Диэлектрические потери

Расчет диэлектрических потерь для параллельной и последовательной схем соединения. Диэлектрические потери в газах, в жидких и твердых диэлектриках. Особенности диэлектрических потерь в квазиаморфных веществах с ионной структурой, неорганических стеклах.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 09.12.2015
Размер файла 518,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Кыргызской республики

Кыргызский Государственный Технический Университетим. И. Раззакова

Факультет: Энергетический

Кафедра: Возобновляемые источники энергии

Реферат

По дисциплине: Электротехнические материалы

На тему: Диэлектрические потери

Бишкек 2014

Введение

Все вещества по электрическим свойствам условно делятся на три группы - проводники, диэлектрики и полупроводники. Диэлектрики отличаются от других веществ прочными связями электрических положительных и отрицательных зарядов, входящих в их состав. Вследствие этого электроны и ионы не могут свободно перемещаться под влиянием приложенной разности потенциалов. В отличие от диэлектриков в проводниках электрического тока электрические заряды не имеют таких связей, поэтому в проводниках электроны могут свободно перемещаться, создавая явление электрического тока. Практически в диэлектриках в силу ряда причин всегда имеется некоторое количество слабо связанных зарядов, способных перемещаться внутри вещества на большие расстояния. Иными словами, диэлектрики не являются абсолютными непроводниками электрического тока. Однако в нормальных условиях таких зарядов в диэлектриках очень мало, и обусловленный ими электрический ток, называемый током утечки, невелик. Проводимость диэлектриков проводимости проводников. Обычно к диэлектрикам относятся вещества, имеющие удельную электрическую проводимость не больше 10-7 - 10-8 См/м, проводникам - имеющие проводимость больше 107 См/м. К диэлектрикам относятся все газы (включая пары металлов), многие жидкости, кристаллические, стеклообразные, керамические, полимерные вещества. Поскольку свойства вещества сильно зависят от его агрегатного состояния, обычно рассматривают отдельно физические явления в газообразных, жидких и твёрдых диэлектриках.

диэлектрический потеря квазиморфный

1. Основные понятия и определения

Диэлектрическими потерями называют электрическую мощность, затрачиваемую на нагрев диэлектрика, находящегося в электрическом поле.

Потери энергии в диэлектриках наблюдаются как при переменном, так и при постоянном напряжении, поскольку в технических материалах обнаруживается сквозной ток утечки, обусловленный электропроводностью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется значениями удельных объемного и поверхностного сопротивлений, которые определяют значение (рис. 1).

При воздействии переменного напряжения на диэлектрик в нем кроме сквозной электропроводности могут проявляться другие механизмы превращения электрической энергии в тепловую. Поэтому качество материала недостаточно характеризовать только сопротивлением изоляции.

В инженерной практике чаще всего для характеристики способности диэлектрика рассеивать энергию в электрическом поле используют угол диэлектрических потерь, а также тангенс этого угла.

Углом диэлектрических потерь называют угол, дополняющий до угол сдвига фаз между током и напряжением в емкостной цепи.

В случае идеального диэлектрика вектор тока в такой цепи опережает вектор напряжения на угол ; при этом угол равен нулю. Чем больше рассеивается в диэлектрике мощность, тем меньше угол сдвига фаз и тем больше угол диэлектрических потерь и значение функции .

Тангенс угла диэлектрических потерь непосредственно входит в формулу для рассеиваемой в диэлектрике мощности, поэтому практически наиболее часто пользуются этой характеристикой.

Рассмотрим схему, эквивалентную конденсатору с диэлектриком, обладающим потерями. Эта схема должна быть выбрана с таким расчетом, чтобы активная мощность, выделяемая в данной схеме, была равна мощности, рассеиваемой в диэлектрике конденсатора, а ток был бы сдвинут относительно напряжения на тот же угол, что и в рассматриваемом конденсаторе.

Поставленную задачу можно решить, заменив конденсатор с потерями идеальным конденсатором с параллельно включенным активным сопротивлением (параллельная схема) или конденсатором с последовательно включенным сопротивлением (последовательная схема). Такие эквивалентные схемы, конечно, не дают объяснения механизма диэлектрических потерь и введены только условно.

Параллельная и последовательная эквивалентные схемы представлены на рис.1. Там же даны соответствующие диаграммы токов и напряжений. Обе схемы эквивалентны друг другу, если при равенстве полных сопротивлений равны соответственно их активные и реактивные составляющие. Это условие будет соблюдено, если углы сдвига тока относительно напряжения равны и значения активной мощности одинаковы.

Рис.1 Параллельная (а) и последовательная (б) эквивалентные схемы диэлектрика с потерями и векторные диаграммы для них

Для параллельной схемы из векторной диаграммы

Для последовательной схемы:

Приравнивая выражения (2.2) и (2.4), а также (2.1) и (2.3), найдем соотношения между и между :

Для доброкачественных диэлектриков можно пренебречь значением по сравнению

с единицей в формуле (5) и считать .Выражения для мощности, рассеиваемой в диэлектрике, в этом случае будут также одинаковы для обеих схем:

где выражено в Вт; .

Следует отметить, что при переменном напряжении в отличие от постоянного емкость диэлектрика с большими потерями становится условной величиной и зависит от выбора той или иной эквивалентной схемы. Отсюда и диэлектрическая проницаемость материала с большими потерями при переменном напряжении также условна.

Для большинства диэлектриков параметры эквивалентной схемы зависят от частоты. Поэтому, определив каким-либо методом значения емкости и эквивалентного сопротивления для данного конденсатора при некоторой частоте, нельзя использовать эти параметры для расчета угла потерь на других частотах. Такой расчет справедлив только в отдельных случаях, когда эквивалентная схема имеет определенное физическое обоснование. Так, если для данного диэлектрика известно, что потери в нем определяются только потерями от сквозной электропроводности в широком диапазоне частот, то угол потерь конденсатора с таким диэлектриком может быть вычислен для любой частоты, лежащей в этом диапазоне, по формуле (1). Потери в таком конденсаторе определяются выражением:

Если же потери в конденсаторе обусловлены главным образом сопротивлением подводящих и соединительных проводов, а также сопротивлением самих электродов (обкладок), например, тонким слоем серебра в слюдяном или керамическом конденсаторе, рассеиваемая мощность в нем возрастет с частотой пропорционально квадрату частоты:

Из выражения (7) можно сделать весьма важный практический вывод: конденсаторы, предназначенные для работы на высокой частоте, должны иметь по возможности малое сопротивление как электродов, так и соединительных проводов и переходных контактов.

В большинстве случаев механизм потерь в конденсаторе сложный и его нельзя свести только к потерям от сквозной электропроводности или к потерям в контакте. Поэтому параметры конденсатора необходимо определять при той частоте, при которой он будет использован.

Диэлектрические потери, отнесенные к единице объема диэлектрика, называют удельными потерями. Их можно рассчитать по формуле:

где - объем диэлектрика между плоскими электродами, , - напряженность электрического поля, .

2. Виды диэлектрических потерь в электроизоляционных материалах

Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:

1) диэлектрические потери, обусловленные поляризацией;

2) диэлектрические потери, обусловленные сквозной электропроводностью;

3) ионизационные диэлектрические потери;

4) диэлектрические потери, обусловленные неоднородностью структуры.

3. Диэлектрические потери в газах

Диэлектрические потери в газах при напряженностях поля, лежащих ниже значения, необходимого для развития ударной ионизации молекул газов, очень малы. В этом случае газ можно рассматривать как идеальный диэлектрик.

Источником диэлектрических потерь газа может быть в основном только электропроводность, так как ориентация дипольных молекул газов при их поляризации не сопровождается диэлектрическими потерями. Как известно, все газы отличаются весьма малой проводимостью, и в связи с этим угол диэлектрических потерь у них ничтожно мал, особенно при высоких частотах. Значение  может быть вычислено по формуле:

Удельное объемное сопротивление газов порядка ,  (при отсутствии ионизации) менее .

При высоких напряжениях и чаще всего в неоднородном поле, когда напряженность в отдельных местах превосходит некоторое критическое значение, молекулы газа ионизируются, вследствие чего в газе возникают потери на ионизацию.

Ионизационные потери являются дополнительным механизмом диэлектрических потерь для твердого диэлектрика, содержащего газовые включения. Ионизация газа в таких включениях особенно интенсивно происходит при радиочастотах. На рис. 2 показано влияние газовых включений на характер изменения  с увеличением напряжения. При возрастании напряжения свыше ,  растет. При , когда газ во включениях уже ионизирован, требуется меньшая энергия на дальнейшее развитие процесса и  уменьшается.

Рис. 2 Изменение  в зависимости от напряжения для твердой изоляции с газовыми включениями

Кривую  часто называют кривой ионизации. При высоких частотах ионизация и потери в газах возрастают настолько, что это явление может привести к разогреву и разрушению изделий с газовой изоляцией, если напряжение превышает ионизационное значение.

Возникновение ионизации газа, заполняющего поры в твердой изоляции, нередко также приводит к ее разрушению. Ионизация воздуха сопровождается образованием озона и окислов азота, что в одних случаях вызывает химическое разрушение органической изоляции, содержащей газовые включения, в других - цепную реакцию окисления, инициированную бомбардировкой материала заряженными частицами.

4. Диэлектрические потери в жидких диэлектриках

Если неполярная жидкость не содержит примесей с дипольными молекулами, то потери в них обусловлены только электропроводностью. Удельная проводимость нейтральных частых жидкостей очень мала, поэтому малы и диэлектрические потери. Примером может служить тщательно очищенное от примесей нефтяное конденсаторное масло,  которого очень мал.

Полярные жидкости в зависимости от условий (температуры, частоты) могут обладать заметными потерями, связанными с дипольно-релаксационной поляризацией, помимо потерь на электропроводность. Удельная проводимость таких жидкостей при комнатной температуре составляет .

Дипольно-релаксационные потери, наблюдаемые в вязких жидкостях при переменном напряжении, особенно при высоких частотах, значительно превосходят потери на электропроводность.

Дипольно-релаксационные потери в маловязких жидкостях при низких частотах незначительны и могут быть меньше потерь на электропроводность. При радиочастотах дипольно-релаксационные потери даже в маловязкой жидкости велики и превосходят потери на электропроводность. Ввиду этого полярные жидкости не могут быть использованы при высокой частоте.

5. Диэлектрические потери в твердых диэлектриках

Диэлектрические потери в твердых диэлектриках зависят от структуры материалов. Различные твердые вещества имеют разный состав и строение; в них возможны все виды диэлектрических потерь.

Диэлектрические потери в веществах с молекулярной структурой в зависимости от вида молекул

Диэлектрики, имеющие молекулярную структуру с неполярными молекулами и не содержащие примесей, обладают ничтожно малыми диэлектрическими потерями. К таким диэлектрикам относятся сера, церезин, неполярные полимеры - полиэтилен, политетрафторэтилен, полистирол и др. Указанные вещества в связи с их малыми потерями применяют в качестве высокочастотных диэлектриков.

Твердые диэлектрики, состоящие из полярных молекул, представляют собой главным образом органические вещества, широко используемые в технике: полярные полимеры - эпоксидные компаунды, кремнийорганические и феноло-формальдегидные смолы, полиамиды (капрон), полиэтилентерефталат (лавсан), гетинакс и др. Все они благодаря присущей им дипольно-релаксационной поляризации имеют большие потери, особенно при радиочастотах.

Диэлектрические потери в веществах с ионной структурой в зависимости от особенностей упаковки ионов в решетке

В веществах с кристаллической структурой и плотной упаковкой ионов в отсутствие примесей, искажающих решетку, диэлектрические потери весьма малы. При повышенных температурах в этих веществах обнаруживаются потери на электропроводность. К веществам данного типа относятся многочисленные кристаллические неорганические соединения, имеющие большое значение в современном производстве электротехнической керамики, например, корунд, входящий в состав ультрафарфора. Примером соединений такого рода является также каменная соль, чистые кристаллы которой обладают ничтожными потерями; малейшие примеси, искажающие решетку, резко увеличивают диэлектрические потери.

К диэлектрикам, имеющим кристаллическую структуру с неплотной упаковкой ионов, относится ряд кристаллических веществ, характеризующихся релаксационной поляризацией, вызывающей повышенные диэлектрические потери. Многие из них входят в состав керамических масс, изоляторного фарфора, огнеупорной керамики и т. д.

Диэлектрические потери в квазиаморфных веществах с ионной структурой - неорганических стеклах - отличаются некоторыми особенностями. В стеклах за релаксацию ответственны слабосвязанные ионы, совершающие перескоки из одной ячейки пространственной структурной решетки в другую. Потенциальные барьеры, ограничивающие движение слабосвязанных ионов, неодинаковы вследствие локальных неоднородностей структуры стекла. Поэтому релаксационные потери в стеклах определяются широким набором времен релаксации, что приводит к расширению и некоторому сглаживанию максимумов в температурной и частотной зависимостях тангенса угла диэлектрических потерь (рис. 3).

Рис. 3 Частотная и температурная зависимости тангенса угла диэлектрических потерь для неорганического стекла: 1 - потери на электропроводность; 2 - релаксационные потери; 3 - суммарные потери

Чем больше набор времени релаксации, тем меньше значение релаксационного максимума, так как уменьшается число релаксаторов каждого типа. Сглаженные максимумы релаксационных потерь могут в значительной мере маскироваться потерями на электропроводность и не проявляться в явном виде.

При очень высоких частотах, приближающихся к частотам собственных колебаний ионов, в стеклах возможны также резонансные потери.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика перекачивающей станции "Черкассы". Технологическая схема трубопроводных коммуникаций. Объем рабочей емкости резервуаров. Потери нефтепродуктов при их хранении в резервуарном парке. Расчет потерь автомобильного бензина от "больших дыханий".

    курсовая работа [146,1 K], добавлен 19.12.2014

  • Оборудование наземных резервуаров. Расчет потерь нефтепродукта из резервуара от "больших" и "малых дыханий". Сокращение потерь нефтепродукта от испарения. Применение дисков-отражателей, газоуравнительных систем, систем улавливания легких фракций.

    курсовая работа [4,5 M], добавлен 06.08.2013

  • Свойства, структура, классы стекла. Методы получения и область применения ситаллов. Выбор состава и подготовка шихты стекла для конденсаторного ситалла. Варка и кристаллизация стекла, прессование стекломассы. Расчет диэлектрических потерь и проницаемости.

    курсовая работа [493,0 K], добавлен 24.08.2012

  • Расчет скорости потоков и потерь напора в трубопроводах. Напорная и пьезометрическая линии. Схема системы подачи и распределения воды. Получение напоров в узлах и расходов по участкам. Потери напора по кольцу. Определение гидравлического уклона.

    курсовая работа [941,3 K], добавлен 13.11.2014

  • Назначение системы управления по минимуму потерь, особенности ее применения для малых и средних двигателей, оценка эффективности. Расчет потерь в асинхронных двигателях. Методика разработки системы оптимального управления. Анализ динамических режимов.

    контрольная работа [330,9 K], добавлен 26.05.2009

  • Расчет диаметров трубопроводов, напора в трубопроводе, потерь на местные сопротивления. Выбор стандартной гидравлической машины. Потери напора на трение. Регулирование насоса дросселированием, изменением числа оборотов, изменением угла установки лопастей.

    курсовая работа [1,1 M], добавлен 19.11.2011

  • Подготовка сырьевой смеси для производства цемента; химический состав шихты для приготовления клинкера. Расчет горения топлива, материальный и теплотехнический баланс печи; потери тепла в отходящих газах и с клинкером в печах на ОАО "Сухоложский цемент".

    курсовая работа [204,7 K], добавлен 08.02.2013

  • Разработка функциональной схемы гидропривода, выбор и расчет параметров. Потери давления в местных гидравлических сопротивлениях. Выбор гидроаппаратуры и определение потерь при прохождении жидкости через аппараты. Механические и скоростные характеристики.

    курсовая работа [723,9 K], добавлен 30.03.2011

  • Расчет потерь бензина от «большого дыхания» при закачке в резервуары. Подземное и подводное хранение топлива. Характеристика средств снижения потерь нефти и нефтепродуктов: резервуары с понтонами, повышенного давления, использование дисков-отражателей.

    дипломная работа [742,6 K], добавлен 23.02.2009

  • Особенности перекачивания и хранения нефтепродуктов, основные требования к хранилищам. Типы резервуаров и их конструкции, техническая документация и обслуживание. Классификация потерь нефти от испарения при хранении в РВС, мероприятия по их сокращению.

    курсовая работа [7,7 M], добавлен 21.06.2010

  • Проектирование рекуператора. Расчёт сопротивлений на пути движения воздуха, суммарные потери. Подбор вентилятора. Расчет потерь напора на пути движения дымовых газов. Проектирование борова. Определение количества дымовых газов. Расчет дымовой трубы.

    курсовая работа [1,6 M], добавлен 17.07.2010

  • Разработка программы бурения скважины; выбор плотности и предварительной подачи насосов. Расчет гидравлических параметров промывки для начала и конца бурения, потери давления. Гидродинамические расчеты спуска колонны труб в скважину; допустимая скорость.

    курсовая работа [979,5 K], добавлен 03.11.2012

  • Методика сокращения потерь горюче-смазочных материалов, специальных жидкостей сверх установленных норм при их хранении, транспортировании и выдаче. Расчет и принятие к учету естественной убыли горюче-смазочных материалов. Потери при зачистке резервуаров.

    реферат [132,0 K], добавлен 10.02.2013

  • Характеристика и рекомендации по выбору традиционных средств сокращения потерь нефти и нефтепродуктов от испарения. Особенности применения систем улавливания легких фракций. Методика расчета сокращения потерь при применении различных технических средств.

    курсовая работа [776,6 K], добавлен 21.06.2010

  • Расчет геометрических параметров шпарильного чана. Расчет расхода греющего пара. Вычисление количества теплоты, расходуемое на нагрев туш и потери теплоты с открытой поверхности воды в чане. Масса острого и глухого пара. Баланс и потери теплоты.

    курсовая работа [417,6 K], добавлен 05.04.2011

  • Расчет потерь напора на трение в данном отрезке трубы, потерь давления на трение в трубах в магистралях гидропередачи, при внезапном расширении трубопровода. Определение необходимого диаметра отверстия диафрагмы, расхода воды в трубе поперечного сечения.

    контрольная работа [295,2 K], добавлен 30.11.2009

  • Реконструкция градирен водооборотного цикла Турбинного цеха ООО "ЛУКОЙЛ-Волгоградэнерго" Волжской ТЭЦ. Классификация и область применения градирен, принципы охлаждения. Тепловой и аэродинамический расчеты, потери воды, экономическая эффективность проекта.

    дипломная работа [785,6 K], добавлен 11.06.2015

  • Календарно-плановые расчеты. Цикловые графики узловой и общей сборки. Определение календарных опережений подачи деталей и покупных комплектующих. Длительность производственного цикла. Фактические потери рабочего времени, его эффективное использование.

    контрольная работа [26,4 K], добавлен 25.07.2009

  • Напор и полезная мощность насоса. Коэффициент полезного действия насоса. Гидравлические, объемные и механические потери энергии. Трение в подшипниках, в уплотнениях вала, потери на трение жидкости о нерабочие поверхности рабочих колес, дисковое трение.

    контрольная работа [69,8 K], добавлен 01.04.2011

  • Особенности исследования процесса потери энергии при трении с помощью экспериментальной установки, выполненной на базе универсальной машины трения модели МТУ-01. Процесс и этапы подготовки, а также порядок проведения экспериментальных исследований.

    статья [82,6 K], добавлен 26.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.