Железоуглеродистые сплавы. Диаграмма состояния железо–углерод
Характеристика и применение сплавов стали и чугуна в металлических основах современной техники. Структуры и компоненты железоуглеродистых сплавов. Первичный, вторичный и третичный цементиты - фазы, определяющие их свойства; процессы структурообразования.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 07.02.2016 |
Размер файла | 161,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Железоуглеродистые сплавы. Диаграмма состояния железо - углерод
Содержание
1. Структуры железоуглеродистых сплавов
2. Компоненты и фазы железоуглеродистых сплавов
3. Процессы при структурообразовании железоуглеродистых сплавов
4. Структуры железоуглеродистых сплавов
1. Структуры железоуглеродистых сплавов
Железоуглеродистые сплавы - стали и чугуны - важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых более чем в десять раз.
Диаграмма состояния железо - углерод дает основное представление о строении железоуглеродистых сплавов - сталей и чугунов.
Начало изучению диаграммы железо - углерод положил Чернов Д.К. в 1868 году. Чернов впервые указал на существование в стали критических точек и на зависимость их положения от содержания углерода.
Диаграмма железо - углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит - . Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму - по частям. Так как на практике применяют металлические сплавы с содержанием углерода до , то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего углерода. Диаграмма состояния железо - цементит представлена на рис. 1.
Рис. 1. Диаграмма состояния железо - цементит
2. Компоненты и фазы железоуглеродистых сплавов
Компонентами железоуглеродистых сплавов являются железо, углерод и цементит.
1. Железо - переходный металл серебристо-светлого цвета. Имеет высокую температуру плавления - 1539oС 5oС.
В твердом состоянии железо может находиться в двух модификациях. Полиморфные превращения происходят при температурах 911oС и 1392oС. При температуре ниже 911oС существует с объемно-центрированной кубической решеткой. В интервале температур 911…1392oС устойчивым является с гранецентрированной кубической решеткой. Выше 1392oС железо имеет объемно-центрированную кубическую решетку и называется или высокотемпературное . Высокотемпературная модификация не представляет собой новой аллотропической формы. Критическую температуру 911oС превращения обозначают точкой , а температуру 1392oС превращения - точкой А4.
При температуре ниже 768oС железо ферромагнитно, а выше - парамагнитно. Точка Кюри железа 768oС обозначается А2.
Железо технической чистоты обладает невысокой твердостью (80 НВ) и прочностью (предел прочности - , предел текучести - ) и высокими характеристиками пластичности (относительное удлинение - , а относительное сужение - ). Свойства могут изменяться в некоторых пределах в зависимости от величины зерна.
Железо характеризуется высоким модулем упругости, наличие которого проявляется и в сплавах на его основе, обеспечивая высокую жесткость деталей из этих сплавов.
Железо со многими элементами образует растворы: с металлами - растворы замещения, с углеродом, азотом и водородом - растворы внедрения.
2. Углерод относится к неметаллам. Обладает полиморфным превращением, в зависимости от условий образования существует в форме графита с гексагональной кристаллической решеткой (температура плавления - 35000С, плотность - 2,5 г/см3) или в форме алмаза со сложной кубической решеткой с координационным числом равным четырем (температура плавления - 50000С).
В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом и в виде химического соединения - цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах).
3. Цементит (Fe3C) - химическое соединение железа с углеродом (карбид железа), содержит 6,67% углерода.
Аллотропических превращений не испытывает. Кристаллическая решетка цементита состоит из ряда октаэдров, оси которых наклонены друг к другу.
Температура плавления цементита точно не установлена (1250, 1550oС). При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 217oС.
Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Такие свойства являются следствием сложного строения кристаллической решетки.
Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов: азотом, кислородом; атомы железа - металлами: марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.
Цементит - соединение неустойчивое и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.
В системе железо - углерод существуют следующие фазы: жидкая фаза, феррит, аустенит, цементит.
1. Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.
2. Феррит (Ф) (C) - твердый раствор внедрения углерода в -железо.
Феррит имеет переменную предельную растворимость углерода: минимальную - 0,006% при комнатной температуре (точка Q), максимальную - 0,02% при температуре 727oС (точка P). Углерод располагается в дефектах решетки.
При температуре выше 1392oС существует высокотемпературный феррит () ( (C), с предельной растворимостью углерода 0,1 % при температуре 1499o С (точка J)
Свойства феррита близки к свойствам железа. Он мягок (твердость - 130 НВ, предел прочности -) и пластичен (относительное удлинение -), магнитен до 768o С.
3. Аустенит (А) (С) - твердый раствор внедрения углерода в -железо.
Углерод занимает место в центре гранецентрированной кубической ячейки.
Аустенит имеет переменную предельную растворимость углерода: минимальную - 0,8% при температуре 727oС (точка S), максимальную - 2,14% при температуре 1147oС (точка Е).
Аустенит имеет твердость 200…250 НВ, пластичен (относительное удлинение - ), парамагнитен.
При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.
4. Цементит - характеристика дана выше.
В железоуглеродистых сплавах присутствуют фазы: цементит первичный (ЦI), цементит вторичный (ЦII), цементит третичный (ЦIII). Химические и физические свойства этих фаз одинаковы. Влияние на механические свойства сплавов оказывает различие в размерах, количестве и расположении этих выделений. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении - вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.
3. Процессы при структурообразовании железоуглеродистых сплавов
железоуглеродистый сталь чугун цементит
Линия АВСD - ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллизация аустенита, на участке СD - кристаллизация цементита первичного.
Линия AHJECF - линия солидус. На участке АН заканчивается кристаллизация феррита (). На линии HJB при постоянной температуре 14990С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (), в результате чего образуется аустенит:
На участке JЕ заканчивается кристаллизация аустенита. На участке ECF при постоянной температуре 1147oС идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3% углерода превращается в эвтектическую смесь аустенита и цементита первичного:
Эвтектика системы железо - цементит называется ледебуритом (Л), по имени немецкого ученого Ледебура, содержит 4,3% углерода.
При температуре ниже 727oС в состав ледебурита входят цементит первичный и перлит, его называют ледебурит превращенный (ЛП).
По линии HN начинается превращение феррита () в аустенит, обусловленное полиморфным превращением железа. По линии NJ превращение феррита () в аустенит заканчивается.
По линии GS превращение аустенита в феррит, обусловленное полиморфным превращением железа. По линии PG превращение аустенита в феррит заканчивается.
По линии ES начинается выделение цементита вторичного из аустенита, обусловленное снижением растворимости углерода в аустените при понижении температуры.
По линии МО при постоянной температуре 768oС имеют место магнитные превращения.
По линии PSK при постоянной температуре 727oС идет эвтектоидное превращение, заключающееся в том, что аустенит, содержащий 0,8% углерода, превращается в эвтектоидную смесь феррита и цементита вторичного:
По механизму данное превращение похоже на эвтектическое, но протекает в твердом состоянии.
Эвтектоид системы железо - цементит называется перлитом (П), содержит 0,8% углерода.
Название получил за то, что на полированном и протравленном шлифе наблюдается перламутровый блеск.
Перлит может существовать в зернистой и пластинчатой форме, в зависимости от условий образования.
По линии PQ начинается выделение цементита третичного из феррита, обусловленное снижением растворимости углерода в феррите при понижении температуры.
Температуры, при которых происходят фазовые и структурные превращения в сплавах системы железо - цементит, т.е. критические точки, имеют условные обозначения.
Обозначаются буквой А (от французского arret - остановка):
А1 - линия PSK (7270С) - превращение П А;
A2 - линия MO (7680С, т. Кюри) - магнитные превращения;
A3 - линия GOS (переменная температура, зависящая от содержания углерода в сплаве) - превращение Ф А;
A4 - линия NJ (переменная температура, зависящая от содержания углерода в сплаве) - превращение ;
Acm - линия SE (переменная температура, зависящая от содержания углерода в сплаве) - начало выделения цементита вторичного (иногда обозначается A3).
Так как при нагреве и охлаждении превращения совершаются при различных температурах, чтобы отличить эти процессы вводятся дополнительные обозначения. При нагреве добавляют букву с, т.е , при охлаждении - букву r, т.е. .
4. Структуры железоуглеродистых сплавов
Все сплавы системы железо - цементит по структурному признаку делят на две большие группы: стали и чугуны.
Особую группу составляют сплавы с содержанием углерода менее 0,02% (точка Р), их называют техническое железо. Микроструктуры сплавов представлены на рис. 2. Структура таких сплавов после окончания кристаллизации состоит или из зерен феррита (рис. 2 а), при содержании углерода менее 0,006%, или из зерен феррита и кристаллов цементита третичного, расположенных по границам зерен феррита (рис. 2.б), если содержание углерода от 0,006 до 0,02%.
Рис.2. Микроструктуры технического железа: а - содержание углерода менее 0,006%; б - содержание углерода 0,006…0,02%
Углеродистыми сталями называют сплавы железа с углеродом, содержащие 0,02…2,14% углерода, заканчивающие кристаллизацию образованием аустенита.
Они обладают высокой пластичностью, особенно в аустенитном состоянии.
Структура сталей формируется в результате перекристаллизации аустенита. Микроструктуры сталей представлены на рис. 3.
Рис. 3. Микроструктуры сталей: а - доэвтектоидная сталь ; б - эвтектоидная сталь (пластинчатый перлит); в - эвтектоидная сталь (зернистый перлит); г - заэвтектоидная сталь .
По содержанию углерода и по структуре стали подразделяются на доэвтектоидные , структура феррит + перлит (рис. 3 а); эвтектоидные , структура перлит (П), перлит может быть пластинчатый или зернистый (рис. 3 б и 3 в); заэвтектоидные структура перлит + цементит вторичный (П + ЦII), цементитная сетка располагается вокруг зерен перлита.
По микроструктуре сплавов можно приблизительно определить количество углерода в составе сплава, учитывая следующее: количество углерода в перлите составляет 0,8%, в цементите - 6,67%. Ввиду малой растворимости углерода в феррите, принимается, что в нем углерода нет.
Сплавы железа с углеродом, содержащие углерода более 2,14% (до 6,67%), заканчивающие кристаллизацию образованием эвтектики (ледебурита), называют чугунами.
Наличие легкоплавкого ледебурита в структуре чугунов повышает их литейные свойства.
Чугуны, кристаллизующиеся в соответствии с диаграммой состояния железо - цементит, отличаются высокой хрупкостью. Цвет их излома - серебристо-белый. Такие чугуны называются белыми чугунами.
Микроструктуры белых чугунов представлены на рис. 4.
Рис. 4. Микроструктуры белых чугунов: а - доэвтектический белый чугун ; б - эвтектический белый чугун (Л); в - заэвтектический белый чугун .
По количеству углерода и по структуре белые чугуны подразделяются на: доэвтектические , структура перлит + ледебурит + цементит вторичный ; эвтектические , структура ледебурит (Л) (рис. 4б); заэвтектические , структура ледебурит + цементит первичный (рис. 4 в).
В структуре доэвтектических белых чугунов присутствует цементит вторичный, который образуется в результате изменения состава аустенита при охлаждении (по линии ES). В структуре цементит вторичный сливается с цементитом, входящим в состав ледебурита.
Фазовый состав сталей и чугунов при нормальных температурах один и тот же, они состоят из феррита и цементита. Однако свойства сталей и белых чугунов значительно различаются. Таким образом, основным фактором, определяющим свойства сплавов системы железо - цементит является их структура.
Литература
1. Богодухов С.И. Курс материаловедения в вопросах и ответах: Учеб. пособие для ВУЗов, обуч. по направлению подгот. бакалавров «Технология, оборуд. и автомат. машиностр. пр-в» и спец. «Технология машиностроения», «Металлорежущие станки и инструменты» и др. / С.И. Богодухов, В.Ф. Гребенюк, А.В. Синюхин. - М.: Машиностроение, 2003. - 255с.: ил.
2. Дриц М.Е., Москалев М.А. Технология конструкционных материалов и материаловедение: Учеб. для студентов немашиностроительных спец. ВУЗов. - М.: Высшая школа, 1990. - 446с., ил.
3. Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для студентов электротехнических и электромеханических спец. ВУЗов / С.Н. Колесов, И.С. Колесов. - М. Высшая школа, 2004. - 518с.: ил.
4. Лахтин Ю.М., Леонтьева В.Н. Материаловедение. Учебник для ВУЗов технич. спец. - 3-е изд. - М. Машиностроение, 1990. - 528с.
5. Материаловедение и технология конструкционных материалов. Учебник для ВУЗов / Ю.П. Солнцев, В.А. Веселов, В.П. Демьянцевич, А.В. Кузин, Д.И. Чашников. - 2-е изд., перер., доп. - М. МИСИС, 1996. - 576с.
6. Материаловедение и технология металлов: Учебник для ВУЗов по машиностроительным специальностям / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин и др. - М.: Высшая школа, 2000. - 637с.: ил.
7. Материаловедение. Технология конструкционных материалов: учебное пособие для студентов ВУЗов, обуч. по напр. «Электротехника, электромеханика и электротехнологии» / А.В. Шишкин и др.; под ред. В.С. Чередниченко. - 3-е изд., стер. - М.: ОМЕГА-Л, 2007. - 751с.: ил.(Высшее техническое образование).- (Учебное пособие)
8. Материаловедение: Учебник для ВУЗов, обучающих по направлению подготовки и специализации в области техники и технологии / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др. - 5-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. - 646с.: ил.
9. Тарасов В.Л. Технология конструкционных материалов: Учеб. для ВУЗов по спец. «Технология деревообработки» / Моск. гос. ун-т леса. - М.: Изд-во Моск. гос. ун-т леса, 1996. - 326с.: ил.
10. Технология конструкционных материалов. Учебник для студентов машиностроительных специальностей ВУЗов в 4 ч. Под ред. Д.М. Соколова, С.А. Васина, Г.Г Дубенского. - Тула. Изд-во ТулГУ. - 2007.
11. Технология конструкционных материалов: Учебник для студентов машиностроительных ВУЗов / А.М. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др.; Под общ. ред. А.М. Дальского. - 5-е изд., испр. - М. Машиностроение, 2003. - 511с.: ил
Размещено на Allbest.ru
...Подобные документы
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Диаграмма состояния Fe–Fe3C. Компоненты и фазы железоуглеродистых сплавов, процессы при их структурообразовании. Состав и компоненты структуры стали и чугуна.
презентация [6,3 M], добавлен 14.10.2013Железоуглеродистые сплавы - стали и чугуны, как важнейшие металлические сплавы, их химический состав и основные компоненты. Фазы в железоуглеродистых сплавах. Свойства и использование цементита. Структурные составляющие в железоуглеродистых сплавах.
контрольная работа [347,8 K], добавлен 17.08.2009Критические точки в стали, зависимость их положения от содержания углерода. Диаграмма состояния железоуглеродистых сплавов, фазы и структурные составляющие: линии, точки концентрации, температуры; анализ фазовых превращений при охлаждении стали и чугуна.
реферат [846,6 K], добавлен 30.03.2011Понятие о железоуглеродистых сплавах. Структурные составляющие ферри, цементита, аустенита, ледебури. Содержание углерода в перлите. Диаграмма состояния железоуглеродистых сплавов. Система железо-цементит, графит. Линия солидуса кристаллизация сплавов.
презентация [1,3 M], добавлен 14.11.2016Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".
курсовая работа [1,6 M], добавлен 19.03.2013Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.
контрольная работа [780,1 K], добавлен 13.01.2010Микроструктура и углеродистых сталей в отожженном состоянии, зависимость между их строением и механическими свойствами. Изучение диаграммы состояния железо - углерод. Кривая охлаждения сплавов. Структура белого, серого, высокопрочного и ковкого чугуна.
презентация [1,5 M], добавлен 21.12.2010Первичная кристаллизация сплавов системы железо-углерод. Расшифровка марки стали У12А, температура полного и неполного отжига, закалки, нормализации. Влияние легирующих элементов на линии диаграммы Fe-Fe3C, на термическую обработку и свойства стали.
курсовая работа [1,4 M], добавлен 16.05.2015Диаграмма стабильного равновесия железо–углерод и процесс образования в чугуне графита – графитизация. Связь структуры чугуна с его механическими свойствами. Особенности маркировки серого чугуна, его основные разновидности и область применения.
контрольная работа [847,3 K], добавлен 17.08.2009Свойства и атомно-кристаллическое строение металлов. Энергетические условия процесса кристаллизации. Строение металлического слитка. Изучение связи между свойствами сплавов и типом диаграммы состояния. Компоненты и фазы железоуглеродистых сплавов.
курсовая работа [871,7 K], добавлен 03.07.2015Железоуглеродистые сплавы, физические и химические свойства, строение, полиморфные превращения; производство чугуна и доменный процесс. Термическая обработка стали: отжиг, отпуск, закалка. Медь и её сплавы, область применения, оксиды и гидрооксиды.
курсовая работа [1,6 M], добавлен 17.10.2009Основные характеристики кристаллической решетки. Скорость охлаждения при закалке и факторы влияющие на выбор скорости. Диаграмма состояния системы медь-серебро. Свойства сплавов в данной системе. Диаграмма состояния железо-углерод и ее описание.
курсовая работа [545,6 K], добавлен 13.11.2008Общие понятия анализа диаграммы состояния железоуглеродистых сплавов, исследование свойства фаз и структурных составляющих. Технология построения кривых охлаждения и нагрева сплавов, определение составов фаз и расчет их количественного соотношения.
лабораторная работа [242,2 K], добавлен 01.12.2011Физико-химические основы термической и химико-термической обработки материалов. Структуры и превращения в системе железо-углерод. Защитно-пассивирующие неорганические и лакокрасочные покрытия. Основы строения вещества. Кристаллизация металлов и сплавов.
методичка [1,2 M], добавлен 21.11.2012Улучшение эксплуатационных и технологических свойств металлического материала благодаря сплаву металлов. Фазы металлических сплавов. Диаграммы фазового равновесия. Состояние сплавов с неограниченной растворимостью компонентов в твердом состоянии.
реферат [82,8 K], добавлен 31.07.2009Роль стали в машиностроении. Коррозия железоуглеродистых сплавов. Факторы, определяющие возникновение скачка потенциала между металлом и раствором. Сущность понятия "коррозия". Способы решения проблемы коррозии металлов. Производство стали и чугуна.
реферат [23,5 K], добавлен 26.01.2010Обзор состава простых конструкционных сталей. Получение чугуна и легированных сталей. Характерные особенности медно-никелевых сплавов. Применение алюминиевых бронз, нейзильбера, мельхиора в народном хозяйстве. Механические свойства сплавов меди с цинком.
презентация [3,3 M], добавлен 06.04.2014Характерные особенности диаграммы железо-углерод. Обработка металлов давлением: ковка, штамповка, прокатка, прессование. Правила работы с электролитом для кислотных аккумуляторов. Понятие системы электросвязи, канала связи. Радиостанция Моторола Р040.
контрольная работа [959,0 K], добавлен 11.10.2010Применение деформируемых алюминиевых сплавов в народном хозяйстве. Классификация деформируемых алюминиевых сплавов. Свойства деформируемых алюминиевых сплавов. Технология производства деформируемых алюминиевых сплавов.
курсовая работа [62,1 K], добавлен 05.02.2007Изучение методики построения диаграмм состояния металлических сплавов. Исследование физических процессов и превращений, протекающих при кристаллизации сплавов. Виды термической обработки. Анализ влияния температуры на растворимость химических компонентов.
контрольная работа [4,4 M], добавлен 21.11.2013