Принцип работы электрического гайковерта
Применение электрического гайковерта для механизированной сборки, затяжки и разборки резьбовых соединений при монтаже и демонтаже строительных конструкций. Вращение от электродвигателя через планетарный редуктор. Бытовое использование гайковерта.
Рубрика | Производство и технологии |
Вид | практическая работа |
Язык | русский |
Дата добавления | 20.12.2015 |
Размер файла | 150,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Калужский колледж информационных технологий и управления
Практическая работа
"Принцип работы электрического гайковерта"
Панин И.
Калуга 2015
Применение электрического гайковерта.
Электрические гайковерты применяют для механизированной сборки, затяжки и разборки резьбовых соединений при монтаже и демонтаже строительных конструкций, трубопроводов, вентиляционных систем и оборудования. Рабочим органом гайковертов служит сменный наконечник с внутренним шестигранником (ключ), надеваемый на гайку или головку болта. Ключ соединяется со шпинделем жестко или шарнирно. Гайковерты с шарнирным ключом предназначены для ведения сборочных работ в стесненных и труднодоступных местах (например, при монтаже трубопроводов). Затяжка резьбового соединения происходит при сообщении ключу ударных импульсов от ударного механизма машины с определенной энергией и частотой. В зависимости от реализуемой частоты ударов различают редко-ударные гайковерты с частотой ударов до 3 с-1и частоударные с частотой ударов свыше 3 сг 1.
Частоударные гайковерты предназначены для завинчивания и затяжки неответственных резьбовых соединений общего назначения, редкоударные - для тарированной затяжки (до заданного момента) высокопрочных ответственных и средней прочности соединений, а также высокопрочных болтов. Главным параметром редкоударных гайковертов являются энергиям удара (Дж) и частота ударов (с-1), частоударных - максимальный момент затяжки (Нм) и время, затяжки (с).
Частоударные гайковерты унифицированы, имеют единую конструктивную схему и отличаются друг от друга размерами ключей, типом и мощностью приводного двигателя. Они предназначены для затяжки резьбовых соединений диаметром до 20 мм и развивают момент затяжки до 125...320 Нм.
Частоударные гайковерты применяют для сборки соединений с наибольшим диаметром резьбы 12...22 мм, развивают момент затяжки 125...250 Н-м при частоте вращения шпинделя 16...19 с-1 и потребляемой мощности 270...390 Вт; масса машин 3,5...4,5 кг.
Принцип действия и строение.
Рис. 8.7 Электрический частоударный гайковерт.
Вращение от электродвигателя 10 (рис. 8.7) через планетарный редуктор 9 передается приводному валу 6 ударно-вращательного механизма. Вал связан с подпружиненным ударником 5 посредством двух шариков 4, находящихся в винтовых канавках обеих деталей. На торцовой поверхности ударника симметрично расположены два кулачка, входящие в зацепление с кулачками шпинделя 2 под действием рабочей пружины 7. На квадратном хвостовике шпинделя крепятся сменные головки /.
В начале завинчивания гайки (болта), когда развиваемый гайковертом момент расходуется только на преодоление трения в резьбовой паре, кулачки ударника находятся в постоянном зацеплении с кулачками шпинделя 2, обеспечивая его непрерывное вращение. По мере возрастания сопротивления на ключе при достижении торцом головки гайки (болта) неподвижной поверхности (т. е. при его стопорении) ударник перемещается по винтовым канавкам относительно вала, сжимая пружину 7 до тех пор, пока его кулачки не выйдут из зацепления с кулачками шпинделя. Затем ударник ускоренно возвращается под действием пружины в исходное положение. При своем поступательном движении вдоль оси вала по винтовым канавкам ударник приобретает определенную угловую скорость и, догоняя кулачки шпинделя, наносит по ним удар, в результате чего происходит затяжка резьбового соединения.
Удары наносятся периодически до выключения двигателя. Процесс затяжки осуществляется за ПО...200 ударов, причем энергия изменяется от удара к удару. Продолжительность затяжки составляет не более 5 с.
При разборке резьбовых соединений реверсируют работу двигателя гайковерта путем переключения фаз штепсельного соединения. Гайковерт снабжен двумя рукоятками - основной 12 со встроенным выключателем и вспомогательной 8. Рукоятки соединены с корпусом 3 посредством упругих элементов 11 виброзащиты. Контроль момента затяжки при работе с частоударными гайковертами осуществляется оператором субъективно во время работы.
Каждый частоударный гайковерт состоит из корпуса, электродвигателя с вентилятором, планетарного одноступенчатого редуктора, ударно-вращательного механизма, виброизолированной основной рукоятки со встроенным выключателем и устройством для подавления радиопомех и дополнительной съемной рукоятки.
Несмотря на существование большого количества разновидностей гайковертов, они объединены схожей схемой строения и принципом работы. Внешне гайковерт напоминает пистолет, состоящий из ручки и ствола, внутри которого встроен функциональный механизм, включающий двигатель, пружину и, наконец, зажимной патрон. Некоторые разработчики сравнивают гайковерт с дрелью, от которой его отличает небольшое конструктивное различие, суть которого заключается в том, что в отличие от дрели, гайковерт снабжен не сверлом, а удлиняющей насадкой, предназначенной для зажима гайки. электрический гайковерт строительный
Включая гайковерт, вы запускаете подачу энергии на двигатель, который в процессе работы передает рабочую энергию на редуктор, заставляющий функционировать патрон.
Инструменты, в функциональные возможности которых входит откручивание гаек, снабжены дополнительной пружиной, обеспечивающей обратное вращение патрона, что позволяет расширить функционал инструмента. В зависимости от размеров отверстия в патронах, гайковерты различаются в соответствии со сферой их применения:
· Гайковерты, снабженные патроном с отверстием Ѕ дюйма, подходят для бытового использования;
· Гайковерты с отверстиями патрона 3/4 и 1 дюйм уместны в процессе строительства или в автомобильной мастерской.
Размещено на Allbest.ru
...Подобные документы
Разработка технологического процесса сборки двухступенчатого цилиндрического редуктора, предназначенного для передачи исполнительному механизму крутящего момента. Расчет усилий запрессовки, затяжки резьбовых соединений, расчет сборочных размерных цепей.
курсовая работа [1,2 M], добавлен 25.02.2010Геометрия и кинематика резьбовых соединений. Силы в резьбовых соединениях, передача энергии и стопорение. Применение резьбовых крепежных деталей. Достоинства и недостатки резьбовых соединений. Основные геометрические параметры метрической резьбы.
презентация [764,3 K], добавлен 25.08.2013Технологический процесс сборки штампа, предназначенного для серийного производства деталей. Расчет усилий запрессовки и усилий затяжки резьбовых соединений. Расчет сборочных размерных цепей. Подбор оборудования и оснастки, нормирование сборочных операций.
курсовая работа [1,8 M], добавлен 25.02.2010Допуски и посадки гладких цилиндрических соединений. Посадки шпоночных, шлицевых и резьбовых соединений. Выбор и обоснование метода достижения точности сборки узла. Обоснование допусков формы, расположения и шероховатости поверхностей зубчатого колеса.
курсовая работа [2,0 M], добавлен 14.06.2009Определение сборочных и монтажных узлов для машины, схем строповки и расчет стропов распределителя шихты. Разработка технологии сборки резьбовых соединений. Выбор метода контроля за силами предварительной затяжки. Расчет систем пластичной и жидкой смазки.
курсовая работа [671,3 K], добавлен 23.07.2013Устройство и применение редуктора для ленточного транспортера, определение силовых и кинематических параметров привода. Расчет требуемой мощности электродвигателя и выбор серийного электродвигателя. Расчет зубчатых колес, валов, шпоночных соединений.
курсовая работа [1,4 M], добавлен 24.03.2013Разработка варианта реконструкции печного толкателя. Выполнение расчетов энергосиловых параметров привода, зубчатой передачи, подшипников, шпоночных соединений, затяжки резьбовых соединений, смазки. Расчет линейного графика реконструкции и сметы расходов.
курсовая работа [2,1 M], добавлен 11.01.2016Принцип действия и техническая характеристика водонагревателя электрического НЭ-1А. Расчет производительности аппарата. Тепловой баланс аппарата. Основные технические показатели работы водонагревателя. Расчет кинематического коэффициента теплоотдачи.
курсовая работа [108,3 K], добавлен 17.06.2011Сравнительная оценка прочности сварного стыкового и нахлёстного соединений стальных полос, нагруженных силами растяжения. Расчет межосевого расстояния редуктора, силы затяжки болта крепления зубчатого колеса. Определение мощности и угловой скорости вала.
контрольная работа [410,6 K], добавлен 23.10.2012Проектирование систем пластичной и жидкой смазки. Составление инструкции слесарю по сборке резьбовых соединений. Расчет соединений с гарантированным натягом. Разработка линейного графика сборки редуктора механизма передвижения заливочного крана.
курсовая работа [117,3 K], добавлен 28.04.2012Особенности кинематического и энергетического расчёта привода электродвигателя. Редуктор, расчет его передач и валов, эскизная компоновка, смазка и сборка. Специфика определения размеров зубчатых колес и корпуса. Проверка прочности шпоночных соединений.
курсовая работа [624,1 K], добавлен 30.11.2009Планетарный редуктор, проектировочный расчет, расчет зацепления. Конструирование и расчет на прочность валов и осей, оси сателлитов, основного вала ТВД. Расчет и выбор подшипников, шлицевых соединений, болтового соединения, смазка механизма.
дипломная работа [163,5 K], добавлен 21.03.2011История развития электрического привода. Функции и виды сверлильных станков. Выбор мощности приводного электродвигателя, аппаратуры управления и защиты, питающего кабеля. Разработка схемы электрических соединений. Описание заземления электрооборудования.
курсовая работа [489,0 K], добавлен 27.03.2014Понятие и функции резьбовых соединений, их классификация и разновидности, условия и возможности практического применения, оценка преимуществ и недостатков. Крепежные детали. Усилия на затянутом соединении, принципы их расчета. Заклепочные соединения.
презентация [1,1 M], добавлен 24.02.2014Выбор электродвигателя и кинематический расчет, определение мощностей и передаваемых крутящих моменты. Проектный и проверочный расчеты передачи. Подбор и проверочный расчет муфт, подшипников, шпоночных соединений. Описание сборки и регулировки редуктора.
курсовая работа [2,5 M], добавлен 24.09.2014Кинематический и эмпирический расчёт привода станции. Расчет валов редуктора, выбор подшипников и электрического двигателя. Расчет шпонок и подбор муфты. Определение размеров корпусных деталей, кожухов и рамы. Описание сборки основных узлов привода.
курсовая работа [29,7 K], добавлен 15.09.2010Выбор электродвигателя. Расчет тихоходной и быстроходной ступени прямозубых цилиндрических передач. Размеры элементов корпуса и крышки редуктора. Проверка долговечности подшипников, прочности шпоночных соединений. Технологический процесс сборки редуктора.
курсовая работа [493,3 K], добавлен 03.06.2015- Разработка требований по обеспечению взаимозаменяемости соединений узла планетарного редуктора В-150
Расчеты посадок цилиндрического, резьбового, шпоночного соединений планетарного редуктора. Определение исполнительных размеров калибров и скоб для измерения точности посадочных поверхностей. Подбор класса точности для зубчатого колеса, подшипника.
курсовая работа [793,1 K], добавлен 02.01.2014 Системы измерительных механизмов, применяющихся на самолетах и вертолетах. Методы автоматического уравновешивания компенсаторов. Принцип измерения различных параметров электрического тока низкой частоты. Принцип работы стробоскопического осциллографа.
контрольная работа [50,8 K], добавлен 09.03.2013Определение зазоров и натягов в гладком цилиндрическом соединении. Расчет и выбор предельных калибров редуктора, посадок соединений с подшипниками качения, резьбовых соединений, посадок на шлицевые соединения с прямобочным и эвольвентным профилем.
курсовая работа [247,9 K], добавлен 21.02.2016