Катодная защита

Методы защиты, основанные на изменении электрохимических свойств металла. Защита металла катодной поляризацией: история открытия, применение, обоснование эффективности. Способы катодной защиты металла от коррозии. Схема антикоррозийного устройства.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 19.12.2015
Размер файла 125,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Катодная защита

Из всех методов защиты основанных на изменении электрохимических свойств металла под действием поляризующего тока, наибольшее распространение получила защита металлов при наложении на них катодной поляризации (катодная защита). При смещении потенциала металла в сторону более электроотрицательных значений (по сравнению с величиной стационарного потенциала коррозии) скорость катодной реакции увеличивается, а скорость анодной падает. Если при стационарном потенциале соблюдалось равенство

защита металл катодный поляризация коррозия

,

то при более отрицательном значении это равенство нарушается:

причем

.

Рис. 1. Поляризационная диаграмма коррозионного процесса.

Уменьшение скорости анодной реакции при катодной поляризации эквивалентно уменьшению скорости коррозии. Коэффициент торможения при выбранном потенциале / будет равен двум

===2,

а степень защиты достигает 50%

==.

Внешний ток , необходимый для смещения потенциала до значения , представляет собой разницу между катодным и анодным токами

(его величина на рис. выражена прямой ав). По мере увеличения внешнего тока потенциал смещается в более отрицательную сторону, и скорость коррозии должна непрерывно падать. Когда потенциал корродирующего металла достигает равновесного потенциала анодного процесса , скорость коррозии делается равной нулю (), коэффициент торможения - бесконечности, а степень защиты 100%. Плотность тока, обеспечивающая полную катодную защиту, называется защитным током . Его величине на рис. соответствует отрезок cd. Величина защитного тока не зависит от особенностей протекания данной анодной реакции, в частности от величины сопровождающей ее поляризации, а целиком определяется катодной поляризационной кривой. Так, например, при переходе от водородной деполяризации к кислородной сила защитного тока уменьшается и становится равной предельному диффузному току (отрезок cd / на рис.).

Защита металла катодной поляризацией применяется для повышения стойкости металлических сооружений в условиях подземной (почвенной) и морской коррозии, а также при контакте металлов с агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью, и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии сравнительно невелик. Катодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника (катодная защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы). Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют “жертвенным анодом”.

Катодная защита обычно связана с защитой черных металлов, так как из них изготавливается подавляющая часть объектов работающих под землей и при погружении в воду, например трубопроводы, свайные основания, пирсы, эстакады, суда и др. В качестве материала для расходуемых анодов-протекторов во всем мире широко применяется магний. Обычно он используется в виде сплавов с содержанием 6% алюминия, 3% цинка и 0,2% марганца; эти добавки предотвращают образование пленок, которые снижают скорость растворения металла. Выход защитного тока всегда меньше 100%, так как магний корродирует и на нем выделяется водород. Применяется также алюминий, легированный 5% цинка, но разность потенциалов с железом для сплава значительно меньше, чем для магниевого сплава. Она близка к разности потенциалов для металлического цинка, который также применяется для защиты при условии, что путем соответствующего легирования на анодах предотвращается пленкообразование, связанное с обычным для цинка загрязнением примесями железа Выбор материала для анодов - сложная задача. В почвах или других средах низкой проводимости необходима большая разность потенциалов, поскольку падение iR между электродами весьма велико, в то время как в средах высокой проводимости возможна более экономичная для использования малая разность потенциалов. Важными переменными являются расположение электродов, рассеивающая способность среды, т. е. ее способность обеспечить одинаковую плотность тока на всех участках защищаемой поверхности, а также поляризационные характеристики электродов. Если электроды погружены в почву, которая по каким - либо причинам неприемлема, например агрессивна по отношению к анодам, то обычно практикуется окружать последние ложем из нейтрального пористого проводящего материала, называемого засыпкой.

Применение для катодной защиты метода приложения тока облегчает регулирование системы и часто дешевле, чем использование анодов - протекторов, которые, конечно, нуждаются в регулярных заменах.

На практике катодная защита редко применяется без дополнительных мероприятий. Требуемый для полной защиты ток обычно бывает чрезмерно велик, и помимо дорогостоящих электрических установок для его обеспечения следует иметь в виду, что такой ток часто будет вызывать вредный побочный эффект, например чрезмерное защелачивание. Поэтому катодная защита применяется в сочетании с некоторыми видами покрытий. Требуемый при этом ток мал и служит только для защиты обнаженных участков поверхности металла.

Что такое катодная защита металла?

Коррозия является электрохимическим процессом, образующим электрические потенциалы на участках поверхности металла с появлением при этом электрического тока (называемого в данном случае коррозионным током). Поэтому основным принципом активной катодной защиты черных металлов является защита посредством «жертвенных» электронов. Принцип заключается в том, что один металл (в данном случае - цинк) расходуется (жертвуется) для защиты другого металла (железо). Основной довод в пользу применения в качестве защитного покрытия для стали именно цинка -- то, что цинк подвергается ржавлению гораздо медленнее, нежели железо.

Существует несколько способов катодной защиты металла от коррозии:

- присоединить к «плюсу» аккумуляторной батареи защищаемый металл (подземный трубопровод), сделав его катодом;

- прикрепить к днищу корабля (или нефтепроводу) цинковую пластину, которая будет ржаветь, защищая сталь (такая пластина называется протектором, а катодная защита -- протекторной);

- покрыть цинком (анодом) защищаемую металлическую поверхность.

Последний метод защиты оказался самым эффективным и получил название -- цинкование (оцинковка). Эффект в данном случае достигается за счёт очень хорошего электрического контакта между цинком и сталью.

История открытия

Катодная защита была впервые описана сэром Гемфри Дэви в серии докладов представленных Лондонскому королевскому обществу[3] по развитию знаний о природе в 1824. После продолжительных тестов впервые катодную защиту применили в 1824 на судне HMS Samarang[4]. Анодные протекторы из железа были установлены на медную обшивку корпуса судна ниже ватерлинии, значительно снизив скорость корродирования меди. Медь, корродируя, высвобождает ионы меди, которые обладают антиобрастающим эффектом. В связи с чрезмерным обрастанием корпуса и снижением эффективности корабля, Королевский военно-морской флот Великобритании принял решение отказаться от протекторной защиты, чтобы получить преимущества отантифоулингового эффекта вследствие корродирования меди.

§ Для защиты судов от морской коррозии

§ Для стационарных нефтегазопромысловых сооружений, трубопроводов и хранилищ

§ Для подземных сооружений, трубопроводов, кабелей, и скважин

§ Для защиты стальной арматуры в железобетоне для свай, фундаментов, дорожных сооружений (в том числе горизонтальных покрытий) и зданий

§ Для защиты емкостных водонагревателей

Катодная защита от коррозии

Многим автолюбителям известно, что достаточно появиться небольшой царапине - и ржавчина начинает прямо-таки поглощать автомобиль. И бороться с ней весьма трудно. Какие только хитрости ни придумывают автомобилисты - различные покрытия, мастики, антикоры... Да вот беда: чтобы обработать с должным качеством все наиболее поражаемые места, приходится порой разбирать весь автомобиль. Такая операция занимает немало времени, да и требует постоянного контроля. Кроме того, в процессе эксплуатации происходит постепенное разрушение покрытий. Из-за вибраций при движении появляются микротрещины, под ударами камней или песка краска откалывается. Поэтому вполне понятно желание автомобилистов приобрести чудо-прибор: один раз потратился и навсегда защитил кузов от ржавчины.

Метод катодной защиты от коррозии уже давно применяется на самых разнообразных объектах. Например на кораблях устанавливают специальные протекторы, которые, растворяясь в морской вода, обеспечивают защиту корпуса судна. Подземные трубопроводы перед укладкой обрабатывают антикоррозийными составами и обматывают специальной лентой. На определенном расстоянии от трубопровода закапывают анод (электрод) - металлическую болванку, к которой подключают "плюс" источника постоянного тока, а к самой трубе - "минус". Благодаря разности потенциалов между электродом и защищаемым металлом в цепи образующегося электролита (влага, соль и т.п.) проходит ток. На аноде происходит освобождение электронов - реакция окисления, и саморастворение катода прекращается [1, 2].

При катодной поляризации металлу нужно сообщить такой отрицательный потенциал, при котором его окисление становится термодинамически маловероятным. Для железа и его сплавов полная защита от коррозии достигается при потенциале 0,1...0,2 В. Дальнейший сдвиг потенциала мало влияет на степень защиты. Плотность защитного тока должна быть в пределах 10...30 мА/м2.

Кроме того, со временем на металле за счет концентрационной поляризации по кислороду наблюдается дополнительное смещение потенциала в отрицательную сторону, что позволяет периодически выключать устройство (при ремонте автомобиля, зарядке аккумулятора и т.п.).

Устройство защиты от коррозии состоит из электронного блока и защитных электродов. На корпусе электронного блока размещают световую индикацию работы устройства.

Устройство позволяет поддерживать значение потенциала влажных участков поверхности кузова на уровне, необходимом для полной остановки и прекращения коррозийных процессов за счет разрушения защитных электродов.

В качестве защитных электродов (анодов) могут использоваться как разрушающиеся материалы (нержавеющая сталь, алюминий), требующие замены через 4...5 лет, так и неразрушающиеся. В качестве неразрушающихся электродов можно применять карбоксил, магнетит, графит или платину. Защитные электроды выполняются в виде прямоугольных либо круглых пластин площадью 4...9 см2.

На рисунке приведена схема простого антикоррозийного устройства, которое может успешно справляться с явлениями коррозии. Конечно, в простейшем виде устройство катодной защиты может состоять из защитных электродов и проводов, подключаемых непосредственно на "плюсовую" клемму аккумулятора. Однако здесь трудно контролировать возможное короткое замыкание электродов с кузовом автомобиля и его работу в целом. Для этого в устройстве в цепь делителя напряжения R1, R2, R3 включен светодиод VD1, который в рабочем режиме светится ровным светом, потребляя незначительный ток от аккумулятора (около 2 мА).

Если вдруг один из защитных электродов замыкается на кузов автомобиля, светодиод VD1 прекращает светиться. В этом случае необходимо найти и устранить замыкание. При повышенной влажности кузова светодиод VD1 может в небольших пределах изменять свое свечение, что указывает на работу катодной защиты. Кроме того, данное устройство имеет высокую надежность, поскольку дает при коротком замыкании выхода с кузовом ток перегрузки не более 25...30мА.

При установке и монтаже устройства следует помнить, что:

- один защитный электрод защищает площадь с радиусом около 0,25...0,35 м;

- защитные электроды устанавливаются только на места, защищенные лакокрасочным покрытием;

- использовать можно только эпоксидный клей или шпатлевку на его основе;

- наружную сторону защитных электродов (где нет пайки) нельзя покрывать мастикой, краской, клеем или другим электроизоляционным покрытием.

Электронный блок устанавливается в любом месте автомобиля и присоединяется к общей схеме электрооборудования автомобиля. При этом необходимо, чтобы электронный блок оставался включенным даже при отключенном общем электрооборудовании автомобиля.

В целом устройство потребляет не больше чем часы автомобиля и гарантирует длительную эффективную работу даже при сильно разряженном аккумуляторе.

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение механизма протекторной защиты от коррозии, ее преимуществ и недостатков. Построение схемы протекторной защиты. Определение параметров катодной защиты трубопровода, покрытого асфальтобитумной изоляцией с армированием из стекловолокна.

    контрольная работа [235,4 K], добавлен 11.02.2016

  • Способы получения алюминия. История открытия металла. Разложение электрическим током окиси алюминия, предварительно расплавленной в криолите. Механическая обработка, применение металла в производстве. Изучение его электропроводности, стойкости к коррозии.

    презентация [420,5 K], добавлен 14.02.2016

  • Эксплуатационные работы по защите газопроводов от коррозии. Требования к органическим изолирующим покрытиям. Типы и виды наиболее широко применяемых покрытий. Расчет катодной защиты, подбор катодной станции. Биокоррозия и средства защиты от неё.

    курсовая работа [199,3 K], добавлен 24.03.2009

  • Факторы, оказывающие негативное воздействие на состояние погружных металлических конструкций. Электрохимический метод предотвращения коррозии глубинно-насосного оборудования. Защита от коррозии с помощью ингибирования. Применение станций катодной защиты.

    курсовая работа [969,5 K], добавлен 11.09.2014

  • Метод защиты подземных сооружений от электрохимической коррозии. Трансформаторные подстанции выше 1 кВ. Станции катодной защиты инверторного типа. Контрольно-измерительные пункты. Анодное заземление. Техническое обслуживание и ремонт воздушных линий.

    курсовая работа [3,0 M], добавлен 22.01.2014

  • Сущность и основные причины появления коррозии металла, физическое обоснование и этапы протекания. Ее разновидности и отличительные свойства: химическая, электрохимическая. Способы защиты от коррозии, используемые технологии и материалы, ингибиторы.

    презентация [734,6 K], добавлен 09.04.2015

  • Конструкция сталеразливочных ковшей. Характеристика устройства для регулирования расхода металла и установок для продувки стали инертным газом. Вакуумирование металла в выносных вакуумных камерах. Продувка жидкого металла порошкообразными материалами.

    реферат [987,2 K], добавлен 05.02.2016

  • Конструктивная защита от коррозии деревянных конструкций. Этапы нанесения поверхностной защиты, применяемые материалы. Средства, защищающие древесину от биологического воздействия, гниения, поражений насекомыми и возгорания. Выбор антисептика для защиты.

    реферат [50,7 K], добавлен 19.12.2012

  • Особенности сгибания заготовок из тонколистового металла в тисках и при помощи оправок, поочередность всех операций, характеристика инструментов. Анализ типичных дефектов при гибке металла. Этапы гибки прямоугольной скобы и металла круглого сечения.

    презентация [399,9 K], добавлен 16.04.2012

  • Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

    контрольная работа [79,3 K], добавлен 12.12.2011

  • Агрегатные состояния вещества: твёрдое, жидкое и газообразное; переход между ними. Термодинамические условия и схема кристаллизации металла. Свободная энергия металла в жидком и твердом состоянии. Энергия металла при образовании зародышей кристалла.

    контрольная работа [1,5 M], добавлен 12.08.2009

  • Наиболее значимые для человека свойства металлов. Место металла в культурном развитии человечества. Использование различных свойств металла современным человеком. Значение металлопроката в отраслях промышленности. Круг отрезной для резки металла.

    презентация [8,7 M], добавлен 22.01.2014

  • Требования к качеству материалов труб для газопроводов. Определение параметров трещиностойкости основного металла. Исследование механических свойств металла трубы опытной партии после полигонных пневмоиспытаний. Протяжённые вязкие разрушения газопроводов.

    дипломная работа [4,7 M], добавлен 24.01.2013

  • Металл для прокатного производства. Подготовка металла к прокатке. Зачистка слитков, полуфабрикатов. Нагрев металла перед прокаткой. Прокатка металла. Схемы косой, продольной и поперечной прокатки. Контроль технологических операций охлаждения металла.

    реферат [60,6 K], добавлен 04.02.2009

  • Классификация, особенности и механизм возникновения влажной атмосферной коррозии. Конденсация влаги на поверхности корродирующего металла. Влажность воздуха как один из главных факторов образования коррозии. Методы защиты от влажной атмосферной коррозии.

    реферат [1,1 M], добавлен 21.02.2013

  • Почвенная коррозия - разрушение металла под воздействием агрессивной почвенной среды, ее механизм. Защита газопроводов от коррозии: пассивная и активная. Определение состояния изоляции подземных трубопроводов. Расчет количества сквозных повреждений.

    реферат [1,5 M], добавлен 04.04.2015

  • Установки без принудительного перемешивания, с электромагнитным перемешиванием в ковше и с дополнительным подогревом металла. Вакуумирование стали в ковше. Порционный и циркуляционный способы вакуумирования. Комбинированные методы обработки металла.

    курсовая работа [31,1 K], добавлен 15.06.2011

  • Понятие, классификация и механизм атмосферной коррозии металлов. Описание основ процесса конденсации влаги на поверхности металла. Особенности и факторы влажной атмосферной коррозии металлов. Изучение основных методов защиты от влажной коррозии.

    контрольная работа [422,9 K], добавлен 21.04.2015

  • Механизм коррозии металлов в кислотах, средах, имеющих ионную проводимость. Коррозионная активность серной кислоты. Применение противокоррозионных защитных покрытий. Выбор материала для изготовления емкости хранения. Расчет катодной защиты трубопровода.

    курсовая работа [2,3 M], добавлен 08.04.2012

  • Различные режимы термомеханической обработки стали. Поверхностное упрочнение стальных деталей. Закалка токами высокой частоты. Газопламенная закалка и старение металла. Обработка стали холодом. Упрочнение металла методом пластической деформации.

    презентация [546,9 K], добавлен 14.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.