Процессы и аппараты переработки нефти и газа
Использование абсорбции для извлечения из газовой смеси какого-либо компонента. Изучение равновесия между фазами. Основные химические процессы, применяемые в нефтегазопереработке и нефтехимии. Особенность коэффициента полезного действия трубчатой печи.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.01.2016 |
Размер файла | 35,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ОАО «ГАЗПРОМ»
НОУ СПО «НОВОУРЕНГОЙСКИЙ ТЕХНИКУМ ГАЗОВОЙ ПРОМЫШЛЕННОСТИ»
Отделение ЗФО
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «ПРОЦЕССЫ И АППАРАТЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА»
2013-2014 учебный год
1. Абсорбция. Равновесие между фазами. Закон Генри
Абсорбция
Абсорбция- поглощение веществ из газовой смеси жидкостями. В технике обычно пользуются для извлечения из газовой смеси какого-либо компонента. При абсорбции абсорбент поглощает всем своим объёмом. Скорость абсорбции зависит от того, насколько концентрация поглощаемого газа в газовой смеси превосходит концентрацию этого компонента над раствором. Если концентрация растворяемого компонента в газовой смеси меньше его концентрации над жидкостью, растворяемый компонент выделяется из раствора. Абсорбция часто сопровождается химическим взаимодействием поглощаемого вещества с поглотителем. Абсорбция улучшается с повышением давления и понижением температуры.
На абсорбции основаны многие важнейшие промышленные процессы, например производство азотной, соляной и серной кислот (поглощение водой газообразных двуокиси азота, хлористого водорода и серного ангидрида), производство соды (абсорбции углекислого газа), очистка отходящих промышленных газов от вредных примесей (сероводорода, сернистого ангидрида, окиси углерода, углекислого газа и др.), извлечение углеводородных газов и примесей, а также выделение индивидуальных углеводородов. Абсорбцию осуществляют на абсорбционных установках, основным аппаратом в которых служит абсорбер.
Равновесие между фазами.
Фазой называется макроскопическая физическая однородная часть вещества, отделенная от остальных частей системы границами раздела, так что она может быть извлечена из системы механическим путем.
Допустим, например, что в закрытом сосуде заключена некая масса воды, над которой находится смесь воздуха с водяными парами. Эта система является двухфазной. Она состоит из двух фаз: жидкой (вода) и газообразной (смесь воздуха с водяными парами). Если бы воздуха не было, то в системе также было бы две фазы: жидкая (вода) и газообразная (водяные пары). Бросим в воду кусочки льда. Система превратится в трехфазную и будет состоять из твердой фазы (лед), жидкой (вода) и газообразной (смесь воздуха с водяными парами). Добавим к воде некоторое количество спирта. Число фаз не изменится, так как вода смешивается со спиртом, образуя физически однородную жидкость. Однако, если воде добавить ртуть, то последняя не смешивается с водой, и получается система с двумя жидкими фазами: ртутью и водой. Газообразная фаза по-прежнему будет одна; она состоит из смеси воздуха, паров воды и паров ртути. Бросив в воду кусочки поваренной соли, получим систему с двумя твердыми фазами: льдом и твердой поваренной солью.
При подсчете числа фаз не имеет значение, является ли та или иная фаза единым телом или состоит из нескольких частей, отделенных одна от другой.
Так, капельки тумана в воздухе образуют вместе с ним двухфазовую систему, состоящую из жидкой фазы (вода) и газообразной фазы (смесь воздуха с водяными парами). В системе может быть несколько твердых или жидких фаз. Но она не может содержать более одной газообразной фазы, так как все газы смешиваются между собой.
Условие равновесия фаз химически однородного вещества.
Условие равновесия фаз можно получить из теорем термодинамики. При равновесии системы температуры и давления всех фаз ее одинаковы. Если их поддерживать постоянным, то термодинамический потенциал системы можеттолько убывать. При равновесии он принимает минимальное значение.
Условием равновесия фаз является равенство их удельных термодинамических потенциалов.
Закон Генри.
Закон Генри описывает процесс растворения газа в жидкости. Что представляет собой жидкость, в которой растворен газ, мы знаем на примере газированных напитков -- безалкогольных, слабоалкогольных, а по большим праздникам -- шампанского. Во всех этих напитках растворена двуокись углерода (химическая формула CO2) -- безвредный газ, используемый в пищевой промышленности по причине его хорошей растворимости в воде, а пенятся после открытия бутылки или банки все эти напитки по той причине, что растворенный газ начинает выделяться из жидкости в атмосферу, поскольку после открытия герметичного сосуда давление внутри падает.
Собственно, закон Генри констатирует достаточно простой факт: чем выше давление газа над поверхностью жидкости, тем труднее растворенному в ней газу высвободиться. И это совершенно логично с точки зрения молекулярно-кинетической теории, поскольку молекуле газа, чтобы вырваться на свободу с поверхности жидкости, нужно преодолеть энергию соударений с молекулами газа над поверхностью, а чем выше давление и, как следствие, число молекул в приграничной области, тем сложнее растворенной молекуле преодолеть этот барьер.
Закон Генри объясняет и другое свойство шипучих напитков -- характерную пену, которая так и стремится выплеснуться наружу после того, как вы открыли бутылку газировки или (если повезет) шампанского. Чтобы закачать в напиток побольше газа, производители нарочно закупоривают бутылки и банки под большим приповерхностном давлении, а в шампанском оно и вовсе нагнетается само в процессе ферментации и естественного выделения двуокиси углерода внутри бутылки.
Когда вы дергаете за кольцо банки или открываете бутылку, углекислый газ, находящийся внутри под высоким давлением, производит характерный хлопок или шипение. Давление над поверхностью жидкости стремительно падает, уравниваясь с атмосферным давлением, и молекулы CO2 начинают беспрепятственно выделяться из напитка, в котором были растворены, в результате чего напиток пузырится и пенится. Рано или поздно растворенный углекислый газ выделится из жидкости практически весь, направленное к поверхности давление растворенного в жидкости CO2 сравняется с атмосферным, и напиток перестанет пениться и пузыриться. Вот почему шипучие напитки в откупоренном виде выдыхаются -- и достаточно быстро.
2. Примеры химических процессов, применяемых в нефтегазопереработке и нефтехимии
Ректификация (от позднелатинского rectificatio - выпрямление, исправление), один из способов разделения жидких смесей, основанный на различном распределении компонентов смеси между жидкой и паровой фазами. При Ректификации потоки пара и жидкости, перемещаясь в противоположных направлениях (противотоком), многократно контактируют друг с другом в специальных аппаратах (ректификационных колоннах), причём часть выходящего из аппарата пара (или жидкости) возвращается обратно после конденсации (для пара) или испарения (для жидкости). Такое противоточное движение контактирующих потоков сопровождается процессами теплообмена и массообмена, которые на каждой стадии контакта протекают (в пределе) до состояния равновесия; при этом восходящие потоки пара непрерывно обогащаются более летучими компонентами, а стекающая жидкость - менее летучими. При затрате того же количества тепла, что и при дистилляции, ректификация позволяет достигнуть большего извлечения и обогащения по нужному компоненту или группе компонентов. Ректификация широко применяется как в промышленном, так и в препаративном и лабораторном масштабах, часто в комплексе с другими процессами разделения, такими, как абсорбция, экстракция и кристаллизация.
Абсорбция (лат. absorptio -- поглощение, от absorbeo -- поглощаю), поглощение веществ из газовой смеси жидкостями. В технике абсорбция обычно пользуются для извлечения из газовой смеси какого-либо компонента. Поглощение, точнее извлечение из жидкости какого-либо компонента жидкостью ранее также называлось абсорбция; ныне такой процесс именуют экстракцией. При абсорбции абсорбент поглощает всем своим объёмом. Скорость абсорбции зависит от того, насколько концентрация поглощаемого газа в газовой смеси превосходит концентрацию этого компонента над раствором. Если концентрация растворяемого компонента в газовой смеси меньше его концентрации над жидкостью, растворяемый компонент выделяется из раствора. Абсорбция часто сопровождается химическим взаимодействием поглощаемого вещества с поглотителем. Абсорбция улучшается с повышением давления и понижением температуры.
На Абсорбции основаны многие важнейшие промышленные процессы, например производство азотной, соляной и серной кислот (поглощение водой газообразных двуокиси азота, хлористого водорода и серного ангидрида), производство соды (Абсорбция углекислого газа), очистка отходящих промышленных газов от вредных примесей (сероводорода, сернистого ангидрида, окиси углерода, углекислого газа и др.), извлечение углеводородных газов и примесей (например, т. н. газового бензина, газов крекинга и пиролиза), а также выделение индивидуальных углеводородов. Абсорбцию осуществляют на абсорбционных установках, основным аппаратом в которых служит абсорбер.
Адсорбция (от лат. ad - на, при и sorbeo - поглощаю), поглощение количества вещества из газообразной среды или раствора поверхностным слоем жидкости или твёрдого тела. Например, если поместить в водный раствор уксусной кислоты кусочек угля, то произойдёт адсорбция - количество кислоты в растворе уменьшится, молекулы кислоты сконцентрируются на поверхности угля. Адсорбция и абсорбция - поглощение в объёме тела, объединяются общим термином сорбция. Явление Адсорбция стало изучаться со 2-й половины 18 в. , хотя несомненно, что в практической деятельности человечества адсорбция использовалась с незапамятных времён. Учение об адсорбции является частью более общей теории многокомпонентных гетерогенных систем, основы которой заложены У. Гиббсом (1876). Явление адсорбции тесно связано с особыми свойствами вещества в поверхностном слое, например, молекулы, лежащие на поверхности раздела фаз жидкость - пар, втягиваются внутрь жидкости, т. к. испытывают большее притяжение со стороны молекул, находящихся в объёме жидкости, чем со стороны молекул пара, концентрация которых во много раз меньше концентрации жидкости. Это внутреннее притяжение заставляет поверхность сокращаться и количественно характеризуется поверхностным натяжением. По той же причине молекулы какого-либо другого вещества, оказавшиеся вблизи поверхности, притянутся к ней и произойдёт адсорбция. После адсорбции внутреннее притяжение частично компенсируется притяжением со стороны адсорбционного слоя и поверхностное натяжение уменьшается. Гиббс вывел формулу, связывающую значение адсорбции с изменением поверхностного натяжения. Те вещества, адсорбция которых сильно уменьшает поверхностное натяжение, принято называть поверхностно-активными.
Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое из объёмной фазы - адсорбатом. В зависимости от характера взаимодействия между молекулой адсорбата и адсорбентом адсорбцию принято подразделять на физическую адсорбцию и хемосорбцию. Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия, которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует чёткой границы между физикой адсорбцией и хемосорбцией.
Дистилляция (от лат. distillatio -- стекание каплями), перегонка, разделение жидких смесей на отличающиеся по составу фракции. Процесс основан на различии температур кипения компонентов смеси. В зависимости от физических свойств компонентов разделяемых жидких смесей применяют различные способы дистилляции: - Простая - Фракционная дистилляция (дробная перегонка) - Равновесная дистилляция (однократное испарение) - Дистилляция в токе водяного пара или инертных газов - Молекулярная дистилляция. абсорбция газовый рубчатый печь
Экстракция (от позднелат. extractio -- извлечение), экстрагирование, процесс разделения смеси жидких или твёрдых веществ с помощью избирательных (селективных) растворителей (экстрагентов).
Процесс экстракции включает 3 последовательные стадии: смешение исходной смеси веществ с экстрагентом; механическое разделение (расслаивание) двух образующихся фаз; удаление экстрагента из обеих фаз и его регенерацию с целью повторного использования. После механического разделения получают раствор извлекаемого вещества в экстрагенте (экстракт) и остаток исходного раствора (рафинат) или твёрдого вещества. Выделение экстрагированного вещества из экстракта и одновременно регенерация экстрагента производится дистилляцией, выпариванием, кристаллизацией, высаливанием и т. п.
Достоинствами экстракции являются низкие рабочие температуры, рентабельность извлечения веществ из разбавленных растворов, возможность разделения смесей, состоящих из близкокипящих компонентов, и азеотропных смесей, возможность сочетания с другими технологическими процессами (ректификацией, кристаллизацией), простота аппаратуры и доступность её автоматизации. Недостатком экстракции в ряде случаев является трудность полного удаления экстрагента из экстрагируемых веществ.
Кристаллизация, образование кристаллов из паров, растворов, расплавов, вещества в твёрдом состоянии (аморфном или другом кристаллическом), в процессе электролиза и при химических реакциях. Кристаллизация приводит к образованию минералов. Кристаллизация воды играет важную роль в атмосферных и почвенных явлениях. Кристаллизация лежит в основе металлургии, получения полупроводниковых, оптических, пьезоэлектрических и других материалов, плёнок для микроэлектроники, металлических покрытий, широко используется в химической, пищевой, медицинской промышленности (очистка веществ, производство удобрений, соли, сахара, химикалиев, лекарств).
3. Коэффициент полезного действия (КПД) трубчатой печи
Коэффициент полезного действия печи
Коэффициентом полезного действия (к. п. д.) всякой тепловой установки называется отношение количества полезно использованного тепла к количеству затраченного. В применении к отопительным печам полезно использованное тепло представляет собой тепло, отданное в помещение, а затраченное тепло то, которое можно было бы получить при полном сгорании топлива.
Количество того и другого тепла подсчитать нетрудно. Допустим, что за сутки печь отдала в помещение около 24000 ккал тепла, а тепло, содержащееся в затраченном топливе, составляет 34000 ккал. Тогда коэффициент полезного действия печи будет равен отношению 24000/34000 = 0,7. Печь не могла отдать помещению все 34000 ккал, потому что часть тепла была унесена в трубу с дымовыми газами, температура которых достигает не менее 120--140°С, а другая часть осталась в топливе провалившимся в зольник, третью часть составили потери тепла вследствие неполного сгорания топлива.
Коэффициент полезного действия современных отопительных печей составляет в среднем 0,7. Эта величина может быть достигнута при умелом и внимательном ведении топки, когда топливо в течение всего периода топки закрывает всю колосниковую решетку печи, когда подача необходимого количества воздуха для горения топлива регулируется большим или меньшим открыванием поддувальной дверки.
Однако в тех случаях, когда печь неисправна или неправильно ведется топка, коэффициент полезного действия печи будет не выше 0,5--0,6.
Задача
Выполнить расчет коэффициента полезного действия печи - это показатель эффективности использования тепла сжигаемого в ней топлива.
Исходные данные
Исходные данные |
||
9 |
||
Температура продукта на входе в печь, t1, оС |
135 |
|
Температура продукта на выходе из печи, t2, оС |
160 |
|
Объемный расход продукта, Vпр, м3/час |
355 |
|
Объемный расход газообразного топлива, Vт.г., м3/час |
175 |
|
Относительная плотность продукта, |
0,656 |
|
Компонентный состав топливного газа, % |
37,07 |
|
СН4 |
||
С2Н6 |
49,61 |
|
С3Н8 |
11,28 |
|
С4Н10 |
3,05 |
|
С5Н12 |
1,99 |
|
Компонентный состав дымовых газов |
1,993 |
|
углекислый газ, СО2 |
||
азот, N2 |
1,328 |
|
кислород, О2 |
1,398 |
|
Объемная теплоемкость дымовых газов |
32,07 |
|
ССО2 |
||
СО2 |
1,6 |
|
СN2 |
66,33 |
Решение
1. Тепловой баланс печи для определения КПД:
2. Определение тепла, вносимого в печь:
где:
- теплота сгорания топлива, мДж/м3;
Vтг - объемный расход топливного газа, м3/час.
3. Определение количества теплоты, получаемой при сгорании 1 м3 топлива, мДж/м3:
где:
СН4, С2Н6, С3Н8, С4Н10, С5Н12 - содержание компонентов топливного газа, %.
4. Определение теоретического объема воздуха, необходимого для сгорания 1м3 газообразного топлива, м3/м3:
где - коэффициент
5. Определение тепла, воспринятого циркулирующей жидкостью в змеевиках печи:
где:qпол - тепло, воспринятое циркулирующей жидкостью, мДж/м3;
qух - тепло, уносимое дымовыми газами, мДж/м3.
6. Определение тепла, воспринятого сырьем:
где:
Gпр - расход сырья, кг/час;
Itн - энтальпия циркулирующей жидкости на входе, кДж/кг;
Itк - энтальпия циркулирующей жидкости на выходе, кДж/кг.
7. Расчет энтальпии сырья по эмпирической формуле Крега:
где:
Т - температура циркулирующей жидкости на входе/выходе, К.
Т1=319К, Т2=387К
8. Определение относительной плотность сырья, :
9. Определение температурной поправки, , к плотности сырья:
10. Определение массового расход сырья, кг/ч
где:
Vпр - объемный расход продукта, м3/час
11. Определение объемной теплоемкости дымовых газов:
где:
СґСО2, СґN2, СґО2 - объемная теплоемкость дымовых газов.
12. Определение тепла, уносимого дымовыми газами, мДж/м3
где:
Vгт - объем уходящих газов, м3/час;
Ср - объемная теплоемкость дымовых газов, кДж/м3;
t - температура дымовых газов, °С.
13. Определение тепловых потерь:
14. Определение КПД печи:
Литература
1. Скобло А.И., Молоканов Ю.К., Владимиров А.И., Щелкунов В.А. Процессы и аппараты нефтегазопереработки и нефтехимии
2. Владимиров А.И., Молоканов Ю.К., Скобло А.И., Щелкунов В.А. Процессы и аппараты нефтегазопереработки и нефтехимии
3. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии: учеб.пособие для вузов. М.: Альянс, 2007. 576 с.
4. Сугак А.В. Оборудование нефтеперерабатывающего производства: учеб.пособие. М.: Академия, 2012. 336 с.
5. 6 Фарамазов С.А. Оборудование нефтеперерабатывающих заводов и его эксплуатация: учеб.пособие для техникумов. 2-е изд., перераб. и доп. М.: Химия Фетисов Г. П. ,Гарифуддин Ф.А. Материаловедение и технология металлов: учебник. М.: Оникс, 2007. 624 с.
6. 7 Эксплуатация оборудования и объектов газовой промышленности: учеб.пособие. В 2-х т. Т.1. М.: Инфра- Инженерия, 2008. 1216 с.
Размещено на Allbest.ru
...Подобные документы
Тепловой баланс трубчатой печи. Вычисление коэффициента ее полезного действия и расхода топлива. Определение диаметра печных труб и камеры конвекции. Упрощенный аэродинамический расчет дымовой трубы. Гидравлический расчет змеевика трубчатой печи.
курсовая работа [304,2 K], добавлен 23.01.2016Классификация трубчатых печей и их назначение. Состав нефти и классификация. Аппаратурное оформление вертикально-цилиндрической печи. Тепловой баланс трубчатой печи. Расчет коэффициента полезного действия и расхода топлива. Расчет камеры конвекции.
курсовая работа [1,0 M], добавлен 08.04.2014Процессы и аппараты нефтепереработки и нефтехимии; приборы для сжигания топлива. Назначение трубчатых печей, конструкция, теплотехнические показатели. Расчет процесса горения: КПД печи, тепловая нагрузка, расход топлива; расчет камер радиации и конвекции.
курсовая работа [122,1 K], добавлен 06.06.2012Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.
курсовая работа [71,9 K], добавлен 13.06.2012Назначение и основные характеристики огневых нагревателей. Расчет процесса горения топлива, расчет коэффициента полезного действия и расхода топлива, тепловой баланс и выбор типоразмера трубчатой печи. Упрощенный аэродинамический расчет дымовой трубы.
курсовая работа [439,0 K], добавлен 21.06.2010Физико-химические основы абсорбции. Аппараты, в которых проводят процессы абсорбции, их классификация. Расход поглотителя, температура процесса и количество отводимой теплоты. Скорость подачи газа и поглотителя, подбор типа тарелок, размеров аппарата.
курсовая работа [186,8 K], добавлен 18.12.2009Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.
контрольная работа [25,1 K], добавлен 02.05.2011Определение полезной тепловой нагрузки на выходе из печи. Расчет процесса горения: теплотворной способности топлива, теоретического расхода воздуха, состава продуктов горения. Коэффициент полезного действия печи и топки. Вычисление конвекционной секции.
курсовая работа [155,1 K], добавлен 10.12.2014Способы производства клинкера. Расчет горения топлива, выход газообразных продуктов горения. Определение материального баланса печи и теплового баланса холодильника. Технологический коэффициент полезного действия печи, газообразные продукты на выходе.
курсовая работа [114,7 K], добавлен 26.01.2014Классификация нефтей и варианты переработки. Физико-химические свойства Тенгинской нефти и ее фракций, влияние основных параметров на процессы дистилляции, ректификации. Топливный вариант переработки нефти, технологические расчеты процесса и аппаратов.
курсовая работа [416,8 K], добавлен 22.10.2011Общая характеристика и классификация массообменных процессов, их использование в промышленности. Схема абсорбции с рециркуляцией жидкости и газа. Зависимость растворимости некоторых газов в жидкостях. Тепловой эффект растворения газа, его измерение.
контрольная работа [1,8 M], добавлен 22.05.2012Поточная схема переработки нефти по топливному варианту. Назначение установок АВТ, их принципиальная схема, сырье и получаемая продукция. Гидрогенизационные процессы переработки нефтяных фракций. Вспомогательные производства нефтеперерабатывающего завода.
отчет по практике [475,9 K], добавлен 22.08.2012Процессы ректификации нефти и продуктов ее переработки. Основные области промышленного применения ректификации. Равновесие между парами и жидкостями. Классификация оборудования для ректификации. Основные фракции нефти. Схема колпачковой тарелки.
курсовая работа [333,3 K], добавлен 21.09.2015Назначение, принцип работы и техническая характеристика трубчатой вращающейся печи кальцинации. Быстроизнашиваемые детали, химические и механические свойства втулки. График профилактического ремонта и составление предварительной дефектной ведомости.
курсовая работа [889,7 K], добавлен 15.09.2010Характеристика нефти по ГОСТ Р 51858-2002 и способы ее переработки. Выбор и обоснование технологической схемы атмосферно-вакуумной трубчатой установки (АВТ). Расчет количества и состава паровой и жидкой фаз в емкости орошения отбензинивающей колонны.
курсовая работа [1,3 M], добавлен 07.09.2012Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.
контрольная работа [208,4 K], добавлен 11.06.2013Главные функции, выполняемые горном доменной печи. Скорость реакции горения топлива, диффузия молекул кислорода в пограничный слой. Количество образующейся окиси углерода, температура и концентрация кислорода в газовой фазе. Окислительные зоны печи.
контрольная работа [145,7 K], добавлен 11.09.2013Глубокая осушка углеводородных газов: адсорбционная и абсорбционная. Извлечения тяжёлых углеводородов: абсорбционное; низкотемпературная сепарация и конденсация. Изучение процессов извлечения гелия, стабилизации и переработки газовых конденсатов.
курсовая работа [149,8 K], добавлен 30.05.2013Процессы разложения плавильных материалов. Процессы восстановления в доменной печи: термодинамика и кинетика восстановления оксидов. Влияние разных факторов на параметры этого процесса и их связь с технико-экономическими показателями доменной плавки.
контрольная работа [826,4 K], добавлен 30.07.2011Расчет процесса горения в трубчатой печи пиролиза углеводородов. Конструктивная схема печи. Поверочный расчет радиантной и конвективной камеры. Гидравлический и аэродинамический расчеты. Определение теоретического и практического расхода окислителя.
курсовая работа [460,1 K], добавлен 13.05.2011