Разработка современных хладагентов

Хладагент как рабочее вещество холодильной машины. История появления и развития холодильников. Использование фреонов, основные факторы их экологической опасности. Исследования возможности синтеза максимально экологичных и более качественных хладагентов.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.03.2016
Размер файла 79,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

на тему: “Современные хладагенты”

Процесс охлаждения в холодильниках осуществляется при участии специальных веществ - хладагентов. Какие только хладагенты не использовались с момента изобретения холодильника и до наших дней! Некоторые из них были довольно вредны для здоровья человека. В современных аппаратах применяются соединения, безопасные как для людей, так и для окружающей среды.

Хладагент -- это рабочее вещество холодильной машины, которое при кипении и в процессе испарения отнимает тепло от охлаждаемого объекта, а затем после конденсации передаёт его окружающей среде.

Современные холодильники в основном компрессионные и, как следует из названия, имеют компрессор (а некоторые модели даже два). Кроме этого, конструкция предусматривает испаритель. Меж ними циркулирует хладагент. Сначала сжатый компрессором хладагент, находясь в газообразном состоянии, поступает в конденсатор -- длинную зигзагообразную трубку. Там он превращается в жидкость и отдаёт тепло окружающей среде. Через специальный регулирующий вентиль жидкий хладагент поступает в испаритель, который находится внутри теплоизолированной морозильной или холодильной камеры. Там давление падает, он начинает кипеть, испаряется, снова превращаясь в газ, отбирая при этом тепло у окружающего воздуха. Камера холодильника охлаждается. Испарившийся хладагент опять сжимается компрессором и попадает в конденсатор. И так цикл повторяется снова и снова. Этот принцип охлаждения используется в большинстве холодильников уже десятки лет.

хладагент холодильник фреон экологический

Схема компрессионного холодильника:

1 -- компрессор; 2 -- нагнетательный трубопровод; 3 -- конденсатор; 4 -- фильтр-осушитель; 5 -- капиллярная трубка; 6 -- испаритель холодильной камеры; 7 -- испаритель морозильной камеры; 8 -- всасывающий трубопровод

Однако есть и другой тип холодильников, пусть и менее популярный сегодня, -- абсорбционные. Циркуляция рабочих веществ: абсорбента (воды) и хладагента (как правило, аммиака), имеющих разную температуру кипения при атмосферном давлении, осуществляется посредством абсорбции. Аммиак поглощается водой, получившаяся смесь подогревается с помощью электрического или газового нагревателя. При этом происходит выпаривание аммиака, который, испаряясь, потребляет теплоту камеры холодильника, то есть способствует её охлаждению. Абсорбционные холодильники в основном маленькие, однокамерные. Яркий пример такой техники -- великолукские холодильники «Морозко».

Как всё начиналось

История появления холодильников, конечно, не сравнится с историей цивилизации, но всё-таки насчитывает несколько веков. В древности снег и лёд помогали людям сохранять пищу (этот способ длительного хранения продуктов питания пришёл в Европу из северных широт). У народов, населявших те края, замороженные рыба, оленина и ягоды хранились месяцами. Однако в более тёплом климате нужны были специальные ледяные шкафы, а поставлять лёд для них стоило очень дорого. Те, кто не мог себе это позволить, вынуждены были хранить продукты по-другому: квасить капусту, солить мясо, сушить фрукты и грибы. Так продолжалось довольно долго. Постепенно начали проводиться различные исследования, способствующие поиску решения вопроса сохранения пищи. Но прорыва удалось достигнуть только в 19 веке. В 1834 году появилась первая холодильная компрессионная машина. Тогда-то мир и столкнулся впервые с хладагентами. В этой машине использовался диэтиловый эфир.

Серийное производство холодильников в начале XX века активнее всего развивалось в США. Практически во всех машинах того времени в качестве хладагента использовались аммиак, различные эфиры и некоторые другие весьма токсичные и опасные для человека вещества. Из-за поломок таких агрегатов и контакта людей, в частности, с аммиаком высокой концентрации нередки были даже смертельные случаи. Поэтому учёные стали искать другие вещества, которые можно использовать в качестве хладагентов. Так появились фреоны.

Воцарение фреонов

Фреоны -- это химические соединения на основе метана или этана. Их физическое состояние -- газы без цвета и запаха, безвредные для человека. Первой фреон синтезировала американская компания «Кинетик Кемикалз Инк» в начале 30-х годов прошлого века. Эта же фирма и дала название новому веществу. Тогда же было введено его обозначение: латинская буква «R» (по первой букве английского слова Refrigerant) -- и цифры: код, определяющий свойства. Первый фреон назывался R-12 (дифтордихлорметан). Фреон из чистого метана имеет марку R-50, а из этана -- R-70. Все остальные фреоны получаются смешением этих двух газов и замещением атомов водорода атомами хлора или фтора.

Сейчас в мире синтезировано более четырех десятков различных фреонов, отличающихся по свойствам и химическому составу. Основные требования, которые предъявляются к фреонам, -- это минусовая температура кипения при атмосферном давлении, конденсация при низком давлении, а также высокая хладопроизводительность. Кроме этого, необходимы высокий коэффициент теплопроводности и теплопередачи. Желательна и низкая стоимость. Таким требованиям лучше других раньше отвечали фреоны R-12 и R-11 (фтортрихлорметан), использовавшиеся обычно в бытовых холодильниках, а также R-22 (дифторхлорметан), применявшийся в низкотемпературных промышленных холодильных установках. Для получения очень низких температур были разработаны хладагенты R-13, R-503 и R-13B1.

Скрытая угроза

Всё шло прекрасно: и производители, и потребители были довольны. К 1976 году объём производства того же R-12 достиг почти 340 тысяч тонн. Определённая часть из этого количества предназначалась как раз для холодильных систем, систем охлаждения воздуха, баночек с аэрозолями… Но 80-е годы прошлого века стали началом «тяжелых времён» для уже привычных фреонов. Ученые, исследовавшие причины нарушения озонового слоя Земли, пришли к выводу, что многие фреоны наносят ему ощутимый вред. Также оказалось, что фреоны участвуют в возникновении парникового эффекта, потому что задерживают инфракрасное излучение, которое испускает земная поверхность, а следовательно, способствуют глобальному потеплению.

Вообще, «экологическая опасность» фреонов зависит от содержания трех составляющих: хлора, фтора и водорода. Чем меньше атомов водорода, тем дольше фреон не разлагается и не наносит вред окружающей среде. А по мере увеличения числа атомов хлора растёт токсичность и озоноразрушающая способность фреонов. Вред, наносимый такими веществами озоновому слою, оценивается величиной озоноразрушающего потенциала. Чем он больше, тем вреднее фреон. Так, самый распространённый ранее -- R-12 -- имеет потенциал равный 1, R-22 -- 0,05, а наиболее вредными являются фреоны R-10, R-110, у которых озоноразрушающий потенциал достигает 13.

Чтобы защитить нашу планету от разрушительной деятельности человека, в 1987 году в соответствии со специальной программой ООН вступил в действие «Монреальский протокол по веществам, разрушающим озоновый слой», предусматривающий постепенное сокращение производства и потребления ряда вредных фреонов. Поэтому с тех пор в холодильниках не используют R-10, R-110. В 1992 году на конференции в Копенгагене было принято решение и о прекращении производства озоноопасных фреонов R11, R12 и R502 с 1 января 1996 года. Заменой им стали озонобезопасные хладагенты, такие, как R-410A, R-407C или R-134a (все три: гидрофторуглеродные соединения). Правда, безопасные агенты, например, R134а зачастую не отличаются прекрасными физическими и термодинамическими свойствами, и к тому же стоят довольно дорого, например, килограмм R-410A в 7 раз дороже такого же количества обычного R-22. Также используются смеси, из нескольких хладагентов.

Альтернатива фреонам

Однако и сегодня постоянно ведутся исследования, учёные пытаются синтезировать новые, максимально экологичные, более качественные по своим свойствам хладагенты. Разработкой альтернативных хладагентов озабочены многие государства, вкладывающие значительные финансовые средства в соответствующие исследования. По оценкам специалистов, за последние шесть лет на синтез новых хладагентов было потрачено свыше 2,4 миллиардов долларов.

Синтезированы хладагенты из пропана (R290), этилена (R1150), пропилена (R1270), изобутана (R600a). Производство холодильников, работающих на изобутане, освоили многие производители, причём не только в Европе или в Америке, но и на просторах бывшего СССР. Например, белорусская фирма Atlant предлагает покупателям модель 1842--38 за 15000 рублей, да и остальные свои модели этот производитель «перевёл» на безопасный изобутан.

Фирмой Du Pont был разработан ряд новых смесей хладогентов, известных под марками SUVA MP, SUVA МР39 (R401A), SUVA MP52 (R401C) и некоторые другие.

В качестве экологичных хладагентов довольно часто применяют углеводороды, азот и диоксид углерода. Сегодня в бытовых холодильниках чаще всего используются различные смеси и агент R-134a, причём как в бюджетных моделях, например, в Indesit B 16 за 13800 рублей, так и в дорогих, таких, как Sharp SJPV-50 HW за 63000 рублей, а в промышленных -- хладагенты R507, R717, R-407C и их аналоги.

Увы, пока говорить о каком-то идеальном по своим характеристикам хладагенте рано. Сегодня главное то, что удалось разработать хладагенты безопасные для человека и окружающей среды. Именно они и используются в бытовых холодильниках и кондиционерах. Ну, а дальнейшее их совершенствование -- дело времени.

Размещено на Allbest.ru

...

Подобные документы

  • Основы эксплуатации компрессионных холодильников и установок. Компрессорные холодильные машины: описание принципиальной схемы и особенности ее применения, расчет показателей экономичности, расхода хладагентов. Маркировка холодильников, сфера применения.

    курсовая работа [347,9 K], добавлен 18.02.2011

  • Использование в холодильной технике летучих жидкостей. Наиболее употребительные хладагенты. Простой паровой цикл механической холодильной машины. Единицы измерения холода. Термоэлектрическое охлаждение. Схема компрессионной холодильной установки.

    реферат [705,8 K], добавлен 01.02.2012

  • Классификация холодильного оборудования и его пять основных категорий. Кондиционирование воздуха в определенном ограниченном пространстве. Регулирование влагосодержания гигроскопичных материалов. Международный стандарт и цифровые обозначение хладагентов.

    контрольная работа [14,4 K], добавлен 28.12.2011

  • Проектирование холодильной машины для фреона R12 и R134a. Проведение расчета испарителя и конденсатора. Построение цикла для R134a и вычисления в программах для эксплуатационных режимов R12 и R134a. Сравнительная характеристика фреонов R12 и R134a.

    курсовая работа [1,1 M], добавлен 30.08.2010

  • История развития и достижения современной холодильной техники. Определение температуры конденсации хладагента. Расчет и подбор холодильного оборудования (компрессоров, конденсатора, ресиверов). Автоматизация холодильных установок химического комбината.

    курсовая работа [2,7 M], добавлен 04.04.2016

  • Расчет теплопритоков в охлаждаемое помещение и необходимой производительности судовой холодильной установки. Построение рабочего цикла холодильной машины, ее тепловой расчет и подбор компрессора. Последовательность настройки приборов автоматики.

    курсовая работа [1,4 M], добавлен 25.12.2014

  • Холодильные агрегаты бытовых холодильников выполняют роль холодильных машин, т. е. служат для отвода тепла из холодильной камеры и передачи его в более теплую окружающую среду. Основные требования к ремонту компрессионых герметичных агрегатов.

    курсовая работа [11,4 M], добавлен 21.05.2008

  • Получение органических соединений, материалов и изделий посредством органического синтеза. Основные направления и перспективы развития органического синтеза. Группы исходных веществ для последующего органического синтеза. Методика органического синтеза.

    реферат [1,6 M], добавлен 15.05.2011

  • История появления стиральной машины. Активаторные стиральные машины: особенности, конструкция, достоинства. Устройство автоматической стиральной машины. Классы стирки, отжима и энергопотребления стиральной машины. Основные операции, выполняемые СМА.

    презентация [1,3 M], добавлен 16.03.2012

  • Расчет теоретического рабочего цикла паровой холодильной компрессорной машины. Подбор компрессорных холодильных машин, тепловой расчет аммиачного компрессора. Расчет толщины теплоизоляционного слоя, вместимости и площади холодильников, вентиляторов.

    учебное пособие [249,0 K], добавлен 01.01.2010

  • История развития и принцип работы пылесоса. Достоинства и недостатки моделей с мешками. Конструкция устройств с пылесборником более высокого класса. Домашние встроенные пылесосы, использование аквафильтра. Сухая и влажная уборка. Роботы и пароочистители.

    доклад [12,5 K], добавлен 12.12.2013

  • История развития швейной машины, надежность машин производства компании "Зингер". Общие сведения о механизмах швейной машины. Типы челночного устройства. Устройство швейной машины и принципы ее работы. Разновидности швейных машин и их предназначение.

    курсовая работа [2,4 M], добавлен 10.11.2010

  • Тепловая нагрузка при термообработке продуктов. Расчет толщины слоя теплоизоляции. Выбор холодильной машины и испарителей. Расчет эксплуатационных теплопритоков. Подбор и распределение воздухоохладителей. Выбор расчетного режима и холодильной машины.

    контрольная работа [1,4 M], добавлен 19.04.2013

  • Холодильная машина и комплекс составляющих ее технических элементов. Перенос тепла к источнику, температура которого значительно выше окружающей среды, при помощи холодильной машины. Классификация холодильных машин по виду затрачиваемой энергии.

    реферат [130,8 K], добавлен 01.04.2011

  • Классификация бытовых холодильников. Исследование технических решений, физического принципа действия холодильной установки и основных ее показателей. Примеры конструкций двухагрегатного двухкамерного холодильника. Разработка конструкции холодильника.

    курсовая работа [444,1 K], добавлен 11.03.2016

  • Элементы и принципы работы парокомпрессионной холодильной машины, их достоинства и недостатки. Отличия теоретического цикла паровой компрессионной холодильной машины от цикла Карно. Отделение жидкого холодильного агента от пара в отделителе жидкости.

    реферат [8,4 M], добавлен 21.11.2010

  • Понятие, классификация и область применения холодильной машины и теплового насоса - термодинамической установки, в которой теплота от низкопотенциального источника передается потребителю при более высокой температуре. Примерная схема теплоснабжения.

    реферат [41,8 K], добавлен 15.03.2011

  • Определение вместимости холодильной камеры. Теплотехнический расчет изоляции ограждающих конструкций. Определение теплопритоков в камеру и тепловой нагрузки. Тепловой расчет холодильной машины и воздухоохладителя. Подбор холодильного оборудования.

    курсовая работа [938,8 K], добавлен 11.02.2015

  • Системы охлаждения холодильных камер. Основные способы получения холода. Устройство и принцип действия компрессионной холодильной машины. Холодильные машины и агрегаты, применяемые в современной торговой деятельности. Их конструкция и основные виды.

    курсовая работа [1,3 M], добавлен 17.04.2010

  • Общие сведения о компрессионных холодильных агрегатах. Требования к отремонтированным холодильникам. Причины неисправностей бытовых холодильников. Операции по вакуумированию и заправке. Устройство для заполнения холодильного агрегата маслом и хладагентом.

    курсовая работа [1,4 M], добавлен 13.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.