Качество измерений
Точность, достоверность, правильность, сходимость, воспроизводимость и погрешность измерений как основные характеристики их качества. Причины возникновения погрешностей результатов измерений, их главные типы. Главные критерии классификации измерений.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 06.02.2016 |
Размер файла | 17,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
Высшего профессионального образования
"Сибирский государственный индустриальный университет"
Прокопьевский филиал
РЕФЕРАТ
по дисциплине "Метрология, стандартизация и сертификация"
на тему "Качество измерений"
Прокопьевск
2015
Содержание
- Введение
- 1. Классификация измерений
- 2. Погрешности измерений
- Список литературы
Введение
Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью, воспроизводимостью и погрешностью измерений.
Точность - это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям как систематическим, так и случайным. Точность количественно оценивают обратной величиной модуля относительной погрешности. Например, если погрешность измерений равна 0,05%, то точность будет равна 1/0,0005 = 2000.
Достоверность измерений характеризует степень доверия результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ.
Правильность измерений - качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.
Сходимость - качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях. Сходимость измерений отражает влияние случайных погрешностей.
Воспроизводимость - это такое качество измерений, которое отражает близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами).
Погрешность измерения - отклонение результата измерения от истинного (действительного) значения измеряемой величины. Погрешность измерений представляет собой сумму ряда составляющих, каждая из которых имеет свою причину. Можно выделить следующие группы причин возникновения погрешностей:
неверная настройка средства измерений или смещение уровня настройки во время эксплуатации;
неверная установка объекта измерения на измерительную позицию;
ошибки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений;
внешние воздействия на средство и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.п.);
свойства измеряемого объекта;
квалификация и состояние оператора.
Анализируя причины возникновения погрешностей, необходимо в первую очередь выявить те из них, которые оказывают существенное влияние на результат измерения. Анализ должен проводится в определенной последовательности.
1. Классификация измерений
В зависимости от рода измеряемой величины, условий проведения измерений и приемов обработки экспериментальных данных измерения могут классифицироваться с различных точек зрения.
С точки зрения общих приемов получения результатов они разделены на четыре класса:
прямые;
косвенные;
совокупные;
совместные.
Прямое измерение - измерения, при котором искомое значение получают непосредственно. Например, измерение длины детали линейкой. Этот термин возник как противоположный термину косвенное измерение. Строго говоря, измерение всегда прямое и рассматривается как сравнение величины с ее единицей. В таком случае лучше применять термин прямой метод измерений.
Косвенное измерение - определение искомого значения величины на основании результатов прямых измерений других величин, функционально связанных с искомой величиной. Например, определение объема цилиндра по результатам измерений его диаметра и высоты. Косвенные измерения относятся к явлениям, которые непосредственно не воспринимаются органами чувств и познание которых требует экспериментальных устройств. Исторической предпосылкой косвенных измерений было открытие закономерных связей и единства различных явлений в отдельных областях природы и во всей природе в целом, что привело к установлению закономерных связей между различными физическими величинами.
Совокупные измерения - проводимые одновременно измерения нескольких одноименных величин, при котором искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. При этом для определения значений искомых величин число уравнений должно быть не меньше числа величин. Примером совокупных измерений являются измерения, когда значение массы отдельных гирь из набора определяют по известному значению массы одной из гирь и по результатам измерений масс различных сочетаний гирь.
Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.
Совместные и совокупные измерения характеризуются тем, что состоят из совокупности рядов прямых измерений и числовые значения искомых величин определяются из совокупности уравнений типа:
F1 (Y1,Y2…, X1,X2,…) = 0
Fn (Y1,Y2,…, Xn1,Xn2,…) = 0
где Y1,Y2, … - значения искомых величин, X - значения величин, измеряемых прямым измерением,
F - известные функциональные зависимости, причем, если эти зависимости неизвестны, то их отыскание уже выходит за пределы измерений и является предметом научного исследования.
Пример совместных измерений: измерение, при котором электрическое сопротивление резистора при температуре 20°С и его температурные коэффициенты находят по данным прямых измерений сопротивления и температуры, выполненных при разных температурах.
По физическому смыслу измерения можно было бы делить на прямые и косвенные.
По числу измерений одной и той же величины измерения делятся на однократные и многократные. От числа измерений зависит методика обработки экспериментальных данных. При многократных наблюдениях для получения результата измерений приходится прибегать к статистической обработке результатов наблюдений.
По характеру изменения измеряемой величины в процессе измерений они делятся на статические и динамические (величина изменяется в процессе измерений).
По отношению к основным единицам измерения делятся на абсолютные и относительные.
Абсолютное измерение - измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Например, измерение силы F = mg основано на измерении основной величины - массы m и использовании физической постоянной g.
Относительное измерение - измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную. Например, измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованной в качестве эталонной меры активности.
Существуют и другие классификации измерений, например, по связи с объектом (контактные и бесконтактные), по условиям измерений (равноточные и неравноточные).
Следует различать понятия измерение и наблюдение.
Наблюдения при измерении - операции, проводимые при измерении и имеющие целью своевременно и правильно произвести отчет. Результаты наблюдений подлежат дальнейшей обработке для получения результата измерения. Для вычисления результата измерения следует из каждого наблюдения следует исключить систематическую погрешность. В итоге получаем исправленный результат данного наблюдения из числа нескольких, а за результат измерения принимаем среднее арифметическое из исправленных результатов наблюдений. При измерении с однократным наблюдением термином наблюдение пользоваться не стоит.
2. Погрешности измерений
Погрешность результата измерения - отклонение результата измерения от истинного (действительного) значения измеряемой величины:
?X = Xизм - Xист
Так как истинное значение измеряемой величины всегда неизвестно и на практике мы имеем дело с действительными значениями величин Хд, то формула для определения погрешности в связи с этим приобретает вид:
?X = Xизм - Xд.
Погрешность может быть выражена в единицах измеряемой величины x, - в таком случае она обозначается Dx и носит название абсолютной погрешности. Однако абсолютная погрешность зачастую не отражает качества измерений. Действительно, абсолютная погрешность 1 метр при измерении расстояния от Земли до Луны свидетельствует о высоком качестве измерения, та же погрешность совершенно неприемлема при измерении роста человека.
Критерием качества измерения является отношение абсолютной погрешности к окончательному результату измерения
dx= (x2-x1) /x. (2.1)
Это отношение безразмерно, а dx называют относительной погрешностью и используют как в абсолютном, так и в процентном выражении. Высокой точности измерения соответствует малое значение относительной погрешности. Наоборот, существенная относительная погрешность характеризует малую точность.
Рассмотрим основные типы погрешностей, проявляющихся в лабораторных физических экспериментах.
Промахи или грубые погрешности.
Грубая погрешность (промах) - погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных значений погрешности. Грубые погрешности необходимо всегда исключать из рассмотрения, если известно, что они являются результатом очевидных промахов при проведении измерений. Если же причины появления резко выделяющихся наблюдений установить нельзя, то для решения вопроса об их исключении используют статистические методы. Существует несколько критериев, которые позволяют выявить грубые погрешности. Некоторые из них рассмотрены ниже в разделе об обработке результатов измерений.
Систематические погрешности.
Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалов, прогрессивная технология - все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.
Модельная погрешность.
В основу любого экспериментального исследования, сопряженного с измерениями, заложена модель. Модель содержит наиболее полное физическое описание исследуемого объекта или процесса, которое позволяет составить его математическое описание, а именно, набор математических соотношений, включающих в себя физические величины. Они выступают в роли переменных и параметров, которыми могут быть величины, непосредственно измеряемые в ходе эксперимента, и величины, значения которых требуется определить, исходя из всей совокупности экспериментальных данных. В итоге модель представляет собой математическую конструкцию, базирующуюся на физических представлениях.
Только на основании эксперимента можно сделать обоснованное заключение о приемлемости описания полученных данных с помощью использованной теоретической модели. Зафиксированные несоответствия построенной модели, фактически - теории, и эксперимента, служат важнейшим стимулом развития науки, требуя уточнять представления о природе окружающего физического мира. В свое время именно отчетливо зарегистрированные несоответствия привели к созданию теории равновесного теплового излучения, квантовой механики, теории относительности.
В качестве модельной погрешности, например, можно рассматривать неучтенное изменение напряжения на исследуемом с применением вольтметра участке электрической цепи. Оно возникает из-за шунтирования цепи внутренним сопротивлением вольтметра. Отклонение результатов измерений можно компенсировать введением поправок к показаниям вольтметра, но существеннее другое - при наличии в цепи вольтметра, как следствие, изменяются электрические процессы в ней. Значит, первоначальная модель процессов в этой цепи, не рассматривающая включение вольтметра, может оказаться неточной.
К разряду модельных может быть отнесена погрешность взвешивания на рычажных весах. Согласно закону Архимеда вес тела и гирь уменьшается из-за действия выталкивающей силы воздуха. Напомним, что 1 куб. м. воздуха весит примерно 10 Н. Для того, чтобы правильно найти массу взвешиваемого тела, опять же, нужно ввести поправки на потерю веса гирями и самим телом. Вместе с тем, как и при любых измерениях, здесь необходим разумный подход. Например, при работе с грубыми техническими весами бессмысленно вводить поправку на Архимедову силу, так как она окажется много меньше погрешностей, вносимых в результат измерения гирями и самими весами.
Следует особо отметить, что модельные погрешности являются наиболее сложными для анализа и учета.
Случайные погрешности.
Существуют также случайные погрешности. К ним относятся, например, погрешности, вносимые вибрациями в лабораторных исследованиях, переходными процессами в электрических цепях или тепловыми шумами в вакуумных трубках. Такие погрешности нельзя предсказать заранее и трудно оценить теоретически. Уменьшение влияния случайных погрешностей измерений достигается многократными измерениями и (после отбрасывания ошибочных результатов) вычислением среднего значения.
качество измерение погрешность точность
Список литературы
1. Качество измерений. Метрологическая справочная книга Автор: М.Н. Селиванов, А.Э. Фридман, Ж.Ф. Издательство: Лениздат Год издания: 1987 г.
2. И.Ф. Девятко. Методы социологического исследования
3. Метрология, Стандартизация и технические средства измерений', Тартовский Д.Ф., Ястребов АС., - М.: Высш. шк., 2001
Размещено на Allbest.ru
...Подобные документы
Исследование понятий "сходимость" и "воспроизводимость измерений". Построение карты статистического анализа качества конденсаторов методом средних арифметических величин. Анализ основных видов погрешностей измерений: систематических, случайных и грубых.
контрольная работа [154,2 K], добавлен 07.02.2012Теоретические основы и главные понятия метрологии. Методы нормирования метрологических характеристик средств измерений, оценки погрешностей средств и результатов измерений. Основы обеспечения единства измерений. Структура и функции метрологических служб.
учебное пособие [1,4 M], добавлен 30.11.2010Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.
курсовая работа [437,4 K], добавлен 29.04.2014Этапы проведения измерений. Вопрос о предварительной модели объекта, обоснование необходимой точности эксперимента, разработка методики его проведения, выбор средств измерений, обработка результатов измерений, оценки погрешности полученного результата.
реферат [356,6 K], добавлен 26.07.2014Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.
реферат [49,4 K], добавлен 14.02.2011Вероятностное описание погрешностей. Обработка результатов измерений. Изучение построения стандарта. Определение подлинности товара по штрихкоду международного евростандарта EAN. Проведение сертификации на продукцию. Классы точности средств измерений.
контрольная работа [323,3 K], добавлен 22.06.2013Статическая характеристика преобразования. Зависимость между выходным и входным информационными параметрами измеряемой величины. Порог чувствительности. Цена деления. Диапазон измерений. Погрешность меры и закономерность проявления погрешностей.
презентация [148,9 K], добавлен 22.10.2013Составление эскиза детали и характеристика средств измерений. Оценка результатов измерений и выбор устройства для контроля данной величины. Статистическая обработка результатов, построение гистограммы распределения. Изучение ГОСТов, правил измерений.
курсовая работа [263,8 K], добавлен 01.12.2015Цели разработки государственных стандартов Российской Федерации. Определения стандартов, условные обозначения, применение. Альтернативы основному методу определения стандартных отклонений повторяемости и воспроизводимости стандартного метода измерений.
реферат [47,3 K], добавлен 12.11.2013Проведение измерений средствами измерений при неизменных или разных внешних условиях. Обработка равноточных, неравноточных и косвенных рядов измерений. Обработка многократных результатов измерений (выборки). Понятие генеральной совокупности и выборки.
курсовая работа [141,0 K], добавлен 29.03.2011Метрологические характеристики, нормирование погрешностей и использование средств измерений. Класс точности и его обозначение. Единицы средств измерений геометрических и механических величин. Назначение и принцип работы вихретоковых преобразователей.
контрольная работа [341,3 K], добавлен 15.11.2010Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.
контрольная работа [28,8 K], добавлен 23.11.2010Обработка результатов прямых равноточных и косвенных измерений. Нормирование метрологических характеристик средств измерений классами точности. Методика расчёта статистических характеристик погрешностей в эксплуатации. Определение класса точности.
курсовая работа [1,2 M], добавлен 16.06.2019Оценка погрешностей результатов прямых равноточных, неравноточных и косвенных измерений. Расчет погрешности измерительного канала. Выбор средства контроля, отвечающего требованиям к точности контроля. Назначение класса точности измерительного канала.
курсовая работа [1002,1 K], добавлен 09.07.2015Классификация погрешностей измерений: по форме представления, по условиям возникновения, в зависимости от условий и режимов измерения, от причин и места возникновения. Характерные грубые погрешности и промахи. Измерения и их погрешности в строительстве.
курсовая работа [34,3 K], добавлен 14.12.2010Определение термина "единство измерений". Особенности теоретической, законодательной и прикладной метрологии. Основные физические величины и воспроизводимость результатов измерений. Сертификация системы качества и Российская система аккредитации.
презентация [712,9 K], добавлен 21.03.2019Построение точечных диаграмм результатов многократных измерений одной и той же физической величины, тенденции их изменения, оценка погрешностей. Построение аппроксимирующих линий и эквидистант. Статистическая обработка результатов серии измерений.
курсовая работа [733,0 K], добавлен 28.07.2013Обработка результатов измерений диаметра и высоты детали и определение грубой и систематической погрешностей с помощью различных критериев. Анализ сертификата соответствия на соответствие требованиям нормативных документов и технического регламента.
курсовая работа [2,7 M], добавлен 11.01.2015Расчет результатов прямых измерений. Выявление грубых ошибок. Расчет коэффициентов корреляции результатов наблюдений. Расчет среднего значения величины косвенного измерения. Расчет абсолютных коэффициентов влияния. Предельные инструментальные погрешности.
курсовая работа [125,4 K], добавлен 08.01.2013Методика выполнения измерений. Особенности оценки объема и расхода газа с помощью сужающих устройств. Турбинные и ротационные счетчики газа. Узлы коммерческого учета. Принцип действия квантометра. Основы статистической обработки результатов измерений.
курсовая работа [341,5 K], добавлен 06.04.2015