Основы теории термической обработки стали
Превращение аустенита в мартенсит при высоких скоростях охлаждения. Специфика технологических возможностей и особенности отжига, нормализации, закалки и отпуска. Характеристика процесса превращения мартенсита в перлит. Сущность отжига и нормализации.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 13.02.2016 |
Размер файла | 123,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основы теории термической обработки стали
Технологические особенности и возможности отжига и нормализации
1. Превращение аустенита в мартенсит при высоких скоростях охлаждения
2. Превращение мартенсита в перлит.
3. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
4. Отжиг и нормализация. Назначение и режимы
5. Отжиг первого рода.
Превращение аустенита в мартенсит при высоких скоростях охлаждения
Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением в
При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения (Мн) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки - мартенсит.
Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры т.Мн и превращается, называется критической скоростью закалки.
Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке и располагается либо в ценрах тетраэдров, либо в середине длинных ребер (рис. 1).
Мартенсит - пересыщенный твердый раствор внедрения углерода в.
При образовании мартенсита кубическая решетка сильно искажается, превращаясь в тетрагональную (рис. 1 а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямо пропорциональна содержанию углерода в стали (рис. 1 б).
Рис. 13 1. Кристаллическая решетка мартенсита (а); влияние содержания углерода на параметры а и с решетки мартенсита (б)
Механизм мартенситного превращения имеет ряд особенностей.
1. Бездиффузионный характер.
Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.
2. Ориентированность кристаллов мартенсита.
Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 o или 120 o, их размеры ограничены участками между первыми пластинами (рис. 2).
Рис. 2. Ориентированность кристаллов мартенсита
Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается.
3. Очень высокая скорость роста кристалла, до 1000 м/с.
4. Мартенситное превращение происходит только при непрерывном охлаждении. Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения - МК. Температуры МН и МК зависят от содержания углерода и не зависят от скорости охлаждения Для сталей с содержанием углерода выше 0,6 % МК уходит в область отрицательных температур (рис.3)
Рис. 3. Зависимость температур начала (МН) и конца (МК)мартенситного превращения от содержания углерода в стали
Мартенситное превращение чувствительно к напряжениям, и деформация аустенита может вызвать превращение даже при температурах выше МН.
В сталях с МК ниже 20oС присутствует аустенит остаточный, его количество тем больше, чем ниже МН и МК.(при содержании углерода 0,6…1,0 % количество аустенита остаточного - 10 %, при содержании углерода 1,5 % - до 50 %). В микроструктуре наблюдается в виде светлых полей между иглами мартенсита.
5. Превращение необратимое. Получить аустенит из мартенсита невозможно.
Свойства мартенсита обусловлены особенностями его образования. Он характеризуется высокой твердостью и низкой пластичностью, что обуславливает хрупкость.
Твердость составляет до 65 HRC. Высокая твердость вызвана влиянием внедренных атомов углерода в решетку -фазы, что вызывает ее искажение и возникновение напряжений. С повышением содержания углерода в стали возрастает склонность к хрупкому разрушению.
Превращение мартенсита в перлит
Имеет место при нагреве закаленных сталей. Превращение связано с диффузией углерода.
Мартенсит закалки неравновесная структура, сохраняющаяся при низких температурах. Для получения равновесной структуры изделия подвергают отпуску.
При нагреве закаленной стали происходят следующие процессы.
При нагреве до 200oС происходит перераспределение углерода в мартенсите. Образуются пластинки - карбидов толщиной несколько атомных диаметров. На образование карбидов углерод расходуется только из участков мартенсита, окружающих кристаллы выделившихся карбидов. Концентрация углерода на этих участках резко падает, тогда как удаленные участки сохраняют концентрацию углерода. В стали присутсвуют карбиды и два -твердых раствора мартенсита (с высокой и низкой концентрацией углерода. Такой тип распада мартенсита называется прерывистым. Скорость диффузии мала, карбиды не увеличиваются, распад мартенсита сопровождается зарождением новых карбидных частиц. Таким образом имеем структуру с неравномерным распределением углерода - это мартенсит отпуска. При этом несколько снижается тетрагональность решетки.
При нагреве до 300oС идет рост образовавшихся карбидов. Карбиды выделяются из мартенсита и он обедняется углеродом. Диффузия углерода увеличивается и карбиды растут в результате притока углерода из областей твердого раствора с высокой его концентрацией. Кристаллическая решетка карбидов когерентно связана с решеткой мартенсита.
В высокоуглеродистых сталях аустенит остаточный превращается в мартенсит отпуска. Наблюдается снижение тетрагональности решетки и внутренних напряжений. Структура - мартенсит отпуска:
При нагреве до 400oС весь избыточный углерод выделяется из . Карбидные частицы полностью обособляются, приобретают строение цементита, и начинают расти. Форма карбидных частиц приближается к сферической.
Высокодисперсная смесь феррита и цементита называется троостит отпуска;
При нагреве выше 400oС изменение фазового состава не происходит, изменяется только микроструктура. Имеет место рост и сфероидизация цементита. Наблюдается растворение мелких и рост крупных карбидных частиц.
При температуре 550…600oС имеем сорбит отпуска. Карбиды имеют зернистое строение. Улучшаются свойства стали.
При температуре 650…700oС получают более грубую ферритно- цементитную смесь - перлит отпуска (зернистый перлит).
Технологические возможности и особенности отжига, нормализации, закалки и отпуска
При разработке технологии необходимо установить:
· режим нагрева деталей (температуру и время нагрева);
· характер среды, где осуществляется нагрев и ее влияние на материал стали;
· условия охлаждения.
Режимы термической обработки назначают в соответствии с диаграммами состояния и диаграммой изотермического распада аустенита.
Нагрев может осуществляться в нагревательных печах, топливных или электрических, в соляных ваннах или в ваннах с расплавленным металлом, пропусканием через изделие электрического тока или в результате индукционного нагрева.
С точки зрения производительности, нагрев с максимальной скоростью уменьшает окалинообразование, обезуглероживание и рост аустенитного зерна. Однако необходимо учитывать перепад температур по сечению, что ведет к возникновению термических напряжений. Если растягивающие напряжения превысят предел прочности или предел текучести, то возможно коробление или образование трещин.
Рис. 4. Левый угол диаграммы состояния железо - цементит и температурные области нагрева при термической обработке сталей
Скорость нагрева тем выше,чем менее легирована сталь, однороднее ее структура, проще конфигурация. аустенит мартенсит отжиг перлит
Скорость нагрева принимается 0,8…1 мин на 1 мм сечения. Время выдержки принимается около 20 % от времени нагрева.
Среда нагрева при нагреве в печи с газовой средой.
Составляющие могут оказывать на сталь различное действие:
· окисляющее (О2, СО2, Н2О);
· восстанавливающее (СО, СН4);
· обезуглероживающее (О2, Н2);
· науглероживающее (СО, СН4);
· нейтральное (N2, инертные газы).
Окисление с образованием окалины , препятствует получению высокой и равномерной твердости при закалке, приводит к изменению размеров, требует увеличения припусков на механическую обработку.
Обезуглероживание (выгорание углерода в поверхностном слое металла) способствует появлению мягких пятен при закалке и возникновению растягивающих напряжений в поверхностном слое, снижающих усталостную прочность.
На рис. 4 показаны температурные области нагрева при термической обработке сталей.
Отжиг и нормализация. Назначение и режимы
Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:
· улучшить обрабатываемость заготовок давлением и резанием;
· исправить структуру сварных швов, перегретой при обработке давлением и литье стали;
· подготовить структуру к последующей термической обработке.
Характерно медленное охлаждение со скоростью 30…100oС/ч.
Отжиг первого рода.
1. Диффузионный (гомогенизирующий) отжиг. Применяется для устранения ликвации, выравнивания химического состава сплава.
В его основе - диффузия. В результате нагрева выравнивается состав, растворяются избыточные карбиды. Применяется, в основном, для легированных сталей.
Температура нагрева зависит от температуры плавления, ТН = 0,8 Тпл.
Продолжительность выдержки: часов.
2. Рекристаллизационный отжиг проводится для снятия напряжений после холодной пластической деформации.
Температура нагрева связана с температурой плавления: ТН = 0,4 Тпл.
Продолжительность зависит от габаритов изделия.
3. Отжиг для снятия напряжений после горячей обработки (литья, сварки, обработки резанием, когда требуется высокая точность размеров).
Температура нагрева выбирается в зависимости от назначения, находится в широком диапазоне: ТН = 160……700oС.
Продолжительность зависит от габаритов изделия.
Детали прецизионных станков (ходовые винты, высоконагруженные зубчатые колеса, червяки) отжигают после основной механической обработки при температуре 570…600oС в течение 2…3 часов, а после окончательной механической обработки, для снятия шлифовочных напряжений - при температуре 160…180oС в течение 2…2,5 часов.
Отжиг второго рода предназначен для изменения фазового состава.
Температура нагрева и время выдержки обеспечивают нужные структурные превращения. Скорость охлаждения должна быть такой, чтобы успели произойти обратные диффузионные фазовые превращения.
Является подготовительной операцией, которой подвергают отливки, поковки, прокат. Отжиг снижает твердость и прочность, улучшает обрабатываемость резанием средне- и высокоуглеродистых сталей. Измельчая зерно, снижая внутренние напряженияи уменьшая структурную неоднородность способствует повышению пластичности и вязкости.
В зависимости от температуры нагрева различают отжиг:
1. полный, с температурой нагрева на 30…50 oС выше критической температуры А3
Проводится для доэвтектоидных сталей для исправления структуры.
При такой температуре нагрева аустенит получается мелкозернистый, и после охлаждения сталь имеет также мелкозернистую структуру.
2. неполный, с температурой нагрева на 30…50oС выше критической температуры А1
Применяется для заэвтектоидных сталей. При таком нагреве в структуре сохраняется цементит вторичный, в результате отжига цементит приобретает сферическую форму (сфероидизация). Получению зернистого цементита способствует предшествующая отжигу горячая пластическая деформация, при которой дробится цементитная сетка. Структура с зернистым цементитом лучше обрабатываются и имеют лучшую структуру после закалки. Неполный отжиг является обязательным для инструментальных сталей.
Иногда неполный отжиг применяют для доэвтектоидных сталей, если не требуется исправление структуры (сталь мелкозернистая), а необходимо только понизить твердость для улучшения обрабатываемости резанием.
3. циклический или маятниковый отжиг применяют, если после проведения неполного отжига цементит остается пластинчатым. В этом случае после нагрева выше температуры А1 следует охлаждение до 680 oС, затем снова нагрев до температуры 750…760) oС и охлаждение. В результате получают зернистый цементит.
4. изотермический отжиг - после нагрева до требуемой температуры, изделие быстро охлаждают до температуры на 50…100oС ниже критической температуры А1 и выдерживают до полного превращения аустенита в перлит, затем охлаждают на спокойном воздухе (рис. 5). Температура изотермической выдержки близка к температуре минимальной устойчивости аустенита.
В результате получают более однородную структуру, так как превращение происходит при одинаковой степени переохлаждения. Значительно сокращается длительность процесса. Применяют для легированных сталей.
Рис. 5. Режимы изотермического отжига
5. Нормализация. - разновидность отжига.
Термическая обработка, при которой изделие нагревают до аустенитного состояния, на 30…50 oС выше А3 или Аст с последующим охлаждением на воздухе.
или
В результате нормализации получают более тонкое строение эвтектоида (тонкий перлит или сорбит), уменьшаются внутренние напряжения, устраняются пороки, полученные в процессе предшествующей обработки. Твердость и прочность несколько выше чем после отжига.
В заэвтектоидных сталях нормализация устраняет грубую сетку вторичного цементита.
Нормализацию чаще применяют как промежуточную операцию, улучшающую структуру. Иногда проводят как окончательную обработку, например, при изготовлении сортового проката.
Для низкоуглеродистых сталей нормализацию применяют вместо отжига.
Для среднеуглеродистых сталей нормализацию или нормализацию с высоким отпуском применяют вместо закалки с высоким отпуском. В этом случае механические свойства несколько ниже, но изделие подвергается меньшей деформации, исключаются трещины.
Литература
Богодухов С.И. Курс материаловедения в вопросах и ответах: Учеб. пособие для ВУЗов, обуч. по направлению подгот. бакалавров «Технология, оборуд. и автомат. машиностр. пр-в» и спец. «Технология машиностроения», «Металлорежущие станки и инструменты» и др. / С.И. Богодухов, В.Ф. Гребенюк, А.В. Синюхин. - М.: Машиностроение, 2003. - 255с.: ил.
Дриц М.Е., Москалев М.А. Технология конструкционных материалов и материаловедение: Учеб. для студентов немашиностроительных спец. ВУЗов. - М.: Высшая школа, 1990. - 446с., ил.
Колесов С.Н. Материаловедение и технология конструкционных материалов: Учебник для студентов электротехнических и электромеханических спец. ВУЗов / С.Н. Колесов, И.С. Колесов. - М. Высшая школа, 2004. - 518с.: ил.
Лахтин Ю.М., Леонтьева В.Н. Материаловедение. Учебник для ВУЗов технич. спец. - 3-е изд. - М. Машиностроение, 1990. - 528с.
Материаловедение и технология конструкционных материалов. Учебник для ВУЗов / Ю.П. Солнцев, В.А. Веселов, В.П. Демьянцевич, А.В. Кузин, Д.И. Чашников. - 2-е изд., перер., доп. - М. МИСИС, 1996. - 576с.
Материаловедение и технология металлов: Учебник для ВУЗов по машиностроительным специальностям / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин и др. - М.: Высшая школа, 2000. - 637с.: ил.
Материаловедение. Технология конструкционных материалов: учебное пособие для студентов ВУЗов, обуч. по напр. «Электротехника, электромеханика и электротехнологии» / А.В. Шишкин и др.; под ред. В.С. Чередниченко. - 3-е изд., стер. - М.: ОМЕГА-Л, 2007. - 751с.: ил.(Высшее техническое образование).- (Учебное пособие)
Материаловедение: Учебник для ВУЗов, обучающих по направлению подготовки и специализации в области техники и технологии / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др. - 5-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2003. - 646с.: ил.
Тарасов В.Л. Технология конструкционных материалов: Учеб. для ВУЗов по спец. «Технология деревообработки» / Моск. гос. ун-т леса. - М.: Изд-во Моск. гос. ун-т леса, 1996. - 326с.: ил.
Технология конструкционных материалов. Учебник для студентов машиностроительных специальностей ВУЗов в 4 ч. Под ред. Д.М. Соколова, С.А. Васина, Г.Г Дубенского. - Тула. Изд-во ТулГУ. - 2007.
Технология конструкционных материалов: Учебник для студентов машиностроительных ВУЗов / А.М. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др.; Под общ. ред. А.М. Дальского. - 5-е изд., испр. - М. Машиностроение, 2003. - 511с.: ил
Размещено на Allbest.ru
...Подобные документы
Понятие, общая характеристика и виды термической обработки стали. Особенности основных этапов собственно-термической обработки стали, а именно отжига, нормализации, закалки, отпуска и старения. Отпускная хрупкость I, II рода и способы ее устранения.
лабораторная работа [38,9 K], добавлен 15.04.2010Распад аустенита, закономерности превращения. Пластинчатый и реечный мартенсит. Характерные особенности мартенситного превращения. Влияние состава стали на положение критических точек. Промежуточное превращение в стали. Критическая скоростью закалки.
лекция [115,7 K], добавлен 14.10.2013Исследование основных видов термической обработки стали: отжига, нормализации, закалки, отпуска. Изучение физической сущности процесса сварки. Технологический процесс электродуговой и электрошлаковой сварки. Пайка и состав оловянно-свинцовых припоев.
реферат [193,4 K], добавлен 22.03.2013Структура тростит+мартенсит, полученная при непрерывном охлаждении стали У8. Кривая охлаждения, нанесенная на диаграмму изотермического превращения аустенита данной структуры. Интервалы температур превращений и описание характера превращения.
контрольная работа [223,4 K], добавлен 07.12.2007Выбор марки стали в соответствии с условиями работы штампа холодного деформирования. Выбор режима термической обработки (закалки, охлаждения в масле и отпуска). Влияние легирующих элементов на превращение аустенита при нагреве и охлаждении детали.
лабораторная работа [551,7 K], добавлен 13.10.2014Изучение понятия и особенностей термической обработки стальных деталей. Характерные черты закалки, отпуска и отжига - температура нагрева и способ последующего охлаждения. Отпуск закаленных деталей. Отжиг дюралюминия, меди и латуни. Воронение стали.
презентация [152,4 K], добавлен 20.06.2014Теория термической обработки. Превращения в стали при нагреве и охлаждении. Отжиг и нормализация. Дефекты термической обработки. Дефекты при отжиге и нормализации. Дефекты при закалке. Химико-термическая обработка и поверхностное упрочнение стали.
доклад [411,0 K], добавлен 06.12.2008Фазовые превращения в сплавах при нагреве и охлаждении. Процесс и этапы образования аустенита при нагреве. Структура стали после термической обработки. Диаграмма изотермического превращения переохлажденного аустенита. Мартенситное превращение в стали.
презентация [574,6 K], добавлен 29.09.2013Виды термической обработки металлов. Превращения, протекающие в структуре стали при нагреве и охлаждении. Образование аустенита. Рост аустенитного зерна. Снятие напряжения после ковки, сварки, литья. Диаграммы изотермического образования аустенита.
презентация [50,4 K], добавлен 14.10.2013Марочный химический состав стали по ГОСТ. Превращения переохлажденного аустенита в изотермических условиях и при непрерывном охлаждении. Определение критической скорости закалки и температуры начала мартенситного превращения. Режимы термической обработки.
курсовая работа [4,4 M], добавлен 13.02.2013Назначение и виды термической обработки металлов и сплавов. Технология и назначение отжига и нормализации стали. Получение сварных соединений способами холодной и диффузионной сварки. Обработка металлов и сплавов давлением, ее значение в машиностроении.
контрольная работа [2,6 M], добавлен 24.08.2011Первичная кристаллизация сплавов системы железо-углерод. Расшифровка марки стали У12А, температура полного и неполного отжига, закалки, нормализации. Влияние легирующих элементов на линии диаграммы Fe-Fe3C, на термическую обработку и свойства стали.
курсовая работа [1,4 M], добавлен 16.05.2015Характеристики и области применения стали 50Н. Получение структур: перлит, феррит, перлит с минимальным количеством феррита. Мартенсит и продукты промежуточного превращения в верхнем и нижнем районе температур второй ступени (на разных стадиях распада).
курсовая работа [3,1 M], добавлен 16.07.2010Сравнительная характеристика сталей. Микроструктура быстрорежущей стали Р6М5 в литом состоянии. Разработка режима термической обработки. Закалка, трёхкратный отпуск. Оборудование для нагрева, отжига проволоки, ленты. Подъемно-транспортное оборудование.
контрольная работа [1,8 M], добавлен 10.11.2008Анализ химического состава стали и его влияние на структуру, фазовый состав, основные и технологические свойства. Проектирование технологических операций ковки и отжига, дефекты и способы их устранения. Проектирование операций закалки и отпуска.
курсовая работа [33,4 K], добавлен 27.02.2010Технология нормализации стали - процесса термической обработки, заключающегося в нагреве до определенной температуры для доэвтектоидной или для зазвтектоидной стали с последующим охлаждением на воздухе. Камерные, толкательные печи и специальные агрегаты.
презентация [2,3 M], добавлен 05.10.2011Технологический процесс отжига холоднокатаного металла в колпаковой печи. Описание последовательности отжига и охлаждения металла. Описание циклограммы процесса отжига. Требование к видам и характеристикам энергообеспечения. Техническое обеспечение АСУ.
дипломная работа [3,1 M], добавлен 19.01.2017Явление полиморфизма в приложении к олову. Температура разделения районов холодной и горячей пластической деформации. Технология поверхностного упрочнения изделий из стали. Определение температуры полного и неполного отжига и нормализации для стали 40.
контрольная работа [252,2 K], добавлен 26.03.2012Проектирование термического отделения для непрерывного отжига автолистовой стали с последующим цинкованием с заданной годовой программой. Общая характеристика и расчеты технологических процессов, технические характеристики агрегатов, их эффективность.
дипломная работа [469,2 K], добавлен 20.02.2011Дилатометрическая кривая распада мартенсита. Влияние печной атмосферы при нагреве. Режимы термической обработки (температура и время нагрева). Отжиг для снятия напряжений после горячей обработки литья, сварки, обработки резанием. Влияние скорости нагрева.
лекция [67,1 K], добавлен 14.10.2013