Разработка цеха теплоизоляционного пенобетона

Комплексное изучение классической технологии получения пенобетона. Химические добавки и поверхностно активные вещества, применяемые для регулирования процесса структурообразования, нарастания пластической прочности и ускоренного твердения ячеистой смеси.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 31.03.2016
Размер файла 958,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

пенобетон пластический ячеистый смесь

Задача данного курсового проекта заключается в разработке цеха теплоизоляционного пенобетона производительностью 35000 м3 в год на основе вяжущего: портландцемента, и заполнителя: песка. Плотность бетона 400 кг/м3. Способ твердения - пропаривание.

Разработка данной курсовой работы ставит перед нами задачу проектирования отдельного цеха, производящего пенобетонные изделия и разработку технико-экономических показателей при выборе пенообразователя и подборе оборудования для производства пенобетона.

Сегодня повсеместно износ производственных корпусов предприятий и жилых зданий достиг критической величины, вопросы экономичной и надежной реконструкции фасадов, кровель административных и жилых зданий приобретают все большую остроту. Применение растущего газобетона позволяет с наименьшими затратами укрепить панели корпусов и фасады зданий, значительно увеличив срок их эксплуатации, без ежегодных "косметических" ремонтов. Этот материал практически вдвое легче керамзитобетона, обладает при низкой плотности достаточно высокой прочностью (3,0-6,0 МПА). Высокая теплоизоляция достигается благодаря особой пори стой структуре: стена из пористого неавтоклавного монолита толщиной 350 мм соответствует по теплоизоляции кирпичной в 1200 мм. Морозостойкость ячеистого бетона - более 75 циклов по лабораторным данным и более 200 циклов по расчетным.

1. Основные свойства сырья

Классическая технология получения пенобетона заключается в смешивании заранее подготовленной пены с растворной смесью. Концентрат пенообразователя и воду для приготовления раствора пенообразователя дозируют по объему. Т.е., разводят определенное количество пеноконцентрата в воде; обычно пеноконцентрат разводится в объеме равном 1,5-3% от объема воды (в зависимости от марки пеноконцентрата). Готовый раствор перемешивают, получая пенообразователь для пенобетона. Пенообразователь поступает в пеногенератор для получения пены. В бетоносмеситель загружают воду, цемент и песок - по массе и подготавливают растворную смесь. Затем в бетоносмеситель подается пена из пеногенератора и перемешивается в течение 3.5 минут. Далее пенобетон, приготовленный в бетоносмесителе, транспортируется, посредством гибкого рукава, к месту укладки, в формы или опалубку.

Ориентировочный расход компонентов на 1 м3 пенобетона*

Плотность пенобетона

цемент М-500, кг

песок, кг

300 кг/м3

270

0,0

400 кг/м3

360

0,0

500 кг/м3

430

0,0

600 кг/м3

382

160

700 кг/м3

426

210

800 кг/м3

470

260

900 кг/м3

520

300

1000 кг/м3

565

350

* Расход пеноконцентрата зависит от его марки, и не превышает 2 кг на 1 м3 пенобетона.

Компоненты, необходимые для получения пенобетонной смеси.

Цемент

Портландцемент, рекомендуемая марка цемента - 400 и выше.

Заполнители

Крупные заполнители

Щебень, гравий в качестве тяжелого заполнителя не требуются. Возможно добавление легкого заполнителя (например, керамзит), тогда прочность пористого бетона при той же объемной плотности может возрасти на 100-200%.

Мелкие заполнители

Как правило, для приготовления бетонной смеси плотностью до 400-600 кг/м3 (для кровельных и половых изоляционных покрытий) песок не используется. Начиная с плотности пенобетона 600 кг/м3, в качестве мелкого заполнителя используются природные или дробленые пески. Предпочтительнее применять речной песок. Он должен быть чистым, без каких-либо включений. Для укладки применяются пески мелкой фракции 0-0,2 мм. Глинистых включений не должно быть более 2-3%.

Вода

При изготовлении пенобетона рекомендуется применять питьевую воду, без какой-либо проверки. Содержание воды в пористом бетоне складывается из расчетного количества, необходимого для затворения раствора, и воды, содержащейся в пене. Перед добавлением пены водоцементное отношение раствора должно составлять минимум 0,38. Слишком низкое значение водоцементного отношения может явиться причиной получения изделия с более высокой, чем заданная, объемной плотностью. Это обусловлено тем, что бетон будет забирать из пены необходимую для химических и физических взаимодействий воду, вызывая частичное разрушение пены, т.е. снижение ее объема в пенобетонной смеси. Оптимальное соотношение - в интервале от 0,4 до 0,45. Температура воды не допускается выше +25°С.

Пенообразователь

Пенообразователь - белковое химическое соединение. В России производится на нескольких заводах под разными марками и с небольшими отклонениями по техническим характеристикам и ценам.

Для приготовления клееканифольного пеноконцентрата используются следующие материалы:

1. Канифоль сосновая ГОСТ-19113-84 ~150 г;

2. Клей костный ГОСТ-2067 ~100 г;

3. Едкий натр ГОСТ-4328-77 ~ 20 г.

Полученный пеноконцентрат должен храниться в герметично закрытых деревянных или пластмассовых бочках, укрытых от прямых солнечных лучей, при температуре не выше +30°С. Пеноконцентрат выдерживает понижение температуры до 5°С. Срок его хранения с момента приготовления составляет 15-30 суток. Для информации: производимые серийно на специализированных предприятиях концентраты пенообразователей имеют гарантированный срок хранения 12-18 месяцев. [8]

Пенообразователь ПБ-Люкс. По сравнению с другими пенообразователями, предлагаемыми на рынке для производства пенобетона имеет мало отличий, только для пенообразователя ПБ-Люкс в требованиях ТУ заложена наиболее важная характеристика пенообразователя - стойкость пены в технологической среде, подтверждаемая для каждой партии. Она составляет 0,95-0,98. Именно эта характеристика позволяет объективно оценить технологические свойства пенообразователя.

Также на рынке существуют пенообразователи "PB-2000", "Морпен", "Ареком" и др. В конечном итоге, нужно ориентироваться на тот пенообразователь, который обходится дешевле всего.

Твердение пенобетона и уход за ним

Литому пористому бетону, как и любому другому, связуемому цементом, необходимо создать температурно-влажностный режим. Это служит, с одной стороны, для поддержания процесса гидратации цемента, набора прочности, с другой стороны, снижает температуру экзотермии, препятствует образованию трещин в бетоне.

С этой целью рекомендуется сразу же после укладки смеси накрывать бетонную поверхность полиэтиленовой пленкой. При естественном твердении в нормальных условиях (t=22°С) пенобетон через 7 суток набирает 55-70% марочной прочности. Отпускная прочность сборных элементов - 70-80% от проектной марки. Монтаж можно начинать по истечении 3-4 недельной выдержки элементов на воздухе со дня их изготовления.

Известь

Известь-кипелку следует применять не ниже 3-го сорта, удовлетворяющую требованиям ГОСТ 9199-77, а так же дополнительным требованиям: содержание активных CaMgO должно быть не менее 70%, "пережога" не более 2%; скорость гашения 5-15 мин. Удельная поверхность извести должна быть 5500-6000 см2/гр., содержание гидратированных частиц должно быть менее 3%. [1]

Химические добавки

Химические добавки и поверхностно активные вещества (ПАВ), применяемые для регулирования процесса структурообразования, нарастания пластической прочности и ускоренного твердения ячеистой смеси, а также для её пластификации, должны удовлетворять требованиям ГОСТ 4013-74, ГОСТ 5100-73. [1]

Смазка для форм ОЭ-2

Обратная эмульсия (тип "вода в масле") применяется для смазки форм при изготовлении пенобетонных изделий. Она состоит из: эмульсии оэ-2 (20%) и насыщенного раствора извести (80%). Смазка должна быть постоянной по составу и хорошо удерживаться на вертикальной поверхности форм.

2. Номенклатура и её свойства

Ячеистый бетон неавтоклавный, монолитный, растущий, водостойкий легко обрабатывается и существенно сокращает расходы на подготовку и производство работ. Совокупность этих свойств и характеристик обеспечивает возможность широкого применения в строительстве. Применяя поризованный монолит, можно быстро и качественно вести работы по восстановлению и ремонту стен зданий без демонтажа ограждающих стеновых плит, фундаментов, цоколя, фасадов, полов. Технология проста: жидкий раствор поризованного неавтоклавного монолита ячеистого бетона заливается в опалубку, где он заполняет все пустоты и трещины, расширяется и таким образом надежно герметизирует и восстанавливает разрушенный фундаментный и стеновой камень. Подготовка раствора занимает 10 минут при плюсовой температуре и требует использования всего только 4-х компонентов: воды, цемента и специально сбалансированного порошкообразного порообразователя, а также мелкого заполнителя. [1]

Пенобетон в промышленном и гражданском строительстве применяется для:

1) возведения наружных стен;

2) возведения внутренних перегородок;

3) утепления кровель, чердачных помещений;

4) звукоизоляции и теплоизоляции междуэтажных перекрытий (пенобетон вместо керамзита);

5) изготовления изделий (блоки стеновые, термовкладыши, плиты перегородочные и т.п.);

6) теплоизоляции трубопроводов.

Рис. 1. Блоки из пенобетона

По технологической линии данного производства изготавливаются теплоизоляционные плиты из пенобетона по ГОСТ 5742-76 "Изделия из ячеистых бетонов теплоизоляционные".

Таблица 1. Ассортимент выпускаемых изделий

№ п/п

Обозначение

Габаритные размеры, мм

Объем изделия, м3

длина

ширина

высота

1

А-100.50.8

1000

500

80

0,04

2

А-100.50.10

1000

500

100

0,05

3

А-100.50.12

1000

500

120

0,06

4

А-100.50.14

1000

500

140

0,07

5

А-100.50.16

1000

500

160

0,08

6

А-100.50.18

1000

500

180

0,09

7

А-100.50.20

1000

500

200

0,1

3. Технологическая схема процесса и описание

Технология представляет собой производство лёгких ячеистых бетонов с помощью добавки к цементно-песчаной смеси пены. Способ позволяет получать широкий диапазон плотностей бетонов путём изменения дозировки пены непосредственно на месте проведения строительных работ. Полученный пенобетон в равной степени приемлем как для заливки бетонных конструкций непосредственно на строительной площадке, так и для производства сборных элементов на полигонах и заводах железобетонных изделий, как с естественным твердением, так и с теплообработкой. Использование пенобетона предоставляет строительным фирмам массу преимуществ в сравнении с традиционными строительными материалами: не требуется щебень, гравий, керамзит, известь; применяется природный, а не молотый песок; высокая подвижность смеси (более 60 см) позволяет заливать любые формы, скрытые полости; не требуется вибрация укладываемой смеси, что позволяет заливать тонкие внутренние перегородки (50мм) в вертикальную опалубку; лёгкая, не требующая высоких инвестиционных затрат, организация выпуска сборных пенобетонных изделий на действующих предприятий стройиндустрии (достаточно приобретения пеногенератора и расходного материала - пеноконцентрата); применение бетононасосов устраняет трудоемкий процесс - распределение бетонной смеси по заливаемой конструкции, в 3-4 раза по сравнению с крановой укладкой снижаются трудозатраты.

Использование пенобетона позволяет выполнить новые, более жесткие нормативы, предъявляемые к теплосохраняющим свойствам строений. Высокие теплоизолирующие свойства пенобетона обусловлены уникальностью порообразования, так как поры равномерно распределены по всему бетонному массиву, имеют одинаковые размеры и 97-процентную закрытость. Построенное из пенобетона жилье обладает повышенной комфортабельностью и эксплутационными свойствами: прохладой в летний зной; отсутствием "мостиков холода; отличной звукоизоляцией - 60 дБ; идеальной поверхностью под любой вид декора; высокой огнестой костьюхорошей гвоздимостью стен.

Вследствие высоких теплоизоляционных свойств, стены из пенобетона могут изготавливаться с меньшими толщинами. Весь процесс приготовления пенобетона на основе классической технологии с использованием пеногенератора, применяемой во всем мире, состоит из 4 основных технологических этапов:

1. Запустили смеситель, на вращающийся вал смесителя загрузили: воду + цемент + песок. Приготовили цементно-песчаный раствор (~3-4 минут);

2. Не останавливая смеситель подаем пену из пеногенератора заданной плотности до полного объема (~1 минута и менее);

3. Перемешиваем до однородной массы (~1-2 минуты);

4. Закрываем горловину, подаем в смеситель, сжатый воздух, транспортируем смесь к месту укладки (формы, наливной пол и др.) (3-4 минут).

Полный технологический цикл составляет примерно ~7-12 минут (зависит от проф. подготовки персонала), от этого и складывается производительность оборудования: другими словами, если мы имеем смеситель 500 литров то при цикле 7-12 минут - 5-8 замесов в час - производительность составит 2,5-4 м. куб/час. Это реальные данные. Если у производителей оборудования, вы встречаете производительность значительно выше - знайте это не реально. Это либо: производитель сам никогда не производил пенобетон или специально искажает данные для привлечения покупателей обманным путем.

Стены из пенобетона, в зависимости от требований заказчика, можно штукатурить или сразу же красить или заклеивать обоями. Фасады из пенобетона можно обрабатывать любым удобным или экономичным способом, например:

окрашивать водоустойчивой дисперсионной фасадной краской; наносить тонкий слой высококачественной штукатурки; наносить грунтовку, смешанную с песком; укладывать в форму перед заливкой облицовочную плитку; наносить на свежезалитые панели фактурный слой из гальки, мраморной крошки и т.д.; добавлять красящие пигменты при приготовлении пенобетонной смеси.

4. Технологическая часть

4.1 Режим работы цеха

Режим работы цеха определяется количеством рабочих дней в году, количеством часов работы в смену. Режим работы выбирается по нормам технологического проектирования предприятий (ОНТП-07-85):

количество рабочих дней в году составляет 252;

количество смен в сутки составляет 2;

количество часов работы в смену составляет 8.

Затраты времени на ремонт оборудования составляет 20 суток в год.

4.2 Производительность цеха

Производительность цеха рассчитывается исходя из принятого режима работы и программы цеха. Следует учитывать вероятность появление брака, которая составляет 1-2% от выпускаемой продукции. Результаты расчет сведены в таблицу 3.

Таблица 3

№ п/п

Обозначение

Производительность цеха

в год

в сутки

в смену

в час

шт.

м3

шт.

м3

шт.

м3

шт.

м3

1

А-100-50-8

125000

5000

496

16,8

248

8,4

31

1,05

2

А-100-50-10

100000

5000

397

16,8

199

8,4

25

1,05

3

А-100-50-12

83333

5000

331

16,8

166

8,4

21

1,05

4

А-100-50-14

71429

5000

283

16,8

141

8,4

18

1,05

5

А-100-50-16

62500

5000

248

16,8

124

8,4

16

1,05

6

А-100-50-18

55556

5000

221

16,8

111

8,4

14

1,05

7

А-100-50-20

50000

5000

198

16,8

99

8,4

12

1,05

Итого по цеху

547818

35000

2174

117,6

1088

58,8

137

7,35

С учетом 2% брака

548914

35070

2179

117,8

1090

58,9

138

7,36

Таблица 5. Потребность цеха в сырьевых материалах

№ п/п

Наименование материала

Единица измерения

Расход материала

в год

в сутки

в смену

в час

1

Вяжущее

т

5323

21,12

10,56

1,320

2

Известь

т

1331

5,28

2,64

0,330

3

Цемент

т

4597

18,24

9,12

1,140

4

Песок

т

3992

15,84

7,92

0,99

5

Гипс

кг

39917

158,4

79,2

9,9

6

Вода

м3

3170

12,576

6,288

0,786

7

Порообразователь ПБ-ЛЮКС

кг

21360

182,4

91,2

11,4

В данной курсовой работе используется пропаривание изделий в пропарочной камере, следовательно рассмотрим:

Технологический процесс производства

Производство изделий из теплоизоляционного ячеистого бетона включает следующие основные технологические операции: подготовку сырьевых материалов, приготовление ячеистобетонной смеси, формование изделий их тепловлажностную обработку.

Подготовка сырьевых материалов. Для того чтобы обеспечить повышенную устойчивость поризованной массы на стадиях формования изделий и набора структурной прочности, а также для создания большого объема цементирующих новообразований при твердении, в технологии теплоизоляционных ячеистых бетонов используют тонкодисперсные композиции. Тонкому измельчению подвергается кремнеземистый компонент и известь. Цемент, как правило помолу не подвергают, так как он уже имеет достаточно высокую удельную поверхность.

На практике применяют два способа подготовки сырьевых материалов:

1. Мокрый помол основной массы кремнеземистого компонента (песка) и сухой помол известково-песчаного вяжущего (при соотношении известь: песок, равно 1: 2). Содержание воды в песчаном шламе поддерживают на уровне, обеспечивающим хорошую его текучесть (плотность шлама около 1,6 г/см3);

2. Совместный сухой помол компонентов сырьевой шихты - извести, цемента и песка при влажности последнего не выше 2% по массе.

После помола основные компоненты сырьевой смеси должны характеризоваться следующей дисперсностью Sуд, см2/г: кремнеземистый компонент (песок) - не менее 1500-2000; известь - 4500-5000; цемент - 3000-4000.

Как мокрый, так и сухой помол должен производиться в присутствии ПАВ, что интенсифицирует измельчение, частично предотвращает слипание частиц, уменьшает намол металла. Дозировка ПАВ - 0,1-0,25% от массы сухих компонентов.

Приготовление ячеистобетонной смеси. Способы приготовления формовочных масс зависят от принятой на данном производстве технологии и вида применяемого порообразователя. При пенобетонной технологии конечной целью данной технологической операции является получение готовой поризованной массы с заданными характеристиками.

При приготовлении смеси для пенобетона в смеситель с готовым раствором, содержащим кремнеземистый компонент, вяжущее и добавки, вводят техническую пену, которую получают в специальном пеновзбивателе. Пенобетонную ячеистую массу приготавливают в трехбарабанном, реже в двухбарабанном смесителе (пенобетоносмесителе).

Проектирование составов ячеистобетонных смесей осуществляют, исходя из заданной средней плотности ячеистого бетона, применяемых видов вяжущего и кремнеземистого компонента, вида тепловлажностной обработки. При этом стремятся получить максимальную прочность при минимально возможном расходе вяжущего и порообразователя.

Формование изделий из пенобетонной смеси. При пенобетонной технологии пенобетонная масса с заданными значениями пористости или средней плотности, достигнутыми в пенобетоносмесителе, заливается в формы на полный объем, причем в дальнейшем значительного изменения пористости не происходит.

Общие требования к тепловой обработке

1. Тепловую обработку изделий следует производить в тепловых агрегатах с применением режимов, обеспечивающих минимальный расход топливно-энергетических ресурсов и достижение бетоном заданных распалубочной, передаточной и отпускной прочности. При этом, не допускается увеличение расхода

цемента для достижения требуемой прочности в более короткие сроки по сравнению с необходимым для получения заданного класса (марки) по прочности бетона, установленным при подборах состава, за исключением случаев, предусмотренных СНиП 5.01.23-83.

2. Значения передаточной и отпускной прочности бетона должны соответствовать указанным в стандартах и проектной документации на изделия с учетом требований ГОСТ 18105.1-80. Значение распалубочной прочности, условия и сроки достижения распалубочной, передаточной и отпускной прочности, для каждого вида изделий следует устанавливать в соответствии с конкретными условиями производства.

3. При тепловой обработке изделий из конструкционно-теплоизоляционного легкого бетона кроме требований, указанных в пп.6.1, 6.2, должны быть обеспечены отпускная влажность бетона в изделиях, не превышающая допустимую по ГОСТ 13015.0-83, а для изделий из напрягающего бетона - заданное самонапряжение.

4. Для сокращения цикла тепловой обработки изделий и увеличения оборачиваемости форм следует применять химические добавки-ускорители, быстротвердеющие цементы, предварительный пароразогрев или электроразогрев бетонных смесей, двухстадийную тепловую обработку и другие приемы при соответствующем технико-экономическом обосновании применительно к конкретным условиям и технологическим схемам производства. Для предварительно напряженных конструкций изготовляемых в силовых формах, двухстадийная обработка допускается при специальном обосновании.

Тепловые агрегаты

1. Тепловые агрегаты (камеры периодического или непрерывного дерствия, в том числе ямные, туннельные, щелевые, термоформы, кассеты, стенды, гелиоформы и т.п.) и теплоносители (водяной пар, горячая вода, электроэнергия, горячий воздух, продукты сгорания природного газа, высокотемпературные масла, солнечная энергия и т.п.) следует выбирать исходя из технико-экономической целесообразности в зависимости от типа технологических линий (конвейерные, поточно-агрегатные, кассетные, стендовые), конструктивных особенностей изделий и климатических условий в соответствии с действующей нормативно-технической документацией.

2. Тепловую обработку изделий из конструкционно-теплоизоляционного легкого бетона необходимо производить в камерах сухого прогрева или термоформах, а предварительно напряженных конструкций, изготовляемых в силовых формах, - в туннельных или одноярусных ямных камерах.

3. С целью соблюдения нормативного расхода тепловой энергии при тепловой обработке в соответствии с СНиП 513-79 необходимо обеспечить оперативный учет расхода энергии, максимально использовать рабочее пространство камер, увеличить коэффициент их заполнения и осуществлять мероприятия по максимальному снижению теплопотерь.

4. Тепловые установки должны быть оборудованы устройствами, обеспечивающими подачу требуемого количества тепла и заданные режимы тепловой обработки, а также приборами автоматического учета расхода тепловой энегии, регулирования, контроля температуры и влажностного режима.

5. При создании новых и реконструкции действующих агрегатов для тепловой обработки следует предусматривать специальные меры по экономному расходованию тепловой энергии и устранению ее потерь: теплоизоляцию ограждений камер, элементов термоформ и кассетных установок; выполнение ограждающих конструкций камер из легкого бетона; гидрозащиту теплоизоляционного слоя в ямных камерах, термоформах, кассетах, стендах; надежное уплотнение торцевых проемов в туннельных камерах и т.п.

Ограждающие конструкции камер. Днище

Раньше днище выполняли из бетона по песчаной подготовке. Такие полы прочны, но слишком теплопроводны. Поэтому в новых конструкциях Шемер днище проектируют с теплоизоляцией, при этом нагрузка от полов форм должна восприниматься опорными балками. Для повышения I 1ерегудов устонных свойств пола, его можно изготавливать из многопустотных или ребристых плит.

Рис. 2. Схема конструкции пола ямной камеры: 1 - фундамент; 2 - опорная плита; 3 - многопустотная плита; 4 - цементная стяжка; 5 - канал для сбора конденса

Полы сооружают с уклонами в сторону сборного канала, чтобы конденсат стекал в него. В конце канала выполняют приемник, куда и стекает конденсат. В этом приемнике устанавливают гидрозатвор в виде водоотделенной трубки.

Стены ямных камер

Стены камер должны быть с низкой теплоемкостью, т.к. их приходится нагревать, с низкой теплопроводностью, чтобы потери тепла в окружающую среду минимальными. Они должны быть паронепроницаемыми и достаточно механическими прочными.

В основу проектирования и строительства новых ямных камер положен принцип тепловой изоляции стен камер. Тепловую изоляцию можно осуществлять двумя способами: типа минеральной ваты - с помощью теплоизоляционного материала в виде пенопласта или с помощью тепловых экранов и воздушных проемов между ними, которые являются хорошими теплоизоляторами.

Теплоизоляционные материалы при контакте с паровоздушной средой камеры быстро насыщаются влагой и теряют при этом свои теплоизоляционные свойства. Поэтому в конструкциях стен надо предусматривать паро-гидроизоляцию.

Рис. 3. Схема стены ямной камеры:

1 - стена; 2 - слой гидроизоляционного материала; 3 - поверхность металлических листов; 4 - обивка из металлических листов 3-4 мм; 5 - воздушная полость; 6 - гидрозатвор для воздушной полости; 7 - желоб гидравлического швеллера

Крышка ямной камеры

Крышки должны быть теплоемкие и малотеплопроводные, достаточно прочные и паронепроницаемые. Механическая прочность крышки необходима для того, чтобы она выдержала статические и динамические нагрузки, действующие на нее во время эксплуатации камеры, т.е. при установке и снятии крышки. Она представляет собой металлическую конструкцию, сваренную из швеллеров и уголков, и заполненную внутри теплоизоляционным материалом.

Рис. 4. Схема крышки: 1 - металлическая конструкция; 2 - теплоизоляционное заполнение; 3 - обшивка сверху и снизу металлическими листами; 4 - транспортные петли; 5 - экран из металлических листов для отвода конденсата

Для герметизации подъемного соединения крышки и самой камеры используют гидравлический затвор камеры. Для этого по всему периметру стен крепится желоб в виде швеллера с высотой полки 10,5 см, который в рабочем состоянии заполняется водой, в том числе и конденсатом крышки. На самой крышке с боковых сторон по всему периметру вертикально приваривается металлическая пластина, называемая или ребром крышки или фартуком. При установке крышки ее ребро входит в заполненный водой желоб и создается гидравлический затвор, который не выпускает пар из камеры и не допускает поступление воздуха из цеха.

Рис. 5. Схема ямной пропарочной камеры: 1 - пол камеры; 2 - отвод конденсата; 3 - петля конденсатоотводящая; 4 - конденсатоотвод; 5 - стена камеры; 6 - отверстие для отвода пара; 7 - трубопровод пара; 8 - трубы с отверстием; 9 - отверстия для вентиляции; 10 - канал с вентилятором; 11 - герметизирующий корпус; 12 - червячный винт; 13 - маховик; 14 - крышка камеры; 15 - швеллер; 16 - уголок; 17 - теплоизоляция

Система конденсатоотвода

Конденсат из ямной камеры не может быть использован в качестве обратной воды в паровых котлах. Потери воды оказываются, более ощутимы. В камере для ускорения охлаждения изделий и самой камеры в период охлаждения часто устраивают вентиляцию. Для этого используются вентиляторные окна.

4.6 Расчет и выбор основного технологического оборудования

При расчете оборудования определяется число машин для каждой технологической операции, необходимых для выполнения производственной программы цеха.

Расчет количества машин производится по формуле:

,

где

- количество машин подлежащих установке;

- требуемая часовая производительность машин для данной операции;

- часовая производительность машины выбранного типа;

- коэффициент использования машины по времени.

1. Расчет количества шаровых мельниц для мокрого помола песка:

,

По [7] принимаем одну шаровую мельницу 0,9Ч1,8м марки СМ-6007.

2. Расчет количества виброгазобетономешалок:

Принимаем один пеногенератор ПГМ-В [8].

3. расчет количества пропарочных камер:

Объем бетона на одном поддоне:

где V' - объем бетона в одном изделии;

n - количество форм на одном поддоне;

Принимаем 4 пакета в камере, по 5 поддона в каждом пакете.

Объем бетона обрабатываемого в пропарочной камере в сутки:

120

Конструктивно по техническим характеристикам [7] и проектным свойствам цеха принимаем 4 пропарочных камеры с годовой производительностью в 35100 в год.

Таблица 7. Ведомость оборудования цеха

№ п/п

Наименование оборудования

Количество, шт.

Техническая характеристика

1

2

3

4

1

Дозатор жидкости ДБЖ-400

1

Предел дозирования 80-400 кг, цикл дозирования 30 с, часовая производительность 120 циклов/час

2

Ленточный транспортер КЛС-400

1

Производительность 19 т/ч

3

Трубная шаровая мельница 0,9Ч1,8м марки СМ-6007.

1

Производительность 4 т/ч; внутренний диаметр барабана 0,9 м; длина рабочей части 1,8 м;

Мощность электродвигателя 22 кВт.

4

Пеногенератор ПГМ-В

1

Производительность по пене до 500 л/мин, Давление сжатого воздуха до 6 бар, Потребляемая мощность 3 кВт, Габаритные размеры ШхДхВ 1300х700х800 мм

5

Виброплощадка К-494

1

Грузоподъемность 10 т, размеры форм 68 00х3400х450 мм, частота колебаний стола в минуту 3000, установленная мощность

6

Пропарочная камера ПДК-КИСИ

4

Внутренние размеры камеры:

Длина - 17 м;

Ширина - 5,9 м;

Высота - 1,2 м.

7

Мостовой кран 86А-ГУ

1

Грузоподъемность 5 т.

8

Тележка самоходная для вывоза готовой продукции СМЖ-151

1

Грузоподъемность 20 т

Скорость движения 5 км/час

5. Пенобетономешалка

Пенобетономешалка СМ-863А (рис. 6) предназначена для раздельного приготовления пены и раствора и последующего их перемешивания для получения пенобетонной смеси. Пенобетономешалка состоит из пеногенератора, смесителя, дозаторов цемента шлама и воды.

Рис. 6. Пенобетономешалка СМ-863А:

1 - пеногенератор; 2 - дозатор цемента; 3 - дозатор шлама; 4 - дозатор воды; 5 - ротаметр; 6 - пульт управления; 7 - вагонетка с формой; 8 - смеситель

Пена производится в специальной пеноустановке - пеногенераторе. По принципу действия пеногенераторы делятся на циклического и непрерывного действия. Пеногенератор циклического действия имеет недостаток - требует периодической остановки для заполнения его раствором пенообразователя. Пеногенераторы циклического действия также не позволяют добиться стабильной кратности и дисперсности получаемой пены. Пеногенератор непрерывного действия лишен подобных недостатков. Заинтересованным предлагаются чертежи пеногенератора непрерывного действия. Разведенный концентрат из емкости поступает под давлением в пеногенератор, вспенивается сжатым воздухом от компрессора (СО-7Б, Ш 600-50, либо аналогичные).

Рис. 7. Дозатор шлама пенобетономешалки СМ-863А:

1 - приводной барабан; 2 - корпус дозатора; 3 - приемный патрубок; 4 - контакт нижнего уровня; 5 - контакт верхнего уровня; 6 - ковш; 7 - лента ковшового питателя; 8 - натяжное устройство; 9 - натяжной барабан; 10 - рама; 11 - червячный редуктор; 12 - вариатор; 13 - электродвигатель

Дозатор шлама представляет собой ковшовый конвейер, расположенный внутри корпуса, на верхней крышке которого смонтированы приемный патрубок и два медных контакта, предназначенных для ограничения верхнего и нижнего уровня шлама в корпусе. Приводной барабан конвейера вращается от электродвигателя через червячный редуктор и цепную передачу, частота вращения барабана регулируется цепным вариатором. Команда от указателей уровня передается на исполнительный орган расходного бака; при срабатывании нижнего контакта шлам подается в дозатор, при срабатывании верхнего подача шлама прекращается. Выходной патрубок дозатора соединен рукавом с приемной воронкой смесителя.

Дозатор воды состоит из бака с поплавковым клапаном и регулятора, соединенного трубопроводом с баком и установленного на стенде. Регулятор служит для равномерной подачи воды и состоит из муфтового крана, зубчатой пары, лимба и рукоятки со стрелкой.

Пенобетономешалка работает так. Первым включается пеногенератор, так как от его включения до начала выхода пены проходит до 3 мин (в зависимости от количества подаваемого воздуха). Затем одновременно включаются остальные узлы машины: смеситель и дозаторы цемента, шлама и воды.

На первом участке смесителя (до подачи пены) происходит приготовление цементно-шламового раствора, на втором - перемешивание раствора с пеной. Готовая пенобетонная масса непрерывно выдается через выходной патрубок для заливки форм.

6. Контроль качества, маркировка, хранение и транспортирование изделий

Требования, предъявляемые к готовой продукции:

1. Теплоизоляционные изделия должны быть приняты техническим контролем предприятия-изготовителя.

2. Приемку и поставку изделий производят партиями. Партия должна состоять из изделий, изготовленных по одной технологии и из материалов одного вида и качества.

3. Размер партии устанавливают в количестве сменной выработки предприятия изготовителя, но не более 50 м3.

4. Основные параметры изделий, требований к внешнему виду, плотность, предел прочности при сжатии, влажность и однородность структуры определяют для каждой партии изделий. Определение предела прочности на изгиб и теплопроводности производят два раза в год.

5. Потребитель имеет право производить выборочную контрольную проверку соответствия изделий требованиям ГОСТ 5742-76.

6. Для проверки внешнего вида, однородности структуры, формы и размеров от каждой партии отбирают образцы в количестве 2% от партии, но не менее 10 шт.

7. Из числа изделий, удовлетворяющих требованиям стандарта по внешнему виду, форме и размерам, отбирают одно изделие для определения плотности, прочности при сжатии и изгибе.

8. При неудовлетворительных результатах контроля хотя бы по одному из показателей, проводят повторную проверку по этому показателю удвоенного количества образцов, взятых от той же партии.

При неудовлетворительных результатах повторного контроля партия изделий приемке не подлежит.

Если при проверке изделий, которым в установленном порядке присвоен государственный Знак качества, окажется, что изделия не удовлетворяют требованиям ГОСТ 5742-76 хотя бы по одному показателю, то изделие приемке по высшей категории не подлежит.

Требования, предъявляемые к маркировке, хранению и транспортированию изделий:

1. Изделия должны храниться в контейнерах рассортированными по маркам и уложенными на ребро вплотную одно к другому не более чем в четыре ряда по высоте. При отсутствии контейнеров изделия хранятся в штабелях не более чем в шесть рядов по высоте. Под каждый ряд изделий должны быть уложены деревянные прокладки толщиной не менее 25 мм и шириной не менее 70 мм.

2. На каждом контейнере или штабеле должна быть прикреплена бирка или поставлен несмываемой краской штамм с указание условного обозначения изделий и государственного Знака качества на тех изделиях, которым в установленном порядке он присвоен.

3. При перевозке без контейнеров изделия должны быть уложены на торец вплотную один к другому продольной ось по направлению движения не более чем в четыре ряда по высоте.

4. Изготовитель должен гарантировать соответствие изделий требованиям ГОСТ 5742-76 при соблюдении потребителем условий хранения и транспортирования, установленных настоящим стандартом, и сопровождать каждую партию паспортом, в котором указывается:

а) наименование и адрес предприятия изготовителя;

б) номер и дата составления паспорта;

в) наименование, условное обозначение и количество изделий;

г) результаты физико-механических испытаний.

5. При погрузке, выгрузке, хранении и транспортировании должны быть приняты меры, предохраняющие изделие от воздействия атмосферных осадков, почвенной влаги и повреждений.

7. Требования безопасности производства, охрана труда и окружающей среды

Безопасность в производстве изделий должна быть обеспечена выбором соответствующих технологических процессов, приемов и режимов работы производственного оборудования, рациональным его размещением, выбором рациональных способов хранения и транспортирования исходных материалов и готовой продукции, профессиональным отбором и обучением работающих и применением средств защиты. Производственные процессы должны соответствовать ГОСТ 12.3.002-75, а применяемое оборудование - ГОСТ 12.2.003-74.

Способы безопасного производства погрузочно-разгрузочных и складских работ должны соответствовать требованиям ГОСТ 12.3.009-76. Порядок и способы безопасного производства работ должны быть изложены в технологических картах.

При производстве работ в цехах предприятий следует соблюдать правила пожарной безопасности в соответствии с требованиями ГОСТ 12.1.004-76. Следует также строго соблюдать требования санитарной безопасности, взрывобезопасности производственных участков, в том числе связанных с применением веществ, используемых для смазки форм, химических добавок, приготовлением их водных растворов и бетонов с химическими добавками.

Концентрация вредных веществ в воздухе рабочей зоны, его температура, влажность и скорость движения не должны превышать установленных ГОСТ 12.1.005-76. Во всех производственных и бытовых помещениях следует устраивать естественную, искусственную или смешанную вентиляцию, обеспечивающую чистоту воздуха.

Уровень шума на рабочих местах не должен превышать допустимый ГОСТ 12.1.003-83. Для снижения уровня шума следует предусматривать мероприятия по ГОСТ 12.1.003-83 и СНиП П-12-77.

Уровень вибрации на рабочих местах не должен превышать установленный ГОСТ 12.1.012 - 78. Для устранения вредного воздействия вибрации на работающих необходимо применять специальные мероприятия: конструктивные, технологические и организационные, средства виброизоляции и виброгашения, дистанционное управление, средства индивидуальной защиты.

Естественное и искусственное освещение в производственных и вспомогательных цехах, а также на территории предприятия должно соответствовать требованиям СНиП 11-4-79.

При производстве изделий следует применять технологические процессы, не загрязняющие окружающую среду, и предусматривать комплекс мероприятий с целью ее охраны. Содержание вредных веществ в выбросах не должно вызывать увеличения их концентрации в атмосфере населенных пунктов и в водоемах санитарно-бытового пользования выше допустимых величин, установленных СН 245-71.

Тепловые установки являются агрегатами повышенной опасности, так как их работа связана с выделением теплоты, влаги, пыли, дымовых газов. Поэтому условия труда при эксплуатации таких установок строго регламентируются соответствующими правилами и инструкциями. [11]

В цехах, где размещаются тепловые установки необходимо иметь: паспорт установленной формы с протоколами и актами испытаний, осмотров и ремонтов на каждую установку; рабочие чертежи находящегося оборудования и схемы размещения КИП, исполнительные схемы всех трубопроводов с нумерацией арматуры и электрического оборудования; инструкции по эксплуатации и ремонту.

В таких инструкциях должно быть краткое описание установок, порядок их пуска, условия безопасной работы, меры предотвращения аварии.

Крышки ямных пропарочных камер должны быть достаточно герметичны и оборудованы водяными затворами. На стенах предусматривают скобы для спуска рабочих при ремонте и чистки. Каждую такую камеру оборудуют вентиляцией. Камеры должны иметь герметичные системы подвода пара, оборудованные надёжными вентилями. В цехах, где расположены установки для ТВО, обязательно устраивают приточно-вытяжную вентиляцию. Электрооборудование и электроприборы должны быть рассчитаны на работу во влажной среде. Электродвигатель должен иметь заземление. [11]

Каждая тепловая установка разрабатывается с расчётом, чтобы она создавала оптимальные условия ведения технического процесса и безопасности условия труда. Их проектируют с обязательной герметизацией. Оборудование проектируют с ограждением, а его включение в работу должно сопровождаться звуковой и световой сигнализацией, площадки для оборудования находящиеся выше уровня пола, оборудуют ограждением и сплошной обшивкой по нижнему контуру. Особое внимание уделяют очистке теплоносителя от пыли и мелких частиц материала. Весь обслуживающий персонал тепловых установок допускают к работе только после изучения и оформления его знаний. [11]

Контроль за соблюдением правил и инструкций по охране труда и технике безопасности осуществляется органами государственного надзора и общественными организациями, которые и разрабатывают эти нормы.

Библиографический список

1. Горлов Ю.П. Технология теплоизоляционных и акустических материалов и изделий: Учебник для вузов по специальности "Производство строительных изделий и конструкций" - М: Высшая школа, 1989 - 384 с.

2. Горлов Ю.П. Лабораторный практикум по технологии теплоизоляционных материалов. Учебное пособие для строительных специальностей вузов. - Высшая школа - 1982.

3. Баженов Ю. М." Технология бетона": Учеб. пособие для технол. спец. строит, вузов.2-е изд., перераб. - М.: Высш. шк., 1987. - 415 с.

4. ГОСТ 21520-89 "Блоки из ячеистых бетонов стеновые мелкие". М.: Госстрой СССР. Дата введения 01.01.1990.

5. Сулименко Л.М. Технология минеральных вяжущих материалов и изделий на их основе - М., 1972.

6. Ицкович С.М. Технология заполнителей бетона: Учеб. для строит, вузов по спец. "Производство строительных изделий и конструкций"/С.М. Ицкович, Л.Д. Чумаков, Ю.М. Баженов. - М.: Высш. шк., 1991. - 272 с.

7. Строительные машины. Справочник в двух томах под редакцией В.А. Баумана. Т.2 "Оборудование для производства строительных материалов и изделий". Издание 2-е - Машиностроение, 1977.

8. http://ntb.org.ua/ntb/technologies/building/pbeton/foam/.

9. Тепловые установки. Методические указания к выполнению курсового проекта № 320, г. Иваново, 1986 г.

10. Баженов Ю.М., Комар А.Г. "Технология бетонных и железобетонных изделий": Учебник для вузов. - М.: Стройиздат, 1984. - 672 с.

11. Перегудов В.В., Роговой М.И. „Тепловые процессы и установки в технологии строительных изделий и деталей." - М.: СН, 1983г. - 416 с.

12. http://www.bruschatka.com/artpnb. htm.

13. http://www.ibeton.ru/a202.php.

Размещено на Allbest.ru

...

Подобные документы

  • Изготовление и применение ячеистого бетона. Номенклатура продукции, технические требования. Технология производства пенобетона. Режим работы цеха, его производительность. Сырьевые материалы, подбор состава пенобетона. Выбор технологического оборудования.

    курсовая работа [997,5 K], добавлен 23.03.2011

  • Этапы и способы производства пенобетона, его физические характеристики и свойства. Требования к составу пенобетонной смеси. Преимущества использования данного материала в строительстве. Конструкция и принцип работы мини-завода "Строй-пенобетон-1000".

    курсовая работа [342,7 K], добавлен 18.03.2013

  • Характеристика свойств пенобетонных блоков: пористость, водопоглощение, теплоизоляция и долговечность. Производственная программа предприятий с автоклавной обработкой. Процесс пенообразования и выбор оборудования при получении ячеистого пенобетона.

    курсовая работа [67,8 K], добавлен 29.11.2010

  • Полиэфирные волокна, их производство и потребление в мире. Интенсификаторы, применяемые в промышленности. Катионные поверхностно-активные вещества. Влияние температуры на солюбилизацию дисперсных красителей. Определение прочности окраски к стирке.

    дипломная работа [659,4 K], добавлен 20.12.2012

  • Изучение технологии изготовления бетона - искусственного камня, получаемого в результате формования и твердения рационально подобранной смеси вяжущего вещества, воды и заполнителей (песка и щебня или гравия). Классификация бетона и требования к нему.

    реферат [25,2 K], добавлен 10.04.2010

  • Разработка технологии белого и цветного цемента и способов газового отбеливания клинкера и его водного охлаждения. Основные компоненты сырьевой смеси для получения портландцемента. Расчет расхода сырьевых материалов и обжиг смеси во вращающихся печах.

    курсовая работа [112,3 K], добавлен 11.03.2011

  • Экономическое обоснование строительства проектируемого предприятия. Характеристика изготовляемой продукции. Описание технологического процесса производства смачивателя СВ-101. Тепловые расчеты оборудования. Технико-экономические показатели цеха.

    дипломная работа [380,0 K], добавлен 06.11.2012

  • Описание процесса структурообразования мармелада на основе агара и сахара. Составление уравнения регрессии, отражающего зависимость пластической прочности массы от дозировки сахара и малинового пюре. Оптимизация структурно-механических свойств мармелада.

    реферат [44,9 K], добавлен 23.08.2013

  • Физико-химические особенности наполнителей. Влияние распределения наполнителя в матрице на физико-механические параметры. Адсорбционные свойства и прочности связи наполнителей. Технология получения электроизоляционных резинотехнических материалов.

    научная работа [134,6 K], добавлен 14.03.2011

  • Назначение и характеристика проектируемого цеха литья с блок-схемой технологического процесса. Производственная программа цеха. Основные режимы и фонды времени работы оборудования и рабочих. Разработка технологии получения отливки детали "Матрица".

    дипломная работа [2,3 M], добавлен 15.10.2016

  • Активные угли, их строение, физико-химические свойства, проблемы прочности. Активные угли на торфяной основе. Проблемы накопления полиуретановых отходов в мире, их утилизация и вторичная переработка. Термическая деструкция гетероцепных полимеров.

    курсовая работа [1,0 M], добавлен 20.09.2013

  • Изучение принципа работы солнечного элемента. Описание технологии получения поликристаллического кремния карботермическим методом и путем водородного восстановления трихлорсилана. Разработка технологической планировки цеха по производству мультикремния.

    дипломная работа [4,8 M], добавлен 13.05.2012

  • Разработка цеха по изготовлению ванн методом вакуумно-пленочной формовки и отливки. Определение режима работы цеха, расчет действительных фондов времени, составление производственной программы процесса, подбор оборудования. Расчет баланса металла и смеси.

    курсовая работа [46,0 K], добавлен 05.01.2014

  • Проектирование пароразогрева бетонной смеси в технологии получения плит покрытия. Технологическая схема двухсекционной бетоносмесительной установки цикличного действия. Электроразогрев и пароразогрев бетонной смеси, условия проведения процессов.

    курсовая работа [611,7 K], добавлен 06.02.2015

  • Общие сведения о гидратах оксида алюминия. Физико-химические особенности получения оксида алюминия по методу Байера. Применение нанокристаллического бемита и условия для получения тугоплавких соединений. Рассмотрение технологии технической керамики.

    дипломная работа [6,1 M], добавлен 24.01.2013

  • Разработка маршрутно-технологического процесса получения детали "Направляющая". Обзор возможных способов получения заготовки. Особенности технологии получения заготовки литьём под давлением. Описание схемы обработки резанием и способы контроля качества.

    курсовая работа [502,3 K], добавлен 02.10.2012

  • Рассмотрение механизма получения биоэтанола из растительного сырья. Изучение трансформации целлюлозы в растворимые формы простых углеводов, определение оптимальных условий для протекания процесса. Исследование состава субстрата после гидролиза.

    презентация [279,1 K], добавлен 19.02.2014

  • Разновидности методов получения деталей. Прокатка как один из способов обработки металлов и металлических сплавов методами пластической деформации. Определение, описание процесса волочения, прессования, ковки, штамповки. Достоинства, недостатки методов.

    контрольная работа [1,7 M], добавлен 11.11.2009

  • Возникновение и развитие нанотехнологии. Общая характеристика технологии консолидированных материалов (порошковых, пластической деформации, кристаллизации из аморфного состояния), технологии полимерных, пористых, трубчатых и биологических наноматериалов.

    реферат [3,1 M], добавлен 19.04.2010

  • Свойства и применение молибдена, характеристика сырья для его получения. Окислительный обжиг молибденитовых концентратов. Разложение азотной кислотой. Выбор и технико-экономическое обоснование предлагаемой технологии получения триоксида молибдена.

    курсовая работа [148,8 K], добавлен 04.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.