Сущность металлического стекла

Состав, структура, основные способы получения сплавов и механические свойства металлических стекол. Массовое использование аморфных металлических сплавов, работающих в электрических полях. Основные сферы современного применения металлических стекол.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 19.02.2016
Размер файла 278,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

металлический сплав стекло

Введение

1. Металлические стёкла

2. Состав, структура, свойства

3. Механические свойства металлических стекол

4. Область применения

Заключение

Список используемой литературы

Введение

Прочность и пластичность являются актуальными направлениями исследований механики разрушения. Данные области механики деформируемого твердого тела интенсивно развиваются в большой мере в связи с всё возрастающими запросами промышленности, из-за чего роль новых материалов и технологий с каждым годом возрастает. Их разработка, получение и изучение свойств является объективной необходимостью развития человеческого общества.

Открытие электропластического эффекта на металлах привело к более глубокому пониманию механизма пластической деформации . Появилась возможность управлять механическими свойствами металлических материалов.

В экспериментах с импульсным током было обнаружено увеличение пластичности и уменьшение хрупкости металла. Электрический ток вызывает также увеличение скорости релаксации напряжений в металле и оказывается удобным технологическим фактором для снятия внутренних напряжений. Электропластический эффект линейно зависит от плотности тока, наиболее выражен при импульсном токе, а при переменном токе отсутствует.

Целесообразность расширения использования электропластического эффекта стала очевидной, так как его применение снижает энергетические затраты, а значит и экономические. В частности, в промышленности различные материалы широко используются в электрических полях, вследствие чего их механические характеристики меняются.

Физические свойства металлических стекол (высокая прочность в сочетании с пластичностью, высокая твердость, коррозионная стойкость, стойкость к истиранию и удельное электросопротивление и др.) определяются не только химическим составом, но и структурным состоянием этих материалов.

Массовое использование аморфных металлических сплавов, работающих в электрических полях, ставит задачи по изучению их механических свойств в условиях действия импульсного электрического тока.

1. Металлические стёкла

Стекловидные металлы , метглассы, металлич. Сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического расплава (скорость охлаждения 106 К/с). Быстрый теплоотвод достигается, если, по крайней мере, один из размеров изготовляемого образца достаточно мал (фольга, лента, проволока). Расплющиванием капли расплава между охлаждаемыми наковальнями получают фольгушириной 15 -- 25 мм и толщиной 40--70 мкм, а охлаждением на вращающемся барабане (диске) или прокаткой струи между двумя валками -- ленту шириной 3--6 мм и толщиной 40--100 мкм. Выдавливанием расплава в охлаждённую жидкость могут быть изготовлены в виде проволоки.

Изучение металлических стёкл позволяет исследовать природу металлических, магнитных и другие свойства твёрдых тел.

Высокая прочность (приближается к теоретическому пределу для кристаллов) в сочетании с большой пластичностью и высокой коррозионной стойкостью делает металлические стёкла перспективными упрочняющими элементами для материалов и изделий.

Некоторые металлические стёкла например Fe80B20 --ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью, что обусловливает их применение в качестве магнитно-мягких материалов. Другой важный класс аморфных магнитных материалов -- сплавы редких земель с переходными металлами. Перспективно использование электрических и акустических свойств металлических стёкл (высокое и слабо зависящее от температуры, электричества, сопротивления, слабое поглащение вука).

В 90х объемные металлические стекла (ОМС) с размером > 1 мм в каждом из 3х пространственных измерений (Рис. 1) удалось получить на базе широко распространенных металлов: магния, титана, меди, железа и т.д. в двойных, тройных, четверных и многокомпонентных сплавах.

Рис. 1. Образцы отливок объемные металлические стекла (оптическое изображение)

Статистический анализ имеющейся информации по ОМС показал рост их стеклообразующей способности от двойных к тройным и четверным сплавам.

2. Состав, структура, свойства

Состав металлических стёкл равен 80% переходных (Cr, Mn, Fe, Co, Ni, Zr, Pr и др.) или благородных металлов и около 20% поливалентных неметаллов (В, С, N, Si, P, Ge и др.), играющих роль стекло-образующих элементов. Примеры-- бинарные сплавы Au81Si19, Pd81Si19 и Fe80B20) и псевдобинарные сплавы, состоящие из 3--5 и более компонентов. Металлические стёкла -- метастабильные системы, которые кристаллизуются при нагревании до температуры, равной Ѕ температуры плавления.

Aтомная структура стёкол демонстрирующая отсутствие дальнего порядка в расположении атомов (Рис. 2) определяют их свойства, в частности механические. По величине прочности и удельной прочности они значительно превосходят соответствующие кристаллические сплавы из-за невозможности использования механизмов аккомодационной деформации дислокационного или двойникового типа. Условный предел текучести объемных металлических стёкл достигает ~2 GPa для объемных металлических стёкл на основе Cu, Ti и Zr, ~3 GPa на основе Ni, ~4 GPa на основе Fe, ~5 GPa на основе Fe и Co, а также 6 GРa для кобальтовых сплавов. Структура металлического стекла также обеспечивает упругую деформацию до 2 %, что в сочетании с высоким пределом текучести обуславливает большие значения запасенной энергии упругой деформации (показатели уy2/E и уy2/сЕ, где уy, с и Е - предел текучести, плотность и модуль Юнга, соответственно). Следует отметить, что недавние исследования указывают наличие атомных кластеров в объемных металлических стёкл.

Рис. 2. Изображение просвечивающей электронной микроскопии высокого разрешения и картины дифракции от выбранной области субмикроскопического размера (SAED) и наноразмера (NBD). Заметно отсутствие дальнего порядка в расположении атомов. Размер областей рассеяния показан кругами условно. (В России изучением структуры занимаются, в частности, А.С. Аронин и Г.Е. Абросимова)

Объемные металлические стекла обладают не только высокой прочностью, твердостью, износостойкостью и большими значениями упругой деформации до начала пластической деформации, но и высоким сопротивлением коррозии, включая самопроизвольную пассивацию в некоторых растворах. Высокая твердость, износостойкость, качество поверхности объемных металлических стёкл, а также текучесть при нагреве определяет их применение в микромашинах в качестве механизмов передач (шестеренок), компонентов высокоточных механических систем. Объёмные металлические стекла на основе железа и кобальта с намагниченностью насыщения до 1.5 T имеют рекордно низкие значения коэрцитивной силы менее 1 А/м и активно используются как магнитомягкие материалы. Следует отметить, что в России металлическими стеклами на основе железа и кобальта занимались такие ученые как А.М. Глезер, С.Д. Калошкин и многие другие. Явление стеклования, наблюдаемое при переходе из жидкости в стекло и расстекловывания при нагреве, является одной из самых важных не до конца решенных проблем физики твердого тела. А именно, являются ли аморфная и жидкая фазы одной и той же фазой, только наблюдаемой при разных температурах, или же имеет место фазовый переход из жидкого состояния в аморфное и обратно, и если это так, то какого рода этот фазовый переход? Некоторые успехи достигнуты с использованием компьютерного моделирования, но полной ясности еще нет.

Пластическое течение в металлических стеклах осуществляется в виде сильно локализованных сдвиговых деформационных полос. В случае, когда механические условия таковы, что удается избежать катастрофической нестабильности процесса, имеются множественные полосы сдвига при одноосном сжатии, изгибе, прокатке и протяжке, а также при локализованном индентировании.

Деформации в отдельных полосах исключительно велики. При исследовании поверхностных реплик с подвергшихся резкому изгибу лент Pd80Si20 с помощью трансмиссионной электронной микроскопии Масумото и Маддин наблюдали полосы сдвига шириной ~ 200 Е. С помощью интерференционной микроскопии на поверхности были обнаружены связанные с ними ступеньки высотой до 2000 ?, что свидетельствует о сдвиговых деформациях в полосе. Такие полосы появляются задолго до разрушения, следовательно, сдвиговая деформация разрушения материала превышает значение 200 Е. Способность выдерживать большие деформации связана с отсутствием жесткой пространственной направленности связей структуры или с тем, что аморфная матрица относительно свободна от таких макроскопических дефектов, как поры, оксидные включения, отдельные кристаллики и т.д. Первое объясняет пластичность металлических стекол по сравнению с другими неорганическими стеклами типа диоксида кремния, имеющими ковалентные связи; второе объясняет наличие более локализованной пластичности металлических стекол в сравнении с пластичностью при изгибе стальных листов.

Сильная локализованная сдвиговая деформация уже сама по себе свидетельствует об отсутствии деформационного упрочнения в металлических стеклах. Дополнительное подтверждение этому дают испытания на сжатие, выполненные Пампилло и Ченом на аморфном сплаве Pd77,5Cu6Si16,5. Стекло этого состава аморфизуется, что позволяет получать стержни большого диаметра (~ 2 мм), удобные для проведения испытаний на сжатие. Образцы подвергались сжатию до появления полос деформации. После этого они подверглись полировке для удаления образованных полосами ступенек на их поверхности и впоследствии были снова нагружены.

Оказалось, что полосы, возникшие после первого нагружения, проявились снова, хотя концентраторов напряжений, связанных со ступеньками скольжения на поверхности, не было. Этого не было бы при наличии деформационного упрочнения полос. Форма кривых «напряжение - деформация» свидетельствует об отсутствии деформационного упрочнения: напряжение, необходимое для пластического течения, сохраняется приблизительно постоянным.

3. Механические свойства металлических стекол

Вследствие отсутствия деформационного упрочнения деформация стекол в режиме одноосного растяжения механически нестабильна, пластическое течение перерастает в разрушение. Для проволок растяжение создает катастрофическую сдвиговую неустойчивость. В случае лент, чтобы исключить надрыв, проявлению подобной неустойчивости предшествует образование шейки. При этом шейку трудно обнаружить, хотя ориентировка сдвига ясно указывает на ее существование, а при более высоких температурах образуется более развитая шейка и легко наблюдаемая.

Для лент металлических стекол с постоянным поперечным сечением при растяжении типично разрушение путем распространения надрыва, характерное для тонких полос высокопрочных материалов. Разрушение начинается обычно в захватах вследствие существующих там концентраций напряжений. Надрыв распространяется аналогично винтовой дислокации в плоскости, ориентированной под углом ~ 45° по отношению к оси растяжения и нормали к поверхности ленты. В пластической зоне, примыкающей к трещине, осуществляется локализованная сдвиговая деформации, и по деформированному материалу происходит сдвиговый разрыв.

В радиально симметричном образце тенденция к надрыву устранена, и разрушение происходит одновременно со сдвиговой нестабильностью. По всему поперечному сечению образца под углом 45° к оси растяжения развивается исключительно сильная полоса сдвига, по которой и происходит сдвиговой разрыв.

На поверхности разрушения стекол обычно наблюдается небольшая гладкая область, соответствующая начальному сдвигу. Остальная часть поверхности отмечена "венообразным узором", который впервые наблюдал и описал Лими. Используя стереосканирующую электронную микроскопию, Лими с сотрудниками установили, что вены представляют собой выступы на плоском фоне. В материале зарождаются и распространяются по полосе сдвига сдвиговые дискообразные трещины. Там, где они встречаются, материал разрушается путем образования внутренних шеек, в результате чего появляются плавно закругляющиеся "вены". Образование сдвиговых дискообразных трещин происходит с участием дилатации (расширения или сжатия) образца. Это подтверждается тем фактом, что при растяжении аморфной проволоки в условиях наложенного гидростатического давления трещина возникает предпочтительно на наружной периферии зоны сдвига. В этом случае на поверхности разрушения преобладает семейство тесно расположенных, приблизительно параллельных вен, ориентированных перпендикулярно направлению сдвига. Короткие сегменты трещин распространяются как винтовые компоненты дислокационной петли, оставляя позади себя вены, которые являются аналогами диполей краевых дислокаций.

Окончательное разрушение проволоки, испытываемой на усталость, происходит всегда одновременно с общим течением по оставшейся части сечения, по которой еще не распространилась усталостная трещина. Разрушение ленты с базой происходит таким же образом, если прикладываемое растягивающее напряжение составляет приблизительно 99% от напряжения течения. В случае меньших уровней напряжений разрушение происходит под углом 45°. В последнем случае в центральной части сечения непосредственно перед усталостной трещиной имеет место трехосное напряженное состояние. Поверхность катастрофического разрушения ориентирована под углом 90° к оси растяжения. Макроскопически такое разрушение носит хрупкий характер. При этом усталостная трещина распространяется от места своего зарождения по площади, представляющей собой полуокружность. После этого происходит быстрое разрушение. Для поверхности разрушения, ориентированной под углом 90° к оси растяжения, характерен классический V-образный "шевронный" узор, линии которого ориентированы к месту образования трещины. При более подробном рассмотрении поверхности разрушения шевроны имеют пилообразную форму с поверхностями, расположенными наклонно по отношению к оси растяжения. Детальное изучение этих поверхностей показало, что они покрыты тонкой сеткой равноосного "венообразного" узора. Это свидетельствует о том, что даже при макроскопических условиях плоской деформации локальное разрушение происходит сдвиговым путем.

4. Область применения

Интерес к металлическим стеклам был инициирован, прежде всего, возможностями их применения в технике, основанными на необычных свойствах этих материалов.

Механические свойства металлических стёкол позволяют применять их в качестве упрочняющих нитей в композитных материалах, используемых в строительстве, аэронавтике и спорте, а также для армирования бетона и подобных материалов. Прочные ленты могут быть использованы в качестве намотки для упрочнения сосудов высокого давления или для построения больших маховых колес, используемых для аккумулирования энергии. Высокая твердость и отсутствие границ зерен позволяют получать отличные режущие кромки, в частности бритвенных лезвий. Могут найти применение некоторые виды пружин, изготовленных из металлических стекол.

Магнитные свойства, металлических стекол открывают возможность их применения в качестве материалов для сердечников индуктивных составляющих электронных схем, в силовых трансформаторах, где они могут заменить обычные сплавы Fe-Si с ориентированными зернами, а также в двигателях, в качестве магнито - мягких материалов для магнитного экранирования, в качестве записывающих магнитных головок, датчиков, возбудителей механических фильтров и линий задержки.

Благодаря своим электрическим свойствам металлические стекла могут применяться, например, в качестве термометров сопротивления и нагревателей при низких температурах и прецизионных резисторов с нулевым температурным коэффициентом сопротивления. Сверхпроводящие ленты из металлического стекла нечувствительны к радиационным повреждениям и, следовательно, могут оказаться предпочтительными для применений в технике термоядерного синтеза.

Хорошее сопротивление коррозии делает их очень ценными для химии, хирургии, биомедицины. Однако для таких применений в общем случае металлические стекла должны иметь не лентообразную, а какую-то другую форму.

Возможны также другие применения металлических стекол, например, в качестве фольги для пайки твердым припоем, эмиссионных катодов, плавких предохранителей и аккумуляторов водорода.

Заключение

Первоначально металлические стекла были предметом лишь научного интереса, как новое, необычное состояние твердого тела, однако сейчас они интенсивно используются в промышленности.

Появление металлических стекол (сплавов с низкой критической скоростью охлаждения, позволяющей получать в аморфном состоянии слитки весом до 1 кг и более) создало перспективу их применения и в качестве конструкционных материалов. У металлических стекол есть и недостатки. Они имеют довольно малую пластичность, а также теряют прочность при повышении скорости нагрузки. Однако все же аморфные сплавы можно считать пластичными стеклами: их можно подвергать вырубке и резке на полосы в штампах, на проволоку, их можно сплести и согнуть. Их них можно изготовить плетеные сетки, которые удачно заменят арматуру в железобетонных плитах, канаты, прочные волокнистые композиты и самые разные изделия, что позволит сэкономить огромное количество металла.

Список используемой литературы

1. Гилман Д.Д., Лими Х.Д. Металлические стекла. М.: Металлургия. 1984. 264с.

2. Бобров О. Л. , Лаптев С.Н. , Хоник В.А. Релаксация напряжений в массивном металлическом стекле Zr52.5Ti5CU17.9Ni14.6 AII0 // ФТТ. 2004. Т. 46. Вып. 6. С. 457 - 460.

3. Кожушка А.А., Синани А.Б. Скорость нагружения и хрупкость твердых тел. // ФТТ. 2005. Т. 47. Вып. 5. С. 812 - 815.

4. Альшиц В.И., Даринская Е.В., Колдаева М.В., Петржик Е.А. Магнитопластический эффект: основные свойства и физические механизмы // Кристаллография. 2003. Т. 48. Вып. 2. С. 826-854.

5. Моргунов Р.Б., Баскаков А.А., Трофимов И.Н., Якунин Д.В. Роль термоактивируемых процессов в формировании магниточувствительных комплексов точечных дефектов в монокристаллах NaCl: Eu // ФТТ. 2003. Т. 45. Вып. 2. С. 257-258.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие [4,8 M], добавлен 13.11.2013

  • Достоинства и недостатки металлических конструкций. Классификация нагрузок и воздействий. Области применения и номенклатура металлических конструкций. Физико-механические свойства стали. Расчет металлических конструкций гражданских и промышленных зданий.

    презентация [17,3 M], добавлен 23.02.2015

  • Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат [42,3 K], добавлен 19.07.2010

  • Изучение методики построения диаграмм состояния металлических сплавов. Исследование физических процессов и превращений, протекающих при кристаллизации сплавов. Виды термической обработки. Анализ влияния температуры на растворимость химических компонентов.

    контрольная работа [4,4 M], добавлен 21.11.2013

  • Улучшение эксплуатационных и технологических свойств металлического материала благодаря сплаву металлов. Фазы металлических сплавов. Диаграммы фазового равновесия. Состояние сплавов с неограниченной растворимостью компонентов в твердом состоянии.

    реферат [82,8 K], добавлен 31.07.2009

  • Понятие о металлических сплавах. Виды двойных сплавов. Продукты, образующиеся при взаимодействии компонентов сплава в условиях термодинамического равновесия. Диаграммы состояния двойных сплавов, характер изменения свойств в зависимости от их состава.

    контрольная работа [378,1 K], добавлен 08.12.2013

  • Аустенитные и азотосодержащие коррозионно-стойкие стали: способы получения, технология производства, выплавка, термомеханическая обработка, основные свойства. Метод электрошлакового переплава металлических электродов в водоохлаждаемый кристаллизатор.

    дипломная работа [2,7 M], добавлен 19.06.2011

  • Основные сорта стекол, применяемые при машинном изготовлении стеклянных трубок. Возможные соединения керамических материалов с соответствующими сортами стекла. Обработка поверхности стекол. Его сверление и резание. Травление стекла и плавленого кварца.

    реферат [396,6 K], добавлен 28.09.2009

  • Материалы для получения искусственной стекольной массы. Технология варки стекла. Физические, механические, термические и электрические свойства. Газопроницаемость и обезгаживание стекол. Химическая стойкость. Исходные материалы для стеклодувных работ.

    курсовая работа [114,2 K], добавлен 11.07.2009

  • Производство металлических пен из расплавов металлов. Свойства пеноалюминия и пеноникеля. Применение металлических пен в машиностроении, космических технологиях, строительстве и медицине. Их использование для уменьшения концентрации нежелательных ионов.

    курсовая работа [586,3 K], добавлен 07.01.2014

  • Технология получения ситаллов и стеклокристаллического материала. Характеристика барий-боратного стекла и его кристаллизации. Составы фторидных стекол. Методика варки и отжига стекол. Спектры комбинационного рассеяния света. Люминесценция в стеклах.

    дипломная работа [2,2 M], добавлен 13.02.2013

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

  • История производства стекла. Основные стеклообразующие вещества. Различные виды стекол и их основные свойства. Тонированное, цветное, художественное, защитное, узорчатое и зеркальное стекла. Применение стекла в оптической и строительной промышленности.

    презентация [5,2 M], добавлен 20.04.2013

  • Подготовка стеклобоя до его поступления в стекловаренные печи, освобождение от металлических включений и обработка в моечном барабане. Использование бетонного лома, отходов цементных заводов. Применение стекол при иммобилизации радиоактивных отходов.

    курсовая работа [1,2 M], добавлен 15.10.2011

  • Определение характеристик прозрачности цветных стекол. Определение показателя преломления и плотности методом гидростатического взвешивания. Сравнительная таблица результатов с нормируемыми величинами в ГОСТе. Технология получения цветного стекла.

    курсовая работа [575,0 K], добавлен 27.05.2013

  • Диаграммы состояния и кристаллизация металлических сплавов с неограниченной растворимостью в твердом состоянии. Методы построения диаграмм состояния. Правило фаз Гиббса. Кристаллизация сплавов и твердых растворов. Правило концентраций и отрезков.

    контрольная работа [122,1 K], добавлен 12.08.2009

  • Сущность процессов спекания изделий из порошков. Особенности получения отливок из медных сплавов. Технологический процесс ковки, ее основные операции. Производство стали в дуговых электрических печах. Способы электрической контактной сварки металлов.

    контрольная работа [208,1 K], добавлен 23.05.2013

  • Эксплуатационные свойства металлов. Классификация металлических материалов. Черные и цветные металлы, их сплавы. Стали для режущих и измерительных инструментов. Стали и сплавы со специальными свойствами. Сплавы алюминия и меди. Сплавы с "эффектом памяти".

    курсовая работа [1,6 M], добавлен 19.03.2013

  • Технический процесс, применение, спекание и окончательная обработка порошковых изделий. Технология производства и свойства металлических порошков. Особенности формования заготовок из порошковых материалов. Сущность и эффективность порошковой металлургии.

    контрольная работа [871,3 K], добавлен 30.03.2010

  • Механические свойства, обработка и примеси алюминия. Классификация и цифровая маркировка деформируемых алюминиевых сплавов. Характеристика литейных алюминиевых сплавов системы Al–Si, Al–Cu, Al–Mg. Технологические свойства новых сверхлегких сплавов.

    презентация [40,6 K], добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.