Производство пенопластов и деталей из них
Особенности технологии производства пенопластов, состав их компонентов. Основные способы введения газовой фазы в полимерную среду при производстве пенопластов. Полимеры, на основе которых изготавливают пенопласты. Маркировка и свойства пенопластов.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 19.12.2015 |
Размер файла | 20,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Введение
К настоящему времени роль пенопластов во всех областях техники трудно переоценить. Проблемы, связанные с введением их в конструкцию изделий и сооружений, технико-экономические аспекты использования пенопластов в различных отраслях народного хозяйства еще не получили достаточно полного и систематизированного освещения. Цель данного реферата - в какой-то степени рассмотреть данные вопросы. Для этого рассмотрим технологические и эксплуатационные характеристики пенопластов, а также технологические особенности их переработки.
Производство пенопластов и деталей из них
Технология производства пенопластов состоит из операций приготовления композиции, введения газовой фазы в полимерную среду (чаще всего путем вспенивания), придания вспененной массе необходимой формы с последующей ее фиксацией. Операция формообразования может предшествовать процессу вспенивания.
Приготовление композиции заключается в смешивании компонентов. В состав пенопластов могут входить полимеры или олигомеры, отвердители, катализаторы, пластификаторы, красители, стабилизаторы, наполнители, газообразователи и др. пенопласт полимер маркировка газовый
Рассмотрим основные способы введения газовой фазы в полимерную среду при производстве пенопластов.
1. Смешивание композиции, находящейся в вязкотекучем состоянии, с газом при нормальном давлении (механическое вспенивание).
Механическое вспенивание проводится в вертикальных цилиндрических аппаратах, снабженных многолопастными мешалками. В аппарат заливаются растворы полимеров или олигомеров. В нижнюю часть аппарата при работающей мешалке подается сжатый воздух. Взбитая пена через отверстия в днище аппарата сливается в формы, в которых происходит сушка и отверждение блоков полимера. Данным методом получают материалы, имеющие преимущественно открытую структуру ячеек, так как растворители, которые удаляются в процессе сушки и отверждения из стенок ячеек, разрушают их. Таким способом получают пенополивинилхлорид и пенопласты на основе карбамидных смол (мипора).
2. Насыщение композиций, находящихся в вязкотекучем состоянии (расплавы полимеров, олигомеры, пасты, сырые резиновые смеси), газом при высоком давлении.
Газом при высоком давлении насыщают расплавы полимеров, полимерные пасты и резиновые смеси. Насыщение газами (N2, СО2) проводится в автоклавах при давлении от 2 (20) до 30 МН/м2 (300 кгс/см2). Под давлением происходит растворение газа в композиции и образование насыщенного раствора. При последующем сбросе давления растворимость газа в композиции резко снижается и он начинает выделяться в виде газовых пузырьков, равномерно распределенных в объеме композиции. Путем последующего нагрева можно увеличить степень вспенивания и уменьшить кажущуюся плотность пенопласта. В зависимости от степени насыщения полимерных композиций газом и режима вспенивания можно получить пенопласты как с закрытой, так и с открытой структурой ячеек.
3. Насыщение полимерных композиций легкокипящими жидкостями, которые при нагревании превращаются в пар.
Насыщение термопластичных полимеров легкокипящими жидкостями осуществляется в процессе их получения, например при суспензионной полимеризации. Мономер и легкокипящую жидкость (изопентан, метиленхлорид) подбирают так, чтобы легкокипящая жидкость растворялась в мономере, но не растворялась в полимере. Выделение легкокипящей жидкости в виде отдельной фазы происходит в момент превращения капелек мономера в полимер, поэтому в образующихся гранулах полимера появляются вкрапления равномерно распределенных капелек легкокипящей жидкости. Кажущаяся плотность получаемого пенопласта или детали из него регулируется степенью заполнения формы гранулами или содержанием низкокипящей жидкости в гранулах.
Для получения пенопластов с более равномерной структурой во всем объеме материала или детали гранулы подвергают предварительному вспениванию. Насыпная плотность предварительно вспененных гранул должна быть равна кажущейся плотности пенопласта. Предварительно вспененными гранулами полностью заполняется форма и проводится окончательное вспенивание. Так как степень окончательного вспенивания ограничивается объемом формы, то внутри формы развивается давление 0,3…0,5 МН/м2 (3…5 кгс/см2). Формы должны быть достаточно прочными и жесткими и не должны раскрываться в процессе окончательного вспенивания.
4. Введение в композицию веществ (газообразователей или порофоров), разлагающихся при нагревании с выделением большого количества газообразных продуктов.
С помощью газообразователей получают пенопласты из термопластичных и термореактивных полимерных материалов. Газообразователи обычно растворяют в мономерах или полимер-мономерных пастах. Полученный компаунд заливают в форму и проводят его полимеризацию при температуре ниже температуры разложения газообразователя. После этого блок полимера, являющийся по форме миниатюрой будущей детали или изделия, извлекают из формы и нагревают до температуры выше температуры стеклования полимера и температуры разложения газообразователя. Под действием выделяющихся газов блок высокоэластичного полимера равномерно увеличивается во всех направлениях. В нужный момент заготовка охлаждается и процесс вспенивания прекращается. Такой способ изготовления изделий из пенопластов называется масштабным формованием.
Термореактивные полимеры смешивают с газообразователями на вальцах или в шнековых смесителях. При использовании вязких компонентов (эпоксидные смолы с отвердителями) применяют лопастные смесители. Пенопластовые полуфабрикаты получают, проводя окончательное вспенивание в замкнутых формах. Кажущаяся плотность готовых пенопластовых полуфабрикатов или деталей, как и в предыдущем способе, регулируется насыпной массой компаунда, засыпаемого в форму заданного объема.
Формы в процессе производства жестких пенопластов из термореактивных смол или из отверждающихся с помощью отвердителей полимеров сначала нагреваются до температуры перехода полуфабриката в вязкотекучее состояние и далее до температуры разложения газообразователя. После необходимой степени вспенивания нагревание продолжается до температуры отверждения смолы. Этот способ позволяет получать пенопласты с преимущественно закрытой структурой ячеек.
5. Совмещение компонентов, взаимодействующих между собой с выделением большого количества газообразных продуктов.
Этим способом получают пенополиуретаны, пенофенопласты, пенополивинилхлорид и др. Суть его состоит в том, что при смешивании компонентов некоторых заливочных компаундов, находящихся в вязкотекучем состоянии, или полимерных паст происходит выделение газообразных продуктов реакции (например СО2, Н2), вспенивающих массу. Процесс производства пенопластов из таких композиций может быть одно- и двухстадийным. Одностадийный способ предусматривает одновременное смешивание всех компонентов в смесителе и последующее вспенивание, которое начинается через 10 - 15 секунд после смешивания и длится 1 - 2 минуты. Длительность отверждения пены зависит от ее массы, химического состава, температуры и других факторов и может колебаться от нескольких часов до нескольких суток. Вспенивание и отверждение могут происходить при обычной и повышенной температуре.
При двухстадийном способе сначала изготавливают форполимер, а затем проводят вспенивание в результате взаимодействия компонентов композиции с некоторыми низкомолекулярными веществами, например с водой, и отверждение.
6. Получение заготовок прессованием из композиций, наполненных растворимыми в воде веществами, которые далее вымываются.
При этом способе можно получить заготовки или детали из термопластов и реактопластов. Сначала тщательно смешивают порошкообразный полимер с порошком растворимого вещества. Затем полученную композицию спрессовывают в монолитный блок в пресс-формах, нагреваемых до температуры плавления полимера или отверждения смолы. Блок охлаждают до комнатной температуры и помещают в нагретую воду, которая вымывает находящиеся в полимере водорастворимые вещества. После этого блок поропласта высушивают.
7. Спекание неуплотненных порошкообразных или пористых заготовок, полученных из порошков прессованием в холодных формах.
Методом спекания пористых заготовок получают поропласты из полимеров, температура плавления которых выше температуры их деструкции (например из фторопласта-4). В этом случае порошкообразный полимер уплотняют в холодных формах в таблетки определенной конфигурации и плотности. Затем таблетки спекают в печах в пористые заготовки. Порошкообразные частицы полимера соединяются друг с другом в процессе спекания только в местах их контакта.
Рассмотрим подробнее полимеры, на основе которых изготавливают пенопласты, маркировку и свойства некоторых пенопластов.
Полистирольный пенопласт
Пенополистирол (ПС) представляет собой газонаполненный термопластичный материал на основе полистирола или на основе его производных или сополимеров. В основном пенополистирол получают вспениванием полимера парами легкокипящей жидкости, например, так получают пенополистирол марок ПСБ, ПСБ-С.
Вспениванием композиций на основе полистирола с газообразователями изготавливают пенополистирол марок ПС-1, ПС-4, ПС-5 и др. Кажущаяся плотность ПС-1 - 70…200, ПС-4 - 40…65, ПС-5 марки А - менее 50, марки Б - более 50, ПСБ-С - 15…50 кг/м3. (Плотность монолитного полистирола составляет 1050 кг/м3).
Полистирольные пенопласты обладают малым водопоглощением, высокими тепло- и электроизоляционными свойствами, которые зависят от плотности. С увеличением плотности улучшаются механические характеристики, снижается показатель водопоглощения, но ухудшаются теплоизоляционные свойства.
Пенополистирол обрабатывается ручным столярным инструментом и на деревообрабатывающих станках. В нагретом состоянии плиты могут гнуться, штамповаться. Детали из пенополистирола прочно склеиваются между собой, с металлами, древесиной, пластмассами (клеи ВИАМ Б-3, БФ-2, ПУ-2). Клеи наносятся кистью или шпателем.
Недостатки полистирольных пенопластов: повышенная растворимость в большинстве органических растворителей, горючесть, низкая максимальная рабочая температура (Траб=60…70°С).
Пенопласты ПС-1, ПС-4, ПС-5 применяют как теплоизоляционный материал в холодильных установках; ПС-1, ПС-4 - в производстве спасательных и переправочных средств в качестве легкого заполнителя; ПС-1, ПС-2 - в радиотехнике в качестве радиопрозрачного материала, при изготовлении обтекателей радиолокационных станций, герметизирующих колпаков.
Пенопласты на основе кремнийорганических полимеров (пенополиорганосилоксаны)
На основе кремнийорганических полимеров получают эластичные (пенорезины или губчатые резины и пеногерметики) и жесткие пенопласты. Основной метод получения материалов и деталей - вспенивание композиций, содержащих газообразователи. Иногда полиорганосилоксановую композицию насыщают инертным газом (N2) под давлением.
Детали из эластичных пенополиорганосилоксанов после смешивания компонентов путем вальцевания формуют прессованием. Во время прессования в закрытых пресс-формах при 110…120°С происходят формообразование массы, ее частичная вулканизация, разложение газообразователя и насыщение массы газом. Далее при более высокой температуре структура пенопласта фиксируется вулканизацией.
При изготовлении деталей из жестких пенопластов компоненты (полимер, газообразователи и др.) смешиваются путем вальцевания и выпускаются в виде порошкообразного полуфабриката. При производстве деталей при 80…100°С порошок плавится, при 120…130°С происходит разложение газообразователя и начинается отверждение. При нагревании до 170°С степень отверждения достигает 20…30%. Полное отверждение происходит при 200°С за 12 часов или при 250°С за 6 часов. Линейная усадка при отверждении составляет 2…2,5%. Пенопласты на основе кремнийорганических полимеров отличаются высокой тепло- и термостойкостью. Они способны длительно (сотни часов) сохранять хорошие теплоизоляционные и диэлектрические свойства при 250°С и кратковременно (несколько часов) - при 350°С. При введение наполнителей (асбестовые волокна или молотый асбест, кварц, окислы металлов, мелкодисперсный алюминий и др.) повышается термостабильность пенопластов. Они приобретают способность выдерживать длительный нагрев при 350°С и кратковременный - при 450°С.
Пенополиорганосилоксаны обладают низкой прочностью. Для повышения их общей прочности и ударопрочности их армируют различными волокнами, с той же целью пенопласты получают из смеси кремнийорганических полимеров с эпоксидными, фенолоформальдегидными, полиуретановыми и др. смолами, но при этом снижается термостойкость, увеличивается теплопроводность и изменяются другие свойства получаемых пенопластов.
Пенопласты применяют в качестве теплоизоляционных, электроизоляционных материалов и заполнителей в конструкциях, длительно работающих при температурах 200…350°С и кратковременно - при 400…450°С, а также в абляционно-стойких покрытиях.
Пенопласты на основе кремнийорганических полимеров выпускаются в виде пеногерметиков ВПГ-1, ВПГ-2 с кажущейся плотностью 300…500 кг/м3 и в виде жестких пенопластов К-40 и К-9 с кажущейся плотностью 250…300 кг/м3.
Пенопласты на основе полиэтилена (пенополиэтилен)
В производстве пенополиэтилена обычно применяют полиэтилен низкой и высокой плотности. Вспенивание осуществляют чаще всего с помощью газообразователей и легкокипящих жидкостей. При этом получают пенопласты с кажущейся плотностью от 30…60 кг/м3 (высоковспененные) до 400…500 кг/м3 (низковспененные). Пенопласты и профильные полуфабрикаты изготавливают экструзией с одновременным или последующим вспениванием. В этом случае пенопласты имеют замкнутую структуру ячеек.
Пенополиэтилен с кажущейся плотностью 500 кг/см3 производят также насыщением композиции азотом или углекислым газом под давлением
3 МН/м2 (30 кгс/см2) при 160°С. Полученный таким способом пенопласт содержит большое количество ячеек открытой структуры.
Пористый полиэтилен с кажущейся плотностью 400…600 кг/м3 и малой газопроводностью изготавливают из композиций, наполненных водорастворимыми веществами (хлористым натрием, крахмалом и другими).
Ионизирующее излучение вызывает сшивание молекул полиэтилена с выделением водорода, вспенивающего полимер. При этом получается мелкопористый материал с кажущейся плотностью 500…600 кг/м3.
Пенополиэтилен применяют для изготовления эластичной электроизоляции, эластичных легких труб и листов, теплоизоляционных трубных элементов. Из пенополиэтилена марки ФЭП-1 с размерами пор 30…40 мкм изготавливают фильтрующие элементы, обладающие высокой химической стойкостью. Пенополиэтилен широко применяется в судостроении, автомобилестроении, строительстве и в быту как легкий звуко- и теплоизолирующий заполнитель элементов конструкций с высокими виброгасящими свойствами.
Пенопласты на основе поливинилхлорида (пенополивинилхлориды)
Пенополивинилхлорид - газонаполненный материал на основе поливинилхлорида или сополимеров винилхлорида. Для производства пенополивинилхлорида используют эмульсионный поливинилхлорид иногда смесь его с перхлорвиниловой смолой (хлорированный поливинилхлорид) или сополимеры винилхлорида с метилметакрилатом и др. Так как температура разложения (деструкции) поливинилхлорида ниже температуры его перехода в вязкотекучее состояние, то наряду со стабилизатороми обязательным компонентом смеси при производстве пенопластов являются пластификаторы (дибутилфталат, трикрезилфосфат и др.). Такие композиции называются полимер-мономерными пастами (пластизолями). Соотношение полимера, пластификатора и мономера определяет степень жесткости пенополивинилхлорида.
При производстве пенополивинилхлорида применяют большинство способов производства пенопластов, рассмотренных ранее.
Отечественной промышленностью выпускаются жесткие поливинилхлориды с замкнутой структурой ячеек ПХВ-1 с кажущейся плотностью 70…130 кг/м3, ПХВ-2 с кажущейся плотностью 130…220 кг/м3, ПВ-1 с кажущейся плотностью 50…110 кг/м3 и винипор полужесткий с открытой структурой ячеек и кажущейся плотностью 100…120 кг/м3. Пенополивинилхлориды этого типа имеют высокую химическую стойкость к действию кислот, щелочей, жидких топлив и органических растворителей, достаточно прочны и относятся к негорючим материалам (горение затухает при выносе из пламени).
Эластичные пенополивинилхлориды марок ПХВ-Э и пеноэласт имеют замкнутую структуру ячеек с кажущейся плотностью 80…300 кг/м3, а винипор - открытую структуру ячеек и кажущуюся плотность 80…180 кг/м3.
Жесткий пенополивинилхлорид с замкнутой структурой ячеек используется как конструкционный материал в деталях, узлах и агрегатах АКТ, например, для заполнения сотовых панелей, в качестве заполнителя в авиационных винтах, в качестве виброгасящих, звуко- и теплоизолирующих материалов и т.д. Из него изготавливают многие детали в судостроении, автомобилестроении, в промышленности, выпускающей изделия бытовой техники.
Эластичные пенополивинилхлориды применяются в качестве амортизаторов, упругих, мягких и звукоизолирующих прокладок, плавучих и спасательных средств.
По объему производства пенополивинилхлорид занимает третье место среди поропенопластов после пенополиуретанов и пенополистирола.
Список литературы
Режим доступа:
http://www.stkpenoplast.ru/properties.htm
http://dic.academic.ru/dic.nsf/enc_chemistry/3265/ПЕНОПЛАСТЫ
http://www.xumuk.ru/encyklopedia/2/3212.html
http://shkolazhizni.ru/archive/0/n-12749/
http://1-metr.com/470-vreden-li-penoplast.html
http://www.remonto5.ru/journal/vidi-penoplasta
Дата доступа:
27 мая 2015 года
Размещено на Allbest.ru
...Подобные документы
Понятие полимерных композиционных материалов. Требования, предъявляемые к ним. Применение композитов в самолето- и ракетостроении, использование полиэфирных стеклопластиков в автомобильной индустрии. Методы получения изделий из жестких пенопластов.
реферат [19,8 K], добавлен 25.03.2010Способы обмера и учета пиломатериалов. Маркировка и укладка лесоматериалов. Определение материалов в производстве мебели, столярно-строительных изделий. Установление маршрута обработки отдельных деталей. Сырье современного лесопильного производства.
отчет по практике [38,5 K], добавлен 10.04.2016Закономерности изменения расхода газовой фазы в зависимости от расхода жидкой фазы. Общий вид установки. Анализ процесса изменения расхода газовой фазы при операциях с малоиспаряющейся жидкостью (водой). Опыт с легкоиспаряющейся жидкостью (метанолом).
лабораторная работа [481,9 K], добавлен 10.09.2014Физико-механические свойства каучуков. Классификация резин, маркировка, ее хранение и применение. Ингредиенты, добавляемые при производстве резины и их влияние на свойства резины. Способы переработки, складирование, утилизация и захоронение отходов.
курсовая работа [54,3 K], добавлен 04.12.2012История технологии производства мыла. Основные требования к сырью и вспомогательным материалам. Сырье для мыла. Антибактериальные качества хозяйственного мыла. Современная технология приготовления мыла. Маркировка, транспортирование и хранение.
курсовая работа [225,0 K], добавлен 29.11.2011Методы получения заготовок. Производство деталей машин. Эксплуатационные свойства деталей, группы показателей. Понятия размера, формы, расположение поверхностей, твердости материалов, химический состав, шероховатость. Качество поверхностного слоя.
реферат [8,7 M], добавлен 30.01.2011Особенности процесса газовой сварки. Способы определения мощности газовой горелки, расчет параметров сварочного аппарата. Технология и способы газовой сварки, ее основные режимы и техника выполнения. Описание этапов подготовки кромок и сборка под сварку.
контрольная работа [303,8 K], добавлен 06.04.2012Характеристика и основные принципы, положенные в основу восстановления деталей с помощью пластических деформаций. Способы обработки деталей пластическим деформированием, составление их технологии и схемы, влияние на структуру и свойства металла.
реферат [2,0 M], добавлен 29.04.2010Технико-экономические показатели доменного производства. Способы улучшения качества стального слитка. Производство стали в кислородных конвертерах. Интенсификация доменного процесса. Устройство и работа мартеновской печи. Маркировка магния и его сплавов.
контрольная работа [58,8 K], добавлен 03.07.2015Разновидности каучука, особенности его применения в промышленности и технологии изготовления. Влияние введения дополнительных ингредиентов и использование вулканизации при изготовлении каучука на конечные свойства продукта. Охрана труда при работах.
дипломная работа [220,4 K], добавлен 20.08.2009Химический и минеральный состав томатов, их полезные свойства и влияние на здоровье человека. Технология производства томатного пюре, его этапы и особенности. Характеристика оборудования, применяемого в производстве, расчет его производительности.
курсовая работа [230,6 K], добавлен 22.09.2009Антикристаллизаторы, применяемые в кондитерском производстве, их назначение, состав, свойства и механизм действия. Технологическая схема получения какао тертого: выход и реологические свойства. Виды драже и халвы, технологическая схема их производства.
контрольная работа [393,0 K], добавлен 22.02.2012Определение особенностей, влияющих на качество керамзита при его производстве. Способы производства керамзита, особенности сухого, пластического, шликерного производства. Ленточные прессы для формования гранул. Пластический способ подготовки сырья.
контрольная работа [18,6 K], добавлен 28.08.2011Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.
контрольная работа [347,8 K], добавлен 17.08.2009Сырье, технология и способы производства портландцемента: мокрый, сухой и комбинированный. Твердение и свойства портландцемента, его разновидности, состав и технология получения, область применения. Расширяющиеся и безусадочные цементы, процесс активации.
курсовая работа [935,7 K], добавлен 18.01.2012Разновидности профиля арматуры. Проектирование технологии производства арматурных изделий. Производство плоских сеток и каркасов. Производство закладных деталей и монтажных петель. Компановка оборудования арматурного цеха. Состав рабочей бригады.
дипломная работа [2,1 M], добавлен 04.11.2014Определение основных требований к сырью для производства керамического кирпича. Состав и физико-химические свойства самой продукции, особенности управления качеством при ее производстве. Технологический контроль при производстве кирпича керамического.
курсовая работа [44,4 K], добавлен 28.09.2011Сырьё для производства спиртовой продукции. Состав и физико-химические свойства спирта "Люкс". Особенности управления качеством при производстве продукции. Методы определения коэффициентов весомости. Расчёт средневзвешенного арифметического показателя.
курсовая работа [92,8 K], добавлен 09.11.2014Характеристика высокопрочного и ковкого чугуна, специфические свойства, особенности строения и применение. Признаки классификации, маркировка, строение, свойства и область применения легированных сталей, требования для разных отраслей использования.
контрольная работа [110,2 K], добавлен 17.08.2009История применения красителей, номенклатура их производства, техническая и химическая классификации. Химические свойства, применение, способы и стадии промышленного производства оптических отбеливателей. Способы очистки сточных вод от красителей.
курсовая работа [412,5 K], добавлен 02.05.2011