Современные нанотехнологии и их применение
Нанотехнология как научно-техническое направление. Области применения наноструктурных материалов. Обзор причин специфичного поведения и особых свойств нанообъектов. Исследование технологических особенностей применения нанотехнологий в машиностроении.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 10.02.2016 |
Размер файла | 161,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Область применения наноструктурных материалов
За последние несколько лет короткое слово с большим потенциалом - «нано» быстро вошло в мировое сознание. Существует множество слухов и ошибочных мнений относительно нанотехнологии. «Нано»- это не только крошечные роботы, которые могут (или не могут) завоевать мир. По сути, это огромный шаг в науке.
Нанотехнология - область прикладной науки и техники, имеющая дело с объектами размером менее 100 нанометров. Нанотехнология качественно отличается от традиционных инженерных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.
Нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям [4].
Нанотехнология и, в особенности, молекулярная технология-новые области, очень мало исследованные. Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология - следующий логический шаг развития электроники и других наукоёмких производств.
В нанообласти все свойства материалов и изделий (физико-механические, тепловые, электрические, магнитные, оптические, химические, каталитические и др.) могут радикально отличаться от макроскопических. Существует более десятка причин специфичного поведения и особых свойств наноструктурных материалов и нанообъектов. Причем, их свойства существенно зависят от размеров морфологических единиц и могут быть изменены в необходимую сторону путем добавления и удаления атомов (молекул) одного сорта [5].
Данная технология подразумевает умение работать с такими объектами и создавать из них более крупные структуры, обладающие принципиально новой молекулярной организацией. Наноструктуры, построенные «из первых принципов», с использованием атомно-молекулярных элементов, представляют собой мельчайшие объекты, которые могут быть созданы искусственным путем. Они характеризуются новыми физическими, химическими и биологическими свойствами и связанными с ними явлениями.
В связи с этим возникли понятия нанонауки, нанотехнологии и наноинженериии (нанонаука занимается фундаментальными исследованиями свойств наноматериалов и явлений в нанометровом масштабе, нанотехнология - созданием наноструктур, наноинженерия - поиском эффективных методов их использования) (см. рис.) [6].
Рисунок 1. Научные основы и объекты нанонауки и нанотехнологии
нанотехнология технологический машиностроение научный
Наноматериалы _ материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;
Наносистемная техника _ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.
2. Нанотехнология как научно-техническое направление
Фундаментальные исследования явлений, происходящих в структурах с размерами менее 100 нм, дали начало развитию новой области знаний, которая, очевидно, в обозримом будущем внесет революционные изменения в технологии XXI века. Подобным структурам соответствует такое состояние вещества, когда в их поведении проявляются и доминируют принципиально новые явления, в числе которых квантовые эффекты, статистические временные вариации свойств и их масштабирование в зависимости от размеров структур, преобладающее влияние поверхности, отсутствие дефектов в объеме монокристаллов, значительная энергонасыщенность, определяющая высокую активность в химических реакциях, процессах сорбции, спекания, горения и т.п. Эти явления наделяют наноразмерные частицы и структуры уникальными механическими, электрическими, магнитными, оптическими, химическими и другими свойствами, которые открывают дверь в принципиально новую область манипулирования материей с применениями, трудно представимыми в обычной ситуации [7-8].
Отличие свойств малых частиц от свойств массивного материала известно ученым давно и используется в различных областях техники. Примерами наноразмерных структур могут служить широко применяемые аэрозоли, красящие пигменты, цветные стекла, окрашенные коллоидными частицами металлов.
Впечатляющие примеры связаны с биологией, где живая природа демонстрирует нам наноструктуры на уровне клеточного ядра. В этом смысле собственно нанотехнология, как научное направление, не является чем-то новым. Качественная характеристика нанотехнологии заключается в практическом использовании нового уровня знаний о физико-химических свойствах материи.
В этом одновременно и исключительность нанотехнологии - новый уровень знаний предполагает выработку концептуальных изменений в направлениях развития техники, медицины, сельскохозяйственного производства, а также изменений в экологической, социальной и военной сферах.
Важной отличительной особенностью нанометрового масштаба является также способность молекул самоорганизовываться в структуры различного функционального назначения, а также порождать структуры, себе подобные (эффект саморепликации). Методами так называемого механосинтеза реализуются новые, не имеющие аналогов, молекулярные соединения. Проведены эксперименты, в которых тысячи и десятки тысяч молекул соединяются в кристаллы, обладающие изначально заданными свойствами, которые не встречаются у природных материалов.
Использование перечисленных выше свойств в практических приложениях и составляет суть нанотехнологии. На ее основе уже реализованы образцы наноструктурированных сверхтвердых, сверхлегких, коррозионно- и износостойких материалов и покрытий, катализаторов с высокоразвитой поверхностью, нанопористых мембран для систем тонкой очистки жидкостей, сверхскоростных приборов наноэлектроники.
Когда речь идет о развитии нанотехнологий, имеются в виду три направления:
- изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;
- разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;
- непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.
Сегодня львиная доля производственных затрат человека идут, как это ни парадоксально, на производство отходов и загрязнение окружающей среды. Если же мы будем целенаправленно создавать необходимые нам материальные объекты, конструируя их из атомов и молекул, с помощью нанотехнологий, это приведет радикальному снижению материальных и энергетических затрат общества в целом.
3. Современный уровень развития нанотехнологий
В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды.
Рисунок 2. Основные области применения наноматериалов и нанотехнологий
Общемировые затраты на нанотехнологические проекты превышают $9 млрд. в год. На долю США приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн. В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования [5].
4. Значение применения нанотехнологий для машиностроения
Проблему катастроф различных физических объектов и на земле, и в воде, и в воздухе, и в космосе, в основном, связанных с качеством и надежностью машин, нельзя решить без учета эволюционного развития структуры материала на всех этапах его жизненного цикла. Понимание термина «технологический мониторинг» в контексте новой метрологии объемного наноструктурирования позволит решать задачи по обеспечению качества и повышенного ресурса оборудования, устранить необходимость завышенного коэффициента запаса прочности, что повышает конкурентоспособность.
Объемное наноструктурирование имеет решающее значение при разработке отличающихся малым весом летательных аппаратов из термически устойчивых материалов с высокой удельной прочностью.
Реализация нанотехнологий в авиакосмической отрасли позволит:
- Повысить прочность летательных аппаратов. Сейчас ставится задача довести возможность их совершать до 70-90 тысяч полетов, что требует повышения прочностных характеристик, которые обеспечивают новые наноматериалы.
- Добиться «живучести» и снижения веса (которое обеспечивают в настоящее время композиты). К ним должны присоединиться наноматериалы.
- Переходя на нанотехнологии, можно достигнуть снижения трения.
- Решить задачи борьбы с обледенением и прилипанием к внешней стороне конструкции летательных аппаратов различной «биологической живности» с помощью отслаивающихся чешуек.
- Снизить заметность летательных аппаратов.
Космические аппараты будущего будут уже не просто машинами для перевозки живых существ, но живыми организмами. Они смогут обучаться, диагностировать и ремонтировать себя. Применение нанотехнологии в аэрокосмической технике способно также обеспечить: снижение энергопотребления в 104 раз, снижение вибрации и шума - в 102, повышение быстродействия - в 106, повышение КПД солнечных батарей - в 101, повышение чувствительности датчиков - в 106, повышение времени автономной работы - в 104 раз, повышение надежности - в 102, повышение стойкости к радиации - в 101, повышение стойкости к перегрузкам - в 102 раз.
Внедрение нанотехнологий в автомобильную промышленность позволит сделать автомобили:
- Доступными (нанотехнологические методы производства позволяют создавать товары и услуги с низкой себестоимостью);
- комфортными (более совершенная работа механических частей, улучшенная шумо- и вибро- изоляция на основе наноструктурированных материалов, эргономичный салон);
- эффективными (повышения средней скорости движения автомобилей, повышение КПД использования энергии, необходимой для перевозки людей и грузов);
- интеллектуальными (широкое внедрение информационных систем во все узлы и компоненты автомобилей, принятие автомобилем все больших функций водителя на себя);
- безопасными для человека и окружающей среды (новые, экологически чистые силовые установки, в том числе на топливных элементах, качественно новый уровень пассивной и активной безопасности для обитателей салона и пешеходов, широкое использование в конструкции авто биодеградируемых материалов, а с созданием дисассемблеров - возможность 100% утилизации устаревших автомобилей).
Кроме того, запатентованы новые способы и ресурсосберегающие нанотехнологии, в том числе повышения долговечности на этапе эксплуатации, упрочнения твердых сплавов, нержавеющих, конструкционных и инструментальных марок стали, кузнечной сварки многослойных композиций и производства цельнокованого нержавеющего дамаска, квазиаморфного модифицирования карбидами и оксидами кремния. При этом ресурс изделий различного назначения, изготовленных по новой методологии для отраслей машиностроения повышается от 200 до 500% [8].
В целом же, разработка и применение нанотехнологий в области машиностроения позволят достичь следующих основных целей:
Изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции.
5. Технологические особенности применения нанотехнологий в машиностроении (на примере автомобильной промышленности)
Нанотехнологии обещают целый ряд выгод от широкомасштабного внедрения в массовое производство автомобилей. Так буквально каждый узел или компонент в конструкции автомобиля может быть в значительной степени усовершенствован при помощи нанотехнологий.
Уже существуют легко очищающиеся и водоотталкивающие покрытия для материалов, основанные на использовании диоксида кремния.
Что касается в прямом понимании самоочищающихся поверхностей, то такая технология основана на использовании диоксида титана.
Кроме покрытий для стекол также разработаны и выпускаются составы с аналогичным действием для тканей, металла, пластика, керамики - и все они имеют потенциал для применения в автомобильной промышленности.
По некоторым сообщениям, концерн BMW работает над созданием самоочищающихся покрытий на основе нанопорошков.
По результатам испытаний оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40% сильнее, чем покрашенные обычной краской.
Новое лаковое покрытие не только защищает кузов от механических повреждений, но еще и полностью отвечает требованиям Mercedes относительно устойчивости к воздействию химических элементов, находящихся в воздухе.
В настоящее время с использованием нанотехнологических подходов уже производятся высокоэффективные антифрикционные и противоизносные покрытия для автотранспорта.
Использование РВС позволяет увеличивать ресурс работы узлов и деталей в 2-3 раза за счет замены плановых ремонтов предупредительной обработкой, снижает вибрации и шум, на 70-80% снижает токсичность выхлопа автомобиля без применения каких-либо других мер.
В аэрокосмической промышленности уже широко применяется семейство наноструктурированных аэрогелей. Так кремниевый аэрогель - лучший в мире твердый теплоизолятор, когда-либо обнаруженный или полученный. Для промышленности он представляет интерес, так как обладает высокой термической изоляцией - до 800° С (2,5-сантиметровый лист из силиконового аэрогеля надежно защищает руку человека от огня паяльной лампы) и акустической изоляцией - скорость звука при прохождении через аэрогель составляет лишь 100 м/сек. Развитие нанотехнологии позволит снизить себестоимость производства аэрогелей и сделает этот вид материалов доступным для применения в различных отраслях промышленности, в том числе автомобильной.
Большие перспективы имеются в улучшении электронных компонентов автомобиля с помощью нанотехнологий. Так Микро Электро Механические системы (MEMS) уже расширяют стандартную технологию микроэлектроники, позволяет объединять в одной микросхеме элементы, обеспечивающие как механическое перемещение физических частей, так и электронов в электрической схеме.
Это позволяет вместо раздельного производства микроактуаторов и сенсоров, делать их в виде интегрированного в микросхему единого изделия. При этом для их производства используется уже апробированная традиционная технология производства интегральных микросхем и полупроводников. Идею подвижного кремния (еще так называют MEMS) прекрасно иллюстрируют MEMS-акселерометры, которые уже широко используются в качестве сенсоров автомобильных подушек безопасности.
Вращающиеся акселерометры также используются для расширения возможностей антиблокировочных систем автомобиля (ABS). Кроме того, в автомобилях MEMS находят применение в датчиках продольных и поперечных ускорений, датчиках крена и т.д. Определяя положение кузова, они служат источником информации для работы различных электронных систем стабилизации и контроля курсовой устойчивости. Также MEMS представляют интерес для создания датчиков давления, температуры. Кроме измерения ускорений и детектирования перемещений, MEMS используется в системах GPS-навигации.
В настоящее время уже идет речь о развитии NEMS - NanoElectroMechanical Systems. В результате эволюции MEMS происходит уменьшение до нано размеров механических компонентов систем, снижается их масса, при этом увеличивается их резонансная частота и уменьшается константы взаимодействия, что сказывается на значительном повышении функциональности данного рода устройств. Точность измерения перемещения у лучших образцов таких устройств составляет 10 нанометров.
Развитие нанотехнологий обещает массовое распространение новых конструкционных материалов с порою уникальными свойствами и характеристиками. Наибольший интерес для инженеров и исследователей представляют углеродные материалы, из которых в настоящее время наиболее изученными, а также наиболее перспективными для целей практического применения являются углеродные нанотрубки (УНТ). Они обладают самым широким набором уникальных свойств, делающих их чрезвычайно перспективными для использования, в том числе в автомобилестроении.
Баллистический характер электропроводности УНТ (электроны движутся, как бы скользя по поверхности, не встречая препятствий) позволит создавать высокоэффективные электропроводящие узлы различных машин и механизмов, в том числе автомобилей.
Углеродные нанотрубки уже находят применение в конструкции современных автомобилей. Например, инженеры компании Toyota добавляет композиционный материал на основе УНТ в пластиковые бамперы и дверные панели своих автомобилей. Помимо повышения прочности и снижения массы, пластик со смолой из УНТ становится электропроводным, и его можно покрывать теми же красками с электрическим нанесением, что и металлические детали.
Нанотранзисторы, в том числе с нанотрубками в конструкции будут обладать рядом улучшенных характеристик и бесспорных преимуществ по сравнению с традиционными кремниевыми:
- повышенное быстродействие;
- термо - и радиационная стойкость;
- миниатюрность;
- низкое энергопотребление и как следствие - незначительное тепловыделение при работе.
Большой интерес представляют нанотехнологии для создания перспективных автомобилей на топливных элементах.
С помощью нанотрубок предполагается решить проблему надежного и безопасного хранения водорода на борту транспортного средства, так как наряду с металлами и жидкостями углеродные нанотрубки могут заполняться газообразными веществами и связывать большое его количество.
Сейчас конструкторы «гибридных» автомобилей уже сталкиваются с потребностью в компактных, легких и высокоемких аккумуляторных батареях. В силу того, что большинство автомобилей будущего будет работать на электрической тяге, гораздо больший интерес станет представлять использование фотоэлементов в конструкции автомобиля. В этом отношении нанотехнология позволяет создавать долговечные, ультратонкие и гибкие преобразователи солнечного света. Кроме того, использование нанотехнологических принципов позволит получать солнечные панели с КПД до 80-90%.
Кроме конструкции автомобиля, измениться структура самой автомобильной промышленности.
Так с появлением автоматизированной молекулярной нанотехнологии получит новое развитие уже наметившаяся тенденция - разделение функций разработки/проектирования автомобилей и их производства с окончательным закреплением приоритета за первой из перечисленных двух функций. Собственно в будущем автомобильные концерны будут только разрабатывать конструкции тех или иных моделей автомобилей для последующей продажи права на их производство методами поатомной сборки сторонним организациям.
Тем самым не автомобиль будет товаром, а информация об особенности его конструкции, что будет полностью соответствовать модели новой экономической формации, где единственным предметом обмена станет информация.
Новейшие нанотехнологий наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно-технической революции в XXI веке, сравнимым и даже превосходящим по своим масштабам с преобразованиями в технике и обществе, вызванными крупнейшими научными открытиями XX века.
Таблица 1 Перспективные будущие области применения нанотехнологий для машиностроения
Продукт |
Описание |
|
Программируемые формы и штампы |
Для производства деталей из разных материалов - от бетона до пластмасс. |
|
Самодиагностируемые конструкционные материалы |
Автоматически определяющие свое состояние, приложенную нагрузку, износ и структурную целостность. |
|
Умные бамперы |
Изменяющие форму (например, увеличиваются) при внезапном приближении к препятствию. |
|
Противоударные и антикоррозионные покрытия |
Для повышения износоустойчивости транспортных средств, деталей двигателей и металлообрабатывающего инструмента. |
В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки [9].
Размещено на Allbest.ru
...Подобные документы
Понятие нанотехнологий. Нанотехнология как научно-техническое направление. История развития нанотехнологий. Современный уровень развития нанотехнологий. Применение нанотехнологий в различных отраслях. Наноэлектроника и нанофотоника. Наноэнергетика.
дипломная работа [569,7 K], добавлен 30.06.2008Понятие нанотехнологий и области их применения: микроэлектроника, энергетика, строительство, химическая промышленность, научные исследования. Особенности использования нанотехнологий в медицине, парфюмерно-косметической и пищевой промышленностях.
презентация [4,5 M], добавлен 27.02.2012Развитие нанотехнологий в XXI веке. Нанотехнологии в современной медицине. Эффект лотоса, примеры использования его уникального свойства. Интересное в нанотехнологиях, виды нанопродукции. Сущность нанотехнологий, достижения в этой отрасли науки.
реферат [21,4 K], добавлен 09.11.2010Греческий философ Демокрит как отец нанотехнологии. Финансирование наноисследований и наноразработок в мире. Программа "Военная наноэлектроника Вооружённых Сил РФ на период до 2010 года". Применение разработок в медицине, строительстве и машиностроении.
презентация [2,6 M], добавлен 23.11.2014Сущность и значение научно-технической революции (НТР), основные направления реализации научно-технической деятельности на современном этапе. Область применения био- и нанотехнологий, анализ положительных и отрицательных моментов новых направлений НТР.
курсовая работа [42,2 K], добавлен 29.03.2011Возникновение и развитие нанотехнологии. Общая характеристика технологии консолидированных материалов (порошковых, пластической деформации, кристаллизации из аморфного состояния), технологии полимерных, пористых, трубчатых и биологических наноматериалов.
реферат [3,1 M], добавлен 19.04.2010Размеры наночастиц, особенности их получения из элементов и общие свойства. Физический и химический способы получения наночастиц. Понятие наноструктур как ансамбля атомов или молекул, их разделение на сплошные и пористые. Сферы применения нанотехнологий.
презентация [28,5 M], добавлен 11.12.2012Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. История развития нанотехнологий, особенности и свойства наноструктур. Применение нанотехнологий в автомобильной промышленности: проблемы и перспективы.
контрольная работа [3,8 M], добавлен 03.03.2011История развития нанотехнологий; их значение в медицине, науке, экономике, информационном окружении. Схематическое изображение и направления применения однослойной углеродной нанотрубки. Создание нанотехнологических центров в Российской Федерации.
презентация [894,7 K], добавлен 23.09.2013Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.
реферат [397,6 K], добавлен 23.10.2011Исследование уникальных свойств объемных наноструктурных материалов, обладающих необычной атомно-кристаллической решеткой, механические характеристики. Особенности моделей наноструктур, методы их получения, область применения; нанопроволоки и нановолокна.
курсовая работа [1,5 M], добавлен 11.05.2011Понятия и классификация нанотехнологий, виды наноструктур. Характеристика способов наноконстуирования. Исследование свойств материалов, применение и ограничения в использовании наноматериалов. Модифицирование сплавов с нанокристаллической решеткой.
курсовая работа [9,1 M], добавлен 14.07.2012Различные направления нанотехнологии. Проектирование и изготовление разумных миниатюрных машин. Манипулирование материалами в атомном и молекулярном масштабах. Самоорганизующееся производство структур, объектов, материалов. Нанотехнологии Б-типа.
презентация [558,9 K], добавлен 24.05.2014Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.
презентация [4,6 M], добавлен 12.12.2013Лидерство стран в области нанотехнологий. Перспективы использования новых технологий в областях энергетики, вычислительной техники, химической и биомолекулярной технологии, в оптике и электронике, медицине. Примеры научных достижений и разработок.
презентация [1,1 M], добавлен 14.04.2011Цели и задачи материаловедения наносистем. Предмет, цели и основные направления в нанотехнологии, ее особенности. Сканирующая туннельная микроскопия, наилучшее пространственное разрешение приборов. Виды и свойства, применение наноматериалов, технологии.
курсовая работа [2,4 M], добавлен 05.05.2009Направления применения углеводородов, их потребительские качества. Внедрение технологии глубокой переработки углеводородов, их применение как холодильных агентов, рабочего тела датчиков элементарных частиц, для пропитки тары и упаковочных материалов.
доклад [20,9 K], добавлен 07.07.2015Режимы работы сканирующего туннельного микроскопа. Углеродные нанотрубки, супрамолекулярная химия. Разработки химиков Уральского государственного университета в области нанотехнологий. Испытание лабораторного среднетемпературного топливного элемента.
презентация [9,3 M], добавлен 24.10.2013Нанотехнологии и переход к водородной энергетике, разработка и изготовление наномашин. Основной вклад нанотехнологий в "чистое" производство водорода. Развитие новой области знаний о поведении наноразмерных систем с ионной и смешанной проводимостью.
курсовая работа [2,7 M], добавлен 16.11.2009Построение экспериментальных искусственных наномашин с использованием биологических природных материалов, синтез живых и технических систем. Молекулярная электроника, свойства наноструктур, разработка новых способов их получения, изучение и модификация.
контрольная работа [38,1 K], добавлен 14.11.2010