Перемешивание в жидких средах

Особенности механического, пневматического и циркуляционного способов перемешивания в жидкой среде. Конструкция и принцип действия механических перемешивающих устройств. Пневматическое перемешивание путем барботирования. Способы крепления мешалок к валу.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 17.03.2016
Размер файла 348,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теоретическая часть

Процесс перемешивания в жидких средах применяется для приготовления суспензий, эмульсий и получения гомогенных систем (растворов), а также для интенсификации химических, тепловых и диффузионных процессов. В последнем случае перемешивание осуществляют непосредственно в предназначенных для проведения этих процессов аппаратах, снабженных перемешивающими устройствами.

Перемешивание в жидкой среде осуществляется тремя основными способами: механическим, пневматическим и циркуляционным.

Для экономичного проведения процесса перемешивания желательно, чтобы требуемый эффект перемешивания достигался за наиболее короткое время. При оценке расхода энергии перемешивающим устройством следует учитывать общий расход энергии за время, необходимое для обеспечения заданного результата перемешивания.

Механические перемешивающие устройства

В практике наибольшее распространение получил механический метод перемешивания жидких сред, осуществляемый путем механического воздействия рабочего органа (мешалки) на рабочую среду. Этот метод перемешивания используется в аппарате, состоящем, как правило, из корпуса, перемешивающего устройства и его привода.

Немаловажное значение в работе аппарата имеют тип и конструкция перемешиваемого устройства, работа которого заключается в превращении упорядоченной механической энергии вращающихся элементов в неупорядоченную тепловую энергию за счет сил сопротивления, создаваемых корпусом аппарата. В результате этого перемешивающее устройство осуществляет диссипацию энергии в объеме аппарата, величина которой зависит как от конструкции мешалки и характеристики привода, так и от конструкции аппарата и его внутренних устройств. Все эти характеристики аппарата в совокупности определяют мощность перемешивания N. Мерой мощности перемешивания может также служить объемная мощность, характеризующая диссипацию энергии в аппарате:

,

где Vж - объем перемешиваемой жидкости.

В аппарате любого объема в зависимости от частоты вращения имеют место различные гидродинамические режимы движения жидкости, определяющие величину Е. Области работы аппаратов поэтому могут быть охарактеризованы мерой этой величины - критерием мощности, который вычисляется по формуле:

где с - плотность перемешиваемой среды; d - диаметр мешалки; n - число оборотов мешалки.

Для аппаратов всех типов значение Kn зависит от центробежного критерия Рейнольдса:

Наиболее распространено механическое перемешивание, осуществляемое с помощью вращающихся мешалок в вертикальных цилиндрических аппаратах (рис. 1) объемом от 10 дм3 до 50 м3 (иногда до 2000 м3 и более).

Рис. 1 Аппарат с мешалкой. 1 -корпус; 2 - мотор-редуктор; 3 - стойка; 4 - уплотнение; 5 - вал, 6 - мешалка; 7 - отражательная перегородка, 8 - рубашка, 9 - опора-лапа, 10 - труба для передавливания смеси

Аппараты изготовлены, как правило, из углеродистых, низколегированных, Ni- и Mg-содержащих сталей (в том числе двуслойных), реже - из чугуна или Ti и его сплавов. Для защиты деталей от коррозии применяют также стеклоэмалевые покрытия, гуммирование, футеровку керамическими плитками или полимерными пленками. Аппараты для работы при атмосферном давлении снабжены плоскими днищами и крышками, под давлением или в вакууме (для давлений до 0,6 M Па выпускаются серийно, до 4 МПа и более, иногда до 100-200 МПа - по специальным разработкам - эллиптическими). Для нагревания или охлаждения жидкостей при давлении теплоносителя до 0,4 МПа служат приварные рубашки, при более высоких давлениях - рубашки из полутруб либо внутренние змеевики; теплоносители - вода, водяной пар, высокотемпературные органические жидкости, например смесь дифенил - дифениловый эфир, используется также электроподогрев.

Конструкции мешалок

Механические перемешивающие устройства состоят из трех основных частей: собственно мешалки, вала и привода. Мешалка является рабочим элементом устройства, закрепляемым на вертикальном, горизонтальном или наклонном валу. Привод может быть осуществлен или непосредственно от электродвигателя (для быстроходных мешалок), или через редуктор, или клиноременную передачу. По конструкции перемешивающих устройств (рис. 2) различают мешалки лопастные, пропеллерные, турбинные и специальные.

Рис. 2 Конструкции мешалок: а - турбинная; б - трехлопастная; в - фрезерная; г - якорная; д - рамная; е - ленточная; ж - шнековая

При выборе типа мешалки и ее параметров учитывают требования процесса, свойства жидкости (вязкость, наличие осадка и др.), форму аппарата и другие факторы.

В зависимости от числа оборотов мешалки условно делят на:

- Тихоходные (лопастные, рамные, листовые, якорные);

- Быстроходные (турбинные, пропеллерные).

По типу создаваемого мешалкой потока жидкости в аппарате различают мешалки, обеспечивающие тангенциальное, радиальное, осевое и смешанное течение.

Широкое применение в химической технологии нашли мешалки: лопастные, пропеллерные, турбинные и специальные: листовые, барабанные, дисковые, вибрационные и др.

Интенсивность перемешивания мешалками (количество энергии, вводимой в единицу объема перемешиваемой среды за единицу времени) для обеспечения заданной эффективности перемешивания (технологического эффекта процесса) назначается на основании опытных данных. Поэтому при подборе мешалки необходимо установить тип, размеры и число оборотов мешалки, которые обеспечивали бы назначенную интенсивность, а также определить мощность двигателя для мешалки. На основании практики установлено, что при работе мешалок различного типа в аппаратах возникают определенным образом направленные токи жидкости. Примером могут служить токи жидкости, возникающие в аппарате с лопастной мешалкой (рис. 3).

Рис. 3 Токи жидкости, возникающие в аппарате с лопастной мешалкой

Лопастные мешалки применяют для перемешивания жидкостей с небольшой вязкостью (до 0,1 Па•с), растворения и суспензирования твердых веществ с малым удельным весом, а также для грубого смешения жидкостей вязкостью меньше 20 Па•с. Лопастные мешалки отличаются простотой конструкции и низкой стоимостью изготовления. Наиболее просты по устройству мешалки с плоскими лопастями из полосовой или угловой стали, установленные перпендикулярно или наклонно к направлению их движения. Частота вращения таких мешалок колеблется от 18 до 80 об/мин, при увеличении частоты вращения выше указанной эффективность перемешивания резко снижается. Диаметр лопастей составляет 0,7 диаметра сосуда, в котором работает мешалка.

К недостаткам лопастных мешалок относятся: малая интенсивность перемешивания густых и вязких жидкостей, а также полная непригодность для перемешивания легко расслаивающихся веществ, для быстрого растворения, тонкого диспергирования и получения суспензий, содержащих твердую фазу с большим удельным весом.

Пропеллерные мешалки. Плоские лопасти мешалок, поверхность которых перпендикулярна направлению движения перемешиваемой жидкости, не могут обеспечить хорошего перемешивания во всех слоях жидкости, так как создают в ней главным образом только горизонтальные токи.

При использовании пропеллерных мешалок (рис. 4), в связи с переменным углом наклона поверхности лопасти, частицы жидкости при перемешивании направляются в различных направлениях, в результате возникают встречные токи, способствующие интенсификации перемешивания.

Рис. 4 Пропеллерная мешалка: 1- вал; 2 - корпус аппарата; 3 - диффузор; 4 - пропеллер

Для улучшения циркуляции перемешиваемой жидкости пропеллерную мешалку часто устанавливают в диффузоре. Диффузор представляет собой стакан, имеющий форму цилиндра или слегка усеченного конуса.

Пропеллерные мешалки применяют для интенсивного перемешивания маловязких жидкостей, взмучивания осадков, содержащих до 10 % твердой фазы с размерами частиц до 0,15 мм, приготовления суспензий и эмульсий. Пропеллерные мешалки непригодны для удовлетворительного перемешивания жидкостей значительной вязкости (более 0,6 Па•с) или жидкостей, содержащих твердую фазу высокой плотности.

Турбинные мешалки применяют для интенсивного перемешивания и смешения жидкостей с вязкостью до 10 Па•с мешалками открытого типа и до 50 Па•с мешалками закрытого типа, для тонкого диспергирования, быстрого растворения или выделения осадков в больших объемах. Мешалка состоит из одного или нескольких центробежных колес (турбинок), укрепленных на вертикальном валу. Турбинные мешалки могут быть двух типов: открытого и закрытого (рис. 5).

Рис. 5 Типы турбинок: а - открытая с прямыми радиальными лопатками; б - открытая с криволинейными лопатками; в - закрытая с направляющим аппаратом

Закрытые мешалки устанавливают внутри направляющего аппарата, представляющего собой неподвижное кольцо с лопатками, изогнутыми под углом от 45є до 90є. При частоте вращения 100-350 об/мин турбинные мешалки обеспечивают интенсивное перемешивание жидкости. Недостатки мешалок этого типа - относительная сложность конструкции и высокая стоимость изготовления.

Для перемешивания жидкостей в аппаратах, обогреваемых с помощью рубашки или внутренних змеевиков, в тех случаях, когда возможно выпадение осадка или загрязнение теплопередающей поверхности, применяют якорные или рамные мешалки. Они имеют форму, соответствующую форме аппарата, и диаметр, близкий к внутреннему диаметру аппарата или змеевика. При вращении эти мешалки очищают стенки и дно аппарата от налипающих загрязнений.

Листовые мешалки имеют лопасти большей ширины, чем лопастные, относятся к мешалкам, обеспечивающим тангенциальное течение перемешиваемой среды. Кроме чисто тангенциального потока, который является преобладающим, верхние и нижние кромки мешалки создают вихревые токи, подобные тем, которые возникают при обтекании жидкостью плоской пластины с острыми краями.

При больших скоростях вращения листовой мешалки на тангенциальный поток накладывается радиальное течение, вызванное центробежными силами. Листовые мешалки применяют для перемешивания маловязких жидкостей (вязкостью менее 0,05 Па•с), интенсификации процессов теплообмена, при проведении химической реакции в объеме и растворении.

Барабанные мешалки состоят из двух цилиндрических колец, соединенных между собой вертикальными лопастями прямоугольного сечения. Высота мешалки составляет(1,5-1,6)d. Мешалки этой конструкции создают значительный осевой поток и применяются (при отношении высоты столба жидкости в аппарате к диаметру барабана не менее 10) для проведения газожидкостных реакций, получения эмульсий и взмучивания осадков.

Дисковые мешалки представляют собой один или несколько гладких дисков, вращающихся с большой скоростью на вертикальном валу. Течение жидкости в аппарате происходит в тангенциальном направлении за счет трения жидкости о диск, причем сужающиеся диски создают также осевой поток. Иногда края диска делают зубчатыми. Диаметр диска 0,1-0,15 диаметра аппарата. Окружная скорость равна 5-35 м/с, что при небольших размерах диска соответствует очень высоким числам оборотов.

Вибрационные мешалки имеют вал с закрепленными на нем одним или несколькими перфорированными дисками. Диски совершают возвратно-поступательное движение, при котором достигается интенсивное перемешивание содержимого аппарата. Мешалки используются для перемешивания жидких смесей и суспензий преимущественно в аппаратах, работающих под давлением. Время, необходимое для растворения, гомогенизации, диспергирования при использовании вибрационных мешалок, меньше, чем для мешалок других типов. Поверхность жидкости при перемешивании этими мешалками остается спокойной, воронки не образуется.

Пневматическое перемешивание путем барботирования

Перемешивание жидкостей часто проводят путем пропускания через них мелких пузырьков газа (воздуха) или пара. Такое перемешивание называют барботированием, а соответствующие приспособления барботерами. Способ перемешивания путем барботирования газа или пара является весьма простым и применяется особенно часто в тех случаях, когда одним из перемешиваемых веществ является газ или воздух, или когда одновременно с перемешиванием ведут нагрев «острым» паром.

Простейшее приспособление для барботирования состоит из открытой трубы, опущенной до дна резервуара с перемешиваемой жидкостью.

Воздух выходит через нижний конец трубы и, поднимаясь кверху, увлекает за собой частицы жидкости. При этом возникают токи жидкости, интенсивностью которых возрастает (до некоторого предела) с увеличением скорости воздуха.

Во избежание ударов струи воздуха о днище аппарата конец трубы изгибают горизонтально.

Для более равномерного и интенсивного перемешивания устраивают барботеры из нескольких горизонтально расположенных труб со многими отверстиями (рис. 6).

Рис. 6 Воздушный барботер

Трубы необходимо устанавливать строго горизонтально, чтобы воздух при выходе из отверстий преодолевал одинаковое гидравлическое сопротивление и равномерно выходил из всех отверстий; кроме того, для лучшего перемешивания и уменьшения вредных потерь рекомендуется отверстия в трубах размешать по винтовой линии. Диаметр отверстий барботера выбирают возможно меньшим для лучшего распределения воздуха в жидкости; но для того чтобы не происходило засорение отверстий, они обычно имеют диаметр 3-6 мм.

Иногда вместо труб вблизи дна аппарата устанавливают колокол с зубчатыми краями для дробления воздуха или газа на мелкие пузырьки.

Воздух или газ подаются под давлением, достаточным для создания скоростного напора в трубопроводе, а также преодоления сопротивления трения и гидростатического сопротивления столба перемешиваемой жидкости в резервуаре.

Барботирование обладает преимуществами перед механическим перемешиванием в тех случаях, когда перемешиваемая жидкость отличается большой химической активностью и быстро разрушает механические мешалки. Однако при барботировании могут увлекаться с воздухом ценные летучие пары и газы, содержащиеся в жидкости, и могут возникнуть нежелательные побочные процессы окисления и осмоления перемешиваемой жидкости. Расход энергии; на барботирование больше, чем на механическое перемешивание.

Циркуляционное перемешивание. Этот вид перемешивания осуществляется путем принудительной циркуляции жидкости, чтобы возникла турбулентность, способствующая массообмену. Самым простым приемом циркуляционного перемешивания является циркуляция в сосуде при простом перекачивании.

Циркуляционное перемешивание может осуществляться с помощью сопла, которым снабжают выходное отверстие напорной трубы. При использовании погруженного сопла струя вытекающей из него жидкости примет форму конуса. Поток жидкости, вытекающей из сопла, толкает перед собой жидкость, находящуюся в этот момент перед соплом. На какой-то промежуток времени в пространстве, которое жидкость занимала, создается разрежение. Снижение давления немедленно вызывает подсасывание окружающей сопло покоящейся жидкости в эту часть пространства. И такой цикл повторяется непрерывно. Одновременно слои жидкости, окружающие струю, также приводятся в движение, а каждый слой жидкости, пришедший в движение, в свою очередь приводит в движение соседние слои жидкости.

Перемешивание при помощи сопла выгодно сочетать с нагреванием жидкости, находящейся в сосуде, прямой подачей пара. Пар входит через сопло в короткую расширяющуюся трубку, открытую с обеих сторон. Это устройство действует как инжектор. Выходящий пар просасывает жидкость через трубку и увлекает ее с собой в сосуд. Ударившись о противоположную стенку, поток поворачивает и перемешивает все содержимое сосуда.

Способы крепления мешалок к валу

перемешивание пневматический барботирование жидкий

Ступицу мешалки крепят на валу с помощью шпонки и стопорных устройств, препятствующих осевому смещению.

В случае установки мешалки в середине вала ее закрепляют стопорным винтом 1 (рисунок а), при установке на конце вала - концевой гайкой (рисунок б) или с помощью полуколец, которые закладываются в кольцевую выточку на валу (рисунок в)(рис. 7).

Рис. 7 Способы крепления мешалок к валу

Проектирование и выбор аппаратов

Интенсивность перемешивания, достаточная для проведения технологических процессов, достигается на практике обычно при использовании типовых аппаратов с перемешивающими устройствами, выбираемых по техническим каталогам. Стоимость таких аппаратов и трудоемкость их обслуживания, как правило, в 2-3 раза ниже, а надежность - в 1,5-3 раза выше, чем аппаратов, изготовляемых по специальным разработкам. Если же проектирование необходимо, его целесообразно производить с макс. применением стандартных узлов для обеспечения высокой надежности оборудования.

Механическое перемешивание изучено сравнительно полно: имеются методики и мат. модели, отражающие физ. механизм процесса и позволяющие осуществлять расчеты гидродинамики, теплообмена и массообмена со взвешенными частицами и др. с учетом свойств среды, конструкций мешалок и размеров аппаратов; созданы системы автоматизированного расчета и оптимального выбора оборудования из каталогов. Менее разработаны, однако, проблемы диспергирования капель и пузырьков в жидкости, массообмена в системах жидкость-жидкость и газ-жидкость, а также выравнивания концентраций перемешиваемых веществ в микроскопических объемах (микроперемешивание).

При проведении в реакторах гетерогенных реакций, скорость которых лимитируется массообменом, интенсификация перемешивание приводит к повышению скорости превращения. При осуществлении гомогенных реакций перемешивание способствует распределению концентраций и температуры, приближающемуся к равномерному (идеальное перемешивание). Степень близости к нему определяется отношением среднего времени пребывания среды в реакторе к времени выравнивания концентраций; это отношение принимается равным 10 и более и увеличивается с повышением скорости реакции, ее порядка и теплового эффекта.

В лабораторной практике применяют в основном те же способы перемешивания, что и в промышленности. Наиболее предпочтительно механическое перемешивание при относительно высокой регулируемой частоте вращения мешалок. Для перемешивания в открытых сосудах из стали и др. материалов обычно используют стеклянные и металлические (большие количества жидкости, вязкие среды, тяжелые осадки, например цинковая пыль или амальгама Na) мешалки различной формы; частота вращения 5 125 с-1, потребляемая мощность до 60 Вт. Мешалки приводятся во вращение от электрических и воздушных пневмоприводов, а также от водяных турбинок (при работе с легковоспламеняющимися жидкостями, например CS2 или эфиром).

Перемешивание в открытых либо закрытых стеклянных сосудах осуществляют часто с помощью электромагнитных мешалок. Принцип функционирования этих мешалок основан на том, что укрепленный на оси вертикально расположенного мотора электромагнит при вращении с частотой до 24с-1 приводит в движение якорь из мягкого Fe. Последний помещают в графитовую, стеклянную или полимерную ампулу, которую запаивают и помещают на дно смесителя. Электромагнитные мешалки применяют для перемешивание маловязких жидкостей (при гидрировании, электролизе, титровании и т.д.), при работе в глубоком вакууме и др. При необходимости изолировать реакционную смесь от действия воды и воздуха, а также для предотвращения утечки летучих веществ.

B мешалки герметизируют резиновыми или корковыми пробками, жидкостными затворами (ртутными или глицериновыми), цилиндрическими стеклянными шлифами.

При приготовлении растворов, взбалтывании смесей, перемешивание содержимого бутылей, колб и т. п., встряхивании делительных воронок, пробирок и пипеток используют различные вибрационные и встряхивающие устройства. Для исследований при высоких давлениях перемешивание легкотекучих сред в малоинтенсивных режимах обеспечивается в автоклавах-качалках или вращающихся автоклавах в случае заполнения их жидкостью на 50 60 %.

Размещено на Allbest.ru

...

Подобные документы

  • Процесс перемешивания, его цели, способы, выбор аппаратуры для его проведения. Наиболее распространенный способ перемешивания в жидких средах - механическое перемешивание. Основные достоинства лопастных мешалок. Устройство дисков вибрационных мешалок.

    курсовая работа [1,6 M], добавлен 08.11.2014

  • Промышленное применение и способы перемешивания жидких сред, показатели интенсивности и эффективности процесса. Движение жидкости в аппарате с мешалкой, конструктивная схема аппарата. Формулы расчёта энергии, затрачиваемой на процесс перемешивания.

    презентация [95,9 K], добавлен 29.09.2013

  • Обзор механических процессов химической технологии: сортирования, измельчения, прессования, дозирования. Особенности процесса и способов перемешивания. Виды смеси. Строение и использование лопастных, листовых, пропеллерных, турбинных, специальных мешалок.

    курсовая работа [2,7 M], добавлен 09.01.2013

  • Классификация машин для перемешивания материалов. Определение производительности пропеллерного смесителя, шага винта лопасти, скорости восходящего потока в зоне пропеллера и мощности электродвигателя смесителя. Особенности перемешивания жидких масс.

    курсовая работа [234,9 K], добавлен 02.02.2011

  • Подогрев нефти острым (открытым) паром. Применение циркуляционного подогрева. Конструкции и расчет подогревателей. Устройства разогрева нефтепродуктов. Обогрев открытым острым паром. Напорное циркуляционное перемешивание, используемый теплоноситель.

    реферат [20,6 K], добавлен 11.11.2013

  • Конструкция, особенности работы, основы эксплуатации и типовые отказы пневматического оборудования. Достоинства и недостатки пневматических приборов. Особенности пневмодвигателей и пневматических инструментов, приводимых в движение сжатым воздухом.

    презентация [1,1 M], добавлен 29.04.2019

  • Установки без принудительного перемешивания, с электромагнитным перемешиванием в ковше и с дополнительным подогревом металла. Вакуумирование стали в ковше. Порционный и циркуляционный способы вакуумирования. Комбинированные методы обработки металла.

    курсовая работа [31,1 K], добавлен 15.06.2011

  • Типы мешалок и их характеристика. Равномерное распределение твердой фазы в жидкости. Мощность, затрачиваемая непосредственно на перемешивание среды. Расчет размеров сечений лопастей мешалки. Расчет мощности электродвигателя привода рамной мешалки.

    контрольная работа [1,9 M], добавлен 07.12.2013

  • Изучение основных видов механических мешалок, которые разделяются по устройству лопастей на следующие группы: лопастные - с плоскими лопастями, пропеллерные - с винтовыми лопастями, турбинные, специальные (якорные). Правила выбора и использования мешалок.

    курсовая работа [2,9 M], добавлен 21.06.2010

  • Общее устройство бетоносмесителя и принцип действия СБ-103. Сравнительный анализ нескольких разновидностей бетоносмесителей. Патентные исследования и определение рабочих нагрузок бетоносмесителя СБ-103. Расчет мощности, затрачиваемой на перемешивание.

    контрольная работа [1,2 M], добавлен 27.04.2014

  • Разработка эскизного проекта и фрагментов рабочей конструкторской документации на типовой вертикальный аппарат с механическим перемешивающим устройством. Общее проведение процесса перемешивания в жидкофазной системе при заданных давлении и температуре.

    курсовая работа [1,9 M], добавлен 28.09.2020

  • Назначение, конструкция, принцип действия машины для мойки и зачистки корпусов букс. Результаты расчета пневматического привода одностороннего действия с механическим возвратом обратного хода. Построение релейной схемы автоматического управления.

    курсовая работа [259,4 K], добавлен 21.11.2016

  • Технологический процесс и способы вакуумной обработки стали. Конструкция и принцип работы установок для осуществления порционного и циркуляционного вакуумирования. Использование известково-глиноземистого шлака для внеагрегатной десульфурации стали.

    реферат [1,7 M], добавлен 26.12.2012

  • Характеристика основных процессов, происходящих при перемешивании компонентов. Классификация механических мешалок по устройству лопастей. Особенности применения рационального смесителя исходя из заданной дисперсной среды, дисперсной фазы. Расчет аппарата.

    курсовая работа [1,3 M], добавлен 24.10.2012

  • Конструкция и принцип действия поршневых эксцентриковых насосов, их применение для преобразования механической энергии двигателя в механическую энергию перекачиваемой жидкости. Применение гидромеханической трансмиссии на сельскохозяйственном тракторе.

    контрольная работа [3,7 M], добавлен 08.07.2011

  • Конструкция и принцип действия стоматологической установки "Хирадант-691", преимущества модернизации наконечника. Уравнение движения турбинки наконечника, расчет ротора пневматического наконечника, электропривода и пневматической части компрессора.

    курсовая работа [341,8 K], добавлен 24.10.2009

  • Станок-качалка - агрегат для приведения в действие глубинного насоса при механизированной эксплуатации нефтяных скважин. Балансирные индивидуальные станки-качалки с механическим, пневматическим и гидравлическим приводом. Конструкция и принцип действия.

    реферат [1,5 M], добавлен 14.10.2011

  • Конструкция и принцип действия подъёмного стола. Разработка конструкции узла торсионного вала. Расчет насосной установки. Определение потерь давления. Конструкция, назначение и принцип действия сталкивателя слябов. Проверка долговечности подшипников.

    дипломная работа [674,4 K], добавлен 22.03.2018

  • Характеристика и принцип действия погрузочно-разгрузочных машин. Ленточные и пластинчатые конвейеры, эскалаторы. Ковшовые подъемники непрерывного действия. Винтовые и вибрационные конвейеры. Установки для пневматического транспортирования материалов.

    реферат [3,2 M], добавлен 17.01.2017

  • Обжиговые печи черной металлургии. Рациональная конструкция печи. Принцип действия и устройство шахтных печей. Способы отопления и режимы обжига в шахтных печах. Аэродинамический режим печи. Особенности теплообмена в слое. Шахтные и обжиговые печи.

    курсовая работа [550,4 K], добавлен 04.12.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.