятор, подающий воздух на сушку. Поэтому высота слоя устанавливается индивидуально для каждого высушиваемого материала в зависимости от способа сушки. Например для плодоовощного сырья, в сушилках с неподвижным слоем оптимальная удельная нагрузка 6,5-18,5 кг/м2, в «кипящем слое»- 80-120 кг/м2.

4. Изменение продуктов в процессе сушки

В процессе сушки с продуктами происходят значительные изменения. Они зависят, в первую очередь, от выбранного способа и режима сушки. Основные изменения это: усадка, изменение окраски, затвердевание, нарушение восстанавливающей способности, потеря летучих веществ.

Усадка материала при сушке. В процессе сушки большинство материалов уменьшается в размерах. Это естественный процесс при сушке. Усадка - уменьшение объема и размеров материала в процессе сушки. Овощи, плоды и крупы относятся к числу капиллярно-пористых материалов, поэтому при сушке дают значительную усадку, уменьшаясь в объеме в 3-4 раза. Усадка происходить равномерно в течение всего процесса сушки.

Объемная усадка пищевых растительных материалов имеет линейную зависимость от влагосодержания материала и определяется по формуле.

сушка изотерма пищевой гигроскопический

V = Vc(1+вv,

где: V - объем частицы в любой момент сушки, см3;

Vc - объем частицы абсолютно сухого материала, см3;

вv - коэффициент объемной усадки (для картофеля, нарезанного кубиками размером 8х8х8 мм - 0,625; для кукурузу - 0,25; для круп вареных: гречневой - 0,919; пшеничной - 0,948; перловой - 0,45; пшенной - 0,17; гороха - 0,15).

При равномерной сушке и небольших перепадах влаги в материале усадка частиц происходит с сохранением формы. Неравномерная сушка приводит к искажению формы частиц. При больших перепадах влаги в материале образуются разрывы и трещины.

При сушке пищевых растительных материалов в «кипящем слое» с температурой воздуха выше 105 0С частицы разнообразных форм и размеров сохраняют свои первоначальные форму и объем. Этому способствует равномерное омывание частиц потоком нагретого воздуха со всех сторон. Влага перемещается внутри частиц только в виде пара, внутреннее его давление уравновешивает силы, которые вызывают усадку. Сушка в «кипящем слое» при температуре ниже 100 0С приводит к равномерной усадке. Это связано с тем, что влага внутри материала перемещается как в виде жидкости, так и в виде пара, а его внутреннее давление меньше сил усадки.

Перегрев (подгорание) и побурение. Происходящие при сушке необратимые нежелательные изменения называют побурением, окрашиванием, обугливанием или просто подгоранием.

Различают несколько степеней перегрева. Самая легкая - изменение цвета. Это первая ступень, происходит незначительное изменение окраски продукта по сравнению с исходной (до сушки). Эта степень перегрева не влияет на изменение вкуса и аромата.

Побурение в процессе сушки вызывается реакцией меланоидинообразования между аминокислотами и восстанавливающими сахарами, карамелизацией за счет термического разложения сахаров, а также ферментативными реакциями, связанными с процесса окисления полифенольных соединений. Самый распространенный способ ограничения реакций побурения - сульфитация продуктов перед сушкой. В результате этого повышается критическая температура сушки. Это позволяет при противоточной сушке повысить температуру подаваемого сушильного агента и, тем самым, увеличить производительность сушильных установок. Для ограничения реакций побурения используются также обработку продуктов перед сушкой в растворах аскорбиновой или лимонной кислот в концентрации 0,1 %.

Более сильный перегрев влияет на вкусовые и восстанавливающие свойства, на пищевую ценность сушеных продуктов. Подгорание характеризуется максимально допустимой критической температурой. При нагревании выше этой температуры продукт подгорает. Критическая температура у одинаковых продуктов зависит от влажности. Среди овощей наиболее чувствителен к подгоранию лук - он имеет самую низкую критическую температуру. При сушке измельченного лука влажности 10-12 % соответствует критическая температура 65-70 0С; влажности 8-10 % - критическая температура 60-65 0С; влажности 6-8 % - критическая температура 55-60 0С. На конечном этапе сушки критическая температура примерно равна температуре высушиваемого продукта. Критическую температуру подгорания можно повысить на 5-10 0С, если продукт перед сушкой подвергнуть сульфитации.

На процессы подгорания продукта влияет не только температура, но и продолжительность нагрева. Этим объясняется тот факт, что при распылительной сушке продуктов, которая протекает очень быстро, при температуре уходящего сушильного агента около 100 0С окраска порошка с остаточной влажностью 2-4 % практически не изменяется.

Цвет продуктов при сушке может измениться и не только в результате подгорания. Это может быть за счет реакций окисления, если высушивают продукты, которые долго хранились в очищенном виде.

Затвердевание. При сушке растительных материалов может наблюдаться такое явление, что на определенном этапе процесс сушки практически останавливается. Это происходит за счет того, что на поверхности продукта образуется практически непроницаемая для влаги твердая корочка. За счет нее влага не может испаряться с поверхности продукта. Продукт внутри остается влажным. Чтобы этого избежать, фрукты, высушиваемые в целом виде или в виде крупных кусков, в начальный период сушки при высокой относительной влажности высушивают при низкой температуре сушильного агента. Например, для слив применяют воздух с начальной температурой 50-55 0С и относительной влажностью 60-65 %. Эти условия препятствуют образованию на поверхности слив твердой корочки. Если продукты нарезаны на мелкие кусочки, то поверхностного затвердевания не происходит.

Нарушение регидратационной (восстанавливающей) способности. Обычно сушеные продукты употребляются в регидратированном (увлажненном) состоянии. Продолжительность и степень регидратации у продуктов, высушенных традиционными способами, чаще всего оказываются неудовлетворительными. Самыми лучшими регидратационными свойствами обладают продукты, высушенные методом сублимационной сушки. Такие продукты во время регидратации полностью восстанавливают исходную влажность и первоначальные физические свойства. Процесс их восстановления протекает очень быстро.

Снижение восстанавливающей способности вызывается необратимым перегревом продуктов. Он может происходить и без видимого изменения окраски (побурения). Это происходит за счет того, что после испарения свободной и механически связанной влаги начинает удаляться физико-химическая влага. В результате этого основные компоненты высушиваемого материала претерпевают различные изменения. Среди них наиболее значительные это: затвердевание амилопектина, пектина и белков. В первую очередь, коллоидную необратимость сушеных продуктов вызывает тепловая коагуляция белков. Она может быть как частичной, так и полной.

Потеря летучих веществ. Испаряясь из материала при сушке, влага вместе с собой увлекает и летучие компоненты продуктов. Вследствие этого сушеные продукты теряют вкус и аромат. Состав уходящих с влагой летучих веществ зависит от изменения температуры продукта в процессе сушки, а также от давления паров летучих компонентов при данной температуре. Большое значение имеет также растворимость летучих компонентов в воде и других веществах высушиваемого материала. При некоторых современных методах сушки (например, при производстве сухих порошков) к сушеным продуктам добавляют ароматические концентраты. Их получают путем конденсации паров исходного продукта. Но такой способ является достаточно сложным и дорогостоящим.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность процесса сушки. Расчет сушильной установки. Аппаратное обеспечение процесса сушки. Технологические основы регулирования сушилок с кипящим слоем. Определение момента окончания сушки по разности температур. Автоматизация сушильных установок.

    дипломная работа [2,7 M], добавлен 25.01.2011

  • Выбор способа обработки и описание типа лесосушильной камеры. Режимы и продолжительность сушки. Выбор расчетного материала. Определение параметров агента сушки. Выбор и расчет конденсата отводчиков, калориферов, вытяжных каналов. Контроль качества сушки.

    курсовая работа [46,5 K], добавлен 07.06.2010

  • Описание сушильной камеры и выбор параметров режима сушки. Расчет продолжительности камерной сушки пиломатериалов. Показатели качества сушки древесины. Определение параметров сушильного агента на входе и выходе из штабеля. Выбор конденсатоотводчика.

    курсовая работа [3,9 M], добавлен 08.01.2016

  • Сушильные устройства и режимы сушки керамических изделий. Периоды сушки. Регулирование внутренней диффузии влаги в полуфабрикате. Длительность сушки фарфоровых и фаянсовых тарелок при одностадийной и при двухстадийной сушке. Преимущества новых методов.

    реферат [418,0 K], добавлен 07.12.2010

  • Описание технологии производства пектина. Классификация сушильных установок и способы сушки. Проектирование устройства для сушки и охлаждения сыпучих материалов. Технологическая схема сушки яблочных выжимок. Конструктивный расчет барабанной сушилки.

    курсовая работа [2,9 M], добавлен 19.11.2014

  • Устройство и принцип действия основного и дополнительного оборудования. Выбор и обоснование режимов сушки и влаготеплообработки. Расчет продолжительности цикла сушки, количества камер. Определение параметров агента сушки, а также расхода теплоты.

    курсовая работа [139,6 K], добавлен 23.04.2015

  • Расчет горения топлива и начальных параметров теплоносителя. Построение теоретического и действительного процессов сушки на I-d диаграмме. Материальный баланс и производительность сушильного барабана для сушки сыпучих материалов топочными газами.

    курсовая работа [106,3 K], добавлен 03.04.2015

  • Современные методы сушки материалов, оценка их преимуществ и недостатков, используемое оборудование и инструменты. Определение основных материальных потоков, а также технологических параметров сушки. Расчет типоразмера барабана выбранной сушилки.

    курсовая работа [540,6 K], добавлен 05.02.2014

  • Тепловой расчет барабанного сушила, его производительность и расчет начальных параметров. Построение теоретического процесса сушки, тепловой баланс. Расход воздуха и объем отходящих газов, аэродинамический расчет. Материальный баланс процесса сушки.

    курсовая работа [664,3 K], добавлен 27.04.2013

  • Установки для сушки сыпучих материалов. Барабанные сушила, сушила для сушки в пневмопотоке и кипящем слое. Установки для сушки литейных форм, стержней. Действие устройств сушильных установок. Сушила с конвективным режимом работы. Расчет процессов сушки.

    курсовая работа [2,9 M], добавлен 29.10.2008

  • Расчет установки для сушки известняка. Обоснование целесообразности выбора конструкции аппарата с учетом современного уровня развития технологии, экономической эффективности и качества продукции. Выбор технологической схемы, параметров процесса.

    курсовая работа [1,1 M], добавлен 20.05.2015

  • Устройство и принцип действия сушильной камеры. Выбор режимов сушки и влаготеплообработки. Расчет требуемого количества камер. Определение массы испаряемой влаги, параметров агентов сушки, расходов теплоты на сушку. Разработка технологического процесса.

    курсовая работа [1,4 M], добавлен 11.10.2012

  • Общая характеристика и принцип действия сушилки Т-4721D, предназначенной для сушки ПВХ. Теплообменные процессы в сушилке. Инженерный анализ технологического процесса как объекта автоматизации. Разработка функциональной схемы автоматизации процесса сушки.

    курсовая работа [52,7 K], добавлен 22.11.2011

  • Конструкция барабанной сушилки. Выбор режима сушки и варианта сушильного процесса. Технологический расчет оптимальной конструкции барабанной конвективной сушилки для сушки сахарного песка, позволяющей эффективно решать проблему его комплексной переработки

    курсовая работа [822,9 K], добавлен 12.05.2011

  • Расчет продолжительности сушки пиломатериалов и оборота камеры. Определение параметров агента сушки на входе в штабель. Составление схемы циркуляции агента сушки с выявлением участков сопротивления. Транспортировка сырых пиломатериалов в сушильный цех.

    курсовая работа [396,5 K], добавлен 19.10.2012

  • Общие сведения об автоматической системе регулирования соотношения топливо-воздух. Разработка математической модели объекта. Выбор закона регулирования и критерия оптимальности. Расчет параметров настройки регулятора. Анализ качества функционирования АСР.

    курсовая работа [271,1 K], добавлен 28.11.2013

  • Технологическая схема лесосушильного цеха, выбор способа сушки древесины. Разработка схемы технологического процесса сушки пиломатериалов, описание работы сушильной камеры. Технологические требования к сухим пиломатериалам, их укладка и транспортировка.

    курсовая работа [100,8 K], добавлен 10.03.2012

  • Сушка - технологический процесс, используемый в химической, фармацевтической и пищевой промышленности. Основные виды сушки. Распылительная сублимационная сушка. Эффективность применения вакуума при сушке сублимацией. Определение эвтектических температур.

    курсовая работа [4,0 M], добавлен 23.02.2011

  • Проектирования сушилки для сушки молока производительностью 800 кг/ч. Расчет теплопотерь при сушке на 1 кг испаренной влаги. Расчет сушильного процесса в распылительной башне. Экономия расходов по сравнению с сушкой без предварительного обезвоживания.

    курсовая работа [730,0 K], добавлен 19.11.2014

  • Классификация сушилок по способу подвода тепла, уровню давления сушильного агента в рабочем пространстве сушильной камеры, применяемому сушильному агенту. Принцип работы барабанных сушилок. Графоаналитический расчет процесса сушки в теоретической сушилке.

    курсовая работа [3,0 M], добавлен 26.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.