Компрессор двигателя ТВ2-117А

Назначение, основные технические данные, устройство и принцип работы осевого компрессора. Характеристика конструкции ротора, корпуса, опор компрессора. Анализ причин и мер предупреждения помпажа. Описание принципа работы противообледенительной системы.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 21.04.2016
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский Государственный Технический Университет Гражданской Авиации Иркутский филиал.

Цикловая комиссия теории и конструкция авиационных двигателей.

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по авиационному двигателю ТВ2-117А

Тема «Компрессор двигателя ТВ2-117А»

План

1. Расчётно- пояснительная записка

1.1 Назначение, основные технические данные и устройство компрессора

1.2 Принцип работы осевого компрессора

1.3 Назначение и конструкция ротора компрессора

1.4 Назначение и конструкция корпуса (корпуса 1-й опоры, переднего, среднего, заднего) компрессора

1.5 Передняя и задняя опоры компрессора (назначение, конструкция, смазка, суфлирование)

1.6 Физическая сущность помпажа и причины его возникновения

1.7 Меры предупреждения помпажа компрессора

1.8 Назначение, конструкция и работа противообледенительной системы (ПОС) двигателя

1.9 Техническое обслуживание компрессора

1.9.1 Осмотр элементов компрессора

1.9.2 Допуски на забоины лопаток компрессора и их устранение

1.9.3 Замер износа лопаток 6-й ступени компрессора

1.9.4 Ручная прокрутка ротора компрессора

1.10 Возможные неисправности компрессора, анализ причин, методы обнаружения, устранения и предупреждения

Использованная литература

1. Расчётно- пояснительная записка

1.1 Назначение, основные технические данные и устройство компрессора

Компрессор является одним из основных узлов газотурбинного двигателя. Он служит для повышения давления воздуха перед поступлением его в камеру сгорания. Сжатый и подогретый за счет сжатия воздух способствует быстрому и полному сгоранию топлива в камере сгорания. Значительное уменьшение объема воздуха в процессе повышения его давления способствует уменьшению габаритов двигателя при заданной мощности, а также повышению его экономичности.

К компрессорам, устанавливаемым на вертолетные газотурбинные двигатели, предъявляется ряд требований, основными из которых являются следующие. 1. Должен обеспечиваться необходимый секундный расход воздуха и заданную степень повышения давления. Секундный расход воздуха является основным параметром, определяющим мощность двигателя, а степень повышения давления -- удельный расход топлива.

2. Воздух в камеру сгорания должен подаваться непрерывно, плавно, без пульсаций. Неравномерная подача воздуха в камеру сгорания может вызвать тряску двигателя, срыв пламени и выключение двигателя.

3. Компрессор должен иметь, возможно, больший коэффициент полезного действия, т. е. механическая работа, подводимая к компрессору от турбины, должна максимально использоваться на сжатие воздуха. Полный КПД компрессора, учитывающий гидравлические и механические потери, характеризует степень конструктивного совершенства компрессора.

4. При заданном секундном расходе воздуха и степени повышения давления масса и габариты компрессора должны быть как можно меньшими.

5. В эксплуатации компрессор должен быть прост и надежен. Проточная часть компрессора должна обладать достаточной стойкостью против износа механическими частицами, попадающими из атмосферы вместе с воздухом. Этим требованиям в наибольшей степени удовлетворяют осевые компрессоры, которые и получили в вертолетных газотурбинных двигателях широкое распространение. Осевым компрессором называется лопаточная машина, в которой происходит преобразование механической работы, получаемой от турбины, в энергию давления воздуха, при этом воздух в проточной части компрессора движется, преимущественно, вдоль оси двигателя по поверхностям, близким к цилиндрическим.

Основные технические данные компрессора.

Компрессор двигателя- осевой, дозвуковой, выполнен по одновальной схеме. Основные данные компрессора:

¦ Количество ступеней.................................................................10

¦ Степень повышения давления на взлётном режиме ..............6,8

¦ Массовый расход воздуха.........................................................10 кг/с

¦ Скорость потока на входе...............................................150... 160 м/с

Особенности конструкции: наличие поворотных лопаток входного направляющего аппарата (ВНА) и направляющих аппаратов (НА) I, II, и III ступеней и наличие двух автоматически управляемых клапанов перепуска воздуха в атмосферу (КПВ) за VI ступенью.

¦ Частота вращения турбокомпрессора при закрытии клапанов перепуска при запуске..............................................................................50... 56 %

¦ Отбор воздуха от компрессора для противообледенительной системы..............................................за VIII и X ступенями

¦ Уменьшение мощности двигателя при включении отбора ...4,5 %

¦ Увеличение удельного расхода топлива при включении отбора... 5 %

Вx В

Рис 1.1. Схема проточной части двигателя ТВ2- 117 и изменение параметров воздуха (газа):

Р- давление; С- скорость; Т- температура

Рис, 1. 2. Схема проточной части двигателя и изменение параметров воздуха (газа):

Р- давление; С- скорость; Т- температура

Компрессор состоит из корпуса, направляющих аппаратов, рабочих колец и ротора с его опорами. Значительная часть деталей компрессора изготовлена из титановых сплавов, что позволило снизить массу компрессора и обеспечить надежность его работы.

Рис. 1. 3. Компрессор двигателя (вид справа)

Основными элементами компрессора ТВаД являются корпус, ротор и опоры ротора. Опорами ротора компрессора служат подшипники качения, установленные в корпусе. Обычно передняя опора ротора компрессора представляет собой роликовый подшипник, воспринимающий радиальные нагрузки от общей массы ротора и неуравновешенных масс ротора. Кроме того, роликовый подшипник допускает свободное осевое перемещение ротора, возникающее вследствие действия на него осевых сил и температурных расширений. Задняя опора ротора, как правило, представляет собой однорядный шариковый радиально-упорный подшипник, который, помимо радиальных нагрузок от ротора и неуравновешенных масс, воспринимает осевую нагрузку, равную разности осевых сил, действующих на ротор компрессора и ротор турбины.

Ротор состоит из нескольких рядов профилированных лопаток, закрепленных на барабане или на отдельных дисках, соединенных между собой. Ряд рабочих (вращающихся) лопаток вместе с деталями, обеспечивающими их крепление, называется рабочим колесом (РК). Между лопатками ротора на корпусе закрепляются неподвижные лопатки. Ряд неподвижных лопаток, установленных за рабочим колесом, называется направляющим аппаратом (НА). Совокупность рабочего колеса и направляющего аппарата называется ступенью компрессора. Ряд неподвижных лопаток, расположенных перед первым рабочим колесом, называется входным направляющим аппаратом (ВНА).

Рис 1. 4. Схема устройства осевого компрессора ТВаД:

1- передняя опора ротора компрессора; 2- ротор; 3- входной направляющий аппарат; 4- лопатка рабочего колеса; 5- лопатка направляющего аппарата; 6-корпус; 7- коробка перепуска воздуха в атмосферу; 8- задняя опора ротора компрессора.

Первоначальная раскрутка ротора турбокомпрессора при запуске двигателя осуществляется электрическим стартёр- генератором, работающем в стартёрном режиме (электродвигателя), а воспламенение топливовоздушной смеси- электрическими запальными свечами. При вращении ротора воздух из атмосферы через воздухозаборник вертолёта и воздушные каналы передней части двигателя всасывается компрессором. Скорость на входе в компрессор выбрана из условий уменьшения площади сечения входного устройства и диаметральных размеров компрессора при расчётном расходе воздуха и составляет примерно 150- 160 м/с. Секундный расход воздуха на расчётном режиме работы двигателя определяется при газодинамическом расчёте из условий получения требуемой мощности.

В компрессоре происходит сжатие воздуха до давления р*К, величина которого в несколько раз больше р*В. Сжатие воздуха происходит при преобразовании механической энергии вращения ротора компрессора, при-

водимого турбиной, в энергию давления. Повышение давления воздуха в компрессоре сопровождается ростом температуры. Скорость воздуха на выходе из компрессора изменяется до значения СК, значительно меньшего СВ. Это определяется необходимостью получения устойчивого процесса горения в камере сгорания и позволяет иметь сравнительно большую длину лопаток последней ступени осевого компрессора, что уменьшает перетекание воздуха по радиальным зазорам и повышает его коэффициент полезного действия.

Степень повышения давления воздуха в компрессоре

Степень повышения давления воздуха в компрессоре () - отношение давления на выходе из компрессора рк к давлению на входе в него Рв

Часто используется также степень повышения давления, выраженная через давление заторможенного потока:

Можно сделать вывод, что рк (или рк*) происходит увеличение мощности двигателя. Это объясняется увеличением силы давления газа на лопатках турбины, как следствие, возрастает момент на валу турбины и её мощность. У существующих ТВаД рк* составляет 6- 18, 4, у ТВ2- 117 -- рк* =6,6.

1.2 Принцип работы осевого компрессора

Осевым компрессором называется лопаточная машина, в которой происходит преобразование механической работы, получаемой от турбины, в энергию давления воздуха, при этом воздух в проточной части компрессора движется, преимущественно, вдоль оси двигателя по поверхностям, близким к цилиндрическим.

Поток воздуха, движущийся через проточную часть осевого компрессора можно представить состоящим из отдельных струек тока, каждая из которых движется по поверхности, приближенной к цилиндрической. Рассмотрим, как будут изменятся параметры воздуха в струйке тока толщиной Ah, движущейся вдоль цилиндрической поверхности А-А. Для чего рассмотрим межлопаточные каналы ВНА, РК и НА в сечении их цилиндрической поверхностью А-А.

Рис. 2.1. Схема первой ступени осевого компрессора с входным направляющим аппаратом.

В ВНА происходит падение давления, снижение температуры воздуха, и закрутка потока по направлению вращения рабочего колеса.

В РК происходит рост давления, рост температуры, рост абсолютной скорости воздуха.

В НА происходит рост давления, рост температуры и снижение абсолютной скорости воздуха. При этом абсолютная скорость на входе и выходе из ступени приблизительно равны (С1 ~ СЗ).

Из этого можно сделать вывод, что в ступени осевого компрессора происходит повышение давления воздуха. Рост давления объясняется разностью площадей межлопаточных каналов на входе и выходе, а значит и разностью углов входа и выхода. Поэтому можно сказать, что поток воздуха, перемещаясь по межлопаточным каналам, поворачивается на некоторый угол, равный разности между углом входа и углом выхода. Этот угол называется углом поворота потока. Угол поворота потока в межлопаточных каналах НА и РК не может превышать 30ч35О, иначе инерционные силы вызывают отрыв потока от стенок канала и рост потерь энергии. Следовательно, если угол поворота потока ограничен, то ограничена также степень повышения давления в ступени осевого компрессора. У существующих компрессоров степень повышения давления в ступени составляет р*ст=1,2ч1,35. Для получения больших значений Лв осевых компрессорах устанавливают несколько ступеней. Компрессор двигателя ТВ2-117 содержит 10 ступеней.

Рис, 2. 2. Изменение параметров воздуха в ВНА и ступени осевого компрессора

Длина лопаток РК и НА многоступенчатого компрессора по проточной части уменьшается. Если бы длина лопаток всех ступеней была одинаковой, то по мере сжатия воздуха скорость его движения резко уменьшалась. Как уже отмечалось, при малых скоростях движения воздуха снижается степень повышения давления в ступени. Поэтому для получения высокой напорности ступеней необходимо, чтобы осевая скорость потока была большой по всей длине компрессора. Это может быть обеспечено только уменьшением длины лопаток, следовательно, площадь проходного сечения проточной части на входе в компрессор (Fв) должна быть больше площади на выходе из компрессора площади (Fк).

При этом необходимо учитывать, что при уменьшении длины лопаток возрастают концевые и вторичные потери, в особенности потери, связанные с перетеканием воздуха через радиальный зазор. Поэтому длина лопаток меньше 30ч40 мм не допускается. Такое условие в современных компрессорах удается выполнить только при уменьшающейся по длине компрессора осевой скорости. Отношение осевых скоростей на выходе из компрессора (СКА) к его скорости на входе в компрессор (СВА) принимается 0,5ч0,6. Уменьшение поперечного сечения проточной части компрессора может осуществляться:

-- при постоянном внешнем диаметре корпуса компрессора (DK) и увеличивающемся внутреннем диаметре (диаметре втулки) (DBt) (рис.2.3, а);

-- при постоянном диаметре втулки и уменьшающемся диаметре корпуса (рис.2.3, б);

-- при увеличивающемся диаметре втулки, уменьшающемся диаметре корпуса и постоянном среднем диаметре (рис. 2.3, в).

Рис. 2.3. Возможные формы проточной части многоступенчатого осевого компрессора:

а--Dк = const; б--Dвm = const; в-- Dcp = const

Наибольшее распространение получила первая схема (рис.2.3, а), так как она обеспечивает получение более высоких значений тест всех ступеней. Это объясняется следующим: с ростом окружной скорости движения лопаток РК увеличивается работа, подводимая к воздуху, возрастает степень повышения давления. При выполнении компрессора с постоянным диаметром корпуса окружная скорость лопаток РК от ступени к ступени возрастает, т.к. возрастает расстояние от лопатки до оси вращения ротора. Следовательно, увеличивается степень сжатия воздуха в компрессоре. В результате этого число ступеней можно сделать меньше. Именно по такой схеме выполнен компрессор двигателя ТВ2-117.

1.3 Назначение и конструкция ротора компрессора

Ротор является основным рабочим элементом компрессора. По конструктивному выполнению он относится к роторам барабанного типа. Такие роторы обладают достаточной изгибной жёсткостью, высокой прочностью, сравнительно малым весом и простотой конструкции.

В процессе работы двигателя на ротор действуют следующие основные нагрузки:

a) Центробежные силы собственных масс и масс рабочих лопаток;

b) Сила собственного веса;

c) Сила инерции, возникающая при эволюциях вертолёта;

d) Крутящие моменты;

e) Осевые силы;

f) Усилия от разности давлений воздуха в проточной части и внутри ротора компрессора.

Ротор компрессора состоит из трех основных узлов: рабочего колеса I ступени, ротора барабанного типа II--IX ступеней и рабочего колеса X ступени.

Диск рабочего колеса I ступени, изготовленный из стали, соединен с ротором барабанного типа шестью прецизионными болтами; между прецизионными болтами расположены три болта, крепящие кольцо воздушного лаби-

ринта передней опоры ротора компрессора. В передней части диска имеется хвостовик с внутренними шлицами для соединения с рессорой привода агрегатов. На хвостовике смонтирован кольцедержатель маслоуплотнения и роликовый подшипник. Внутрь хвостовика установлены два эксцентричных груза для устранения дисбаланса ротора по первой опоре роторов двигателя при окончательной балансировке ротора.

Рис. 3.2. Ротор компрессора:

1- роликовый подшипник; 2- кольцо лабиринтное; 3- болт; 4- груз эксцентричный; 5- болт прецизионный; 6- диск рабочего колеса I ступени; 7- ротор барабанного типа; 8- крестовина; 9- пружина; 10- дефлектор;

11- втулка шлицевая; 12- шариковый подшипник; 13- диск рабочего колеса X ступени; 14- болт.

Лопатки рабочего колеса I ступени компрессора закреплены в пазах диска посредством замкового соединения типа ласточкина хвоста и фиксируются в них отгибными пластинчатыми замками.

Ротор барабанного типа изготовлен из титанового сплава. Внешняя поверхность барабана имеет вид усеченного конуса с восемью кольцевыми наружными и внутренними выступами в поясах крепления лопаток. В каждом из восьми поясов на наружной поверхности барабана выполнены кольцевые выточки с профилем типа ласточкина хвоста для крепления рабочих лопаток II--IX ступеней. На барабане ротора против внутренних обойм направляющих аппаратов выполнены лабиринтные гребешки, а в поясе барабана против направляющего аппарата за VIII ступенью компрессора -- отверстия для прохода сжатого воздуха внутрь ротора. Проходя через ротор и далее через полый вал турбины, воздух поступает на охлаждение дисков турбин. Для устранения закрутки воздуха на внутренней поверхности барабана в местах отбора воздуха смонтированы три радиальных дефлектора, а на передней части диска десятого рабочего колеса смонтирован стакан с крестовиной и радиальными лопатками.

Лопатки II--IX ступеней входят в кольцевые выточки через специальные радиально направленные пазы и распределяются по окружности. От произвольного поворота по окружности лопатки фиксируют четырьмя контровоч-ными замками на каждую ступень, один усик которых входит в паз на барабане, а другой в выфрезеровку на полке лопатки.

Диск десятого рабочего колеса изготовлен из стали, крепится шестнадцатью болтами к заднему фланцу ротора барабанного типа. В задней части диска имеется хвостовик со сферической расточкой, а в центральной части -- внутренние шлицы, в которые устанавливается подвижная шлицевая втулка, соединяющая вал ротора турбины компрессора с ротором компрессора. Шлицевая втулка удерживается в сцепленном положении пружиной. На хвостовике диска монтируются лабиринтное кольцо, кольцедержатели масло-уплотнений и шариковый подшипник.

Лопатки рабочего колеса X ступени компрессора крепятся в пазах диска замковыми соединениями типа ласточкина хвоста и фиксируются в них от-гибными пластинчатыми замками.

Все лопатки ротора изготовлены из нержавеющей стали, выполнены с переменными хордой и толщиной по высоте лопатки.

Распределение рабочих лопаток ротора компрессора по ступеням:

Ступень компрес- сора

I

II

III

IV

V

VI

VII

VIII

IX

X

Количество лопаток, шт.

21

23

33

45

49

53

5?

55

55

57

1.4 Назначение и конструкция корпуса (корпуса 1-й опоры, переднего, среднего, заднего) компрессора

Корпус компрессора является одним из основных узлов силовой системы двигателя. По конструктивному выполнению он относится к числу разъёмных корпусов с продольным (на переднем корпусе) и поперечными разъёмами. Наличие продольного разъёма облегчает сборку переднего корпуса, а наличие поперечных разъёмов улучшает технологичность корпуса и даёт возможность подобрать соответствующие материалы для каждой его части в зависимости от условий их работы.

Внутри корпуса компрессора монтируются спремляющие аппараты и опоры ротора вместе с ротором, а снаружи- агрегаты, механизмы и коммуникации систем, обеспечивающие работу двигателя.

При работе двигателя на элементы корпуса компрессора действуют следующие основные нагрузки:

1. Аэродинамические силы Р'1 возникающие на лопатках спрямляющих аппаратов;

2. Силы веса G;

3. Силы инерции Pj , возникающие при эволюциях вертолёта;

4. Осевые силы Рос и крутящие моменты Мкр от других элементов двигателя;

5. Разность давлений воздуха в проточной части компрессора P1 и Р2 и в окружающей среде Рн

Корпус компрессора состоит из переднего, среднего, и заднего корпусов с направляющими аппаратами. Передний корпус -- титановый, состоит из двух половин, стягиваемых болтами.

Передний корпус соединяется с корпусом первой опоры и со средним корпусом компрессора. На корпусе размещены четыре ряда бобышек для установки поворотных лопаток спрямляющих аппаратов.

Наружная обечайка среднего корпуса компрессора совместно с наружными обоймами направляющих аппаратов и кольцами образуют двухстеноч-ную конструкцию корпуса, обеспечивающую необходимую жесткость корпуса при малой массе. Обечайка представляет собой цилиндрическую оболочку из титанового листа с приваренными фланцами, на внутренней поверхности которой приварены кольцевые бандажи. К наружной поверхности обечайки приварены кольцевая коробка перепуска воздуха из компрессора, на которой имеются два фланца для установки клапанов перепуска воздуха и лючок для замера абразивного износа лопаток направляющего аппарата VI ступени.

Рис. 4.1. Компрессор двигателя (разрез верхней части):

1-диск рабочего колеса I ступени; 2- корпус передний; 3- лопатка поворотная ВНА; 4- лопатка поворотная направляющего аппарата I ступени компрессора; 5- рычаг; 6- кольцо поворотное; 7- корпус средний; 8- обечайка среднего корпуса; 9- коробка перепуска воздуха; 10- фланец для установки клапана перепуска воздуха; 11- корпус задний; 12- скоба; 13- полость для горячего воздуха; 14- полукольцо ВНА.

Под коробкой в обечайке и в наружной обойме направляющего аппарата VI ступени выполнены отверстия для перепуска воздуха в коробку из проточной части компрессора.

Наружную поверхность проточной части среднего корпуса компрессора образуют чередующиеся наружные обоймы разъемных направляющих аппаратов и кольца, расположенные над рабочими лопатками. Направляющие аппараты одним из своих наружных буртов опираются на бандажи наружной обечайки.

Наружные обоймы соединены с кольцами посредством штифтов; последнее кольцо установлено на штифты заднего корпуса компрессора. Штифты воспринимают и передают на задний корпус реактивный- крутящий момент, возникающий, в направляющих аппаратах компрессора.

Для обеспечения малых радиальных зазоров между торцами рабочих лопаток и корпусами компрессора на внутренние поверхности переднего корпуса и промежуточные кольца нанесен слой сплава ЭИ435, который защищает титановые корпуса от задевания их лопатками ротора, а минимальные радиальные зазоры снижают бандажные потери (осевое перетекание воздуха по зазорам между торцами лопаток и корпусом компрессора) и повышают КПД компрессора.

Задний корпус компрессора является силовым узлом, воспринимающим тягу двигателя. Он состоит из наружного и внутреннего стальных колец и двух рядов литых лопаток -- направляющего и выходного спрямляющего аппаратов. Кольца и лопатки соединены в единый узел пайкой. Наружное кольцо имеет фланцы для соединения со средним корпусом компрессора и наружным диффузором камеры сгорания. На наружном кольце закреплены детали передних точек крепления двигателя на вертолете.

К внутреннему кольцу заднего корпуса крепится задняя опора ротора компрессора (вторая опора роторов двигателя) с шариковым подшипником.

Поворотные лопатки направляющих аппаратов I, II и III ступеней компрессора изготовлены из титанового сплава. На цапфы наружных концов лопаток установлены фторопластовые втулки.

Поворотные лопатки входного направляющего аппарата изготовлены из стали. Лопатки имеют две цапфы, оболочку и дефлектор. В полости лопаток ВНА подводится горячий воздух при включении противообледенительной системы. На цапфы установлены фторопластовые втулки. конструкция компрессор ротор помпаж

Малые цапфы лопаток входят в полукольца, каждое из которых состоит из двух частей. Полукольца образуют внутреннюю поверхность контура про-

точной части компрессора. Полукольца входного направляющего аппарата, выполненные из алюминиевого сплава, входят в проточку корпуса передней опоры ротора компрессора. Между корпусом и кольцом образована полость для горячего воздуха, поступающего по каналам в корпусе опоры при включении противообледенительной системы. Полукольца остальных направляющих аппаратов с поворотными лопатками выполнены из бронзы. Обе части полукольца соединены болтами.

Поворотные лопатки цапфами с фторопластовыми втулками установлены в бобышки переднего корпуса компрессора. На концы цапф установлены и закреплены штифтами поворотные рычаги. Свободные концы рычагов соединены пальцами с поворотными кольцами, состоящими из двух половин, соединенных по месту горизонтального разъема скобами. В пазы скоб входят сухари рычагов двух гидромеханизмов. Фторопластовые втулки применяются для уменьшения трения при повороте лопаток.

Лопатки IV--IX ступеней изготовлены из титанового сплава, направляющие и спрямляющие лопатки X ступени -- стальные.

Гидромеханизмы поворота лопаток направляющих аппаратов размещены по обе стороны компрессора на кронштейнах, расположенных на переднем и заднем фланцах переднего корпуса компрессора. Рычаги привода поворотных лопаток каждой ступени компрессора связаны с ведущим рычагом при помощи тяг, через которые производится одновременный поворот лопаток входного направляющего аппарата и направляющих аппаратов I, II и III ступеней компрессора.

Применение двух гидромеханизмов поворота лопаток обеспечивает равномерное распределение нагрузок на поворотные кольца и предотвращает возможность смещения колец. Поворот лопаток осуществляется по специальной программе. Величина углов поворота лопаток каждого ряда различна и обеспечивается различной длиной рычагов гидромеханизма.

Направляющие аппараты остальных ступеней состоят из наружной и внутренней обойм, в которые впаяны лопатки.

В направляющие аппараты компрессора входит следующее количество лопаток: во входной направляющий аппарат -- 20 шт., в аппараты I, II и III ступеней -- по 32 шт., аппарат IV ступени -- 50 шт., аппарат V ступени -- 54 шт., аппарат VI ступени -- 56 шт., аппарат VII ступени -- 60 шт., аппараты VIII и IX ступеней -- по 64 шт., и аппарат X ступени (направляющие и спрямляющие лопатки) -- по 65 шт.

Передний корпус компрессора. Представляет собой цилиндр с передним, задним и продольными фланцами. На переднем фланце имеется цилиндрическая расточка для центрирования и ряд равномерных расположенных по окружности отверстий под винты крепления переднего корпуса компрессора к корпусу передней опоры ротора компрессора. Задний фланец имеет цилиндрическую расточку для центрирования и отверстия под болты соединения переднего корпуса со средним. Для герметизации на задний фланец переднего корпуса наносится слой уплотняющей мастики.

Передний корпус имеет продольный горизонтальный разъём, облегчающий его монтаж при сборке двигателя. Соединение и центрирование половин переднего корпуса осуществляется призонными болтами, а герметизация-уплотняющей мастикой.

На наружной поверхности переднего корпуса имеются четыре ряда бобышек с отверстиями для монтажа поворотных лопаток. В отверстия устанавливаются фторопластовые втулки, выполняющие роль подшипников скольжения. Во втулки устанавливаются цапфы поворотных лопаток.

Внутренняя поверхность корпуса выполнена в виде конуса (до III ступени), переходящего в цилиндр.

Средний корпус компрессора. Двухстеночной конструкции. Он состоит из обечайки, спрямляющих аппаратов IV--IX ступеней и промежуточных колец. Такого рода конструкция среднего корпуса компрессора позволяет частично разгрузить обечайку от действия реактивных крутящих моментов, возникающих от окружных составляющих аэродинамических сил, действующих на лопатки спрямляющих аппаратов IV--IX ступеней и, таким образом, обеспечить достаточную прочность и жесткость конструкции при минимальном весе.

Обечайка среднего корпуса сварной конструкции выполнена из титанового сплава ОТ4-1 и представляет собой цилиндрическую оболочку с двумя фланцами. С помощью переднего фланца средний корпус компрессора соединяется болтами с задним фланцем переднего корпуса, а с помощью заднего фланца винтами с задним корпусом компрессора. При окончательной сборке компрессора по торцам фланцев наносится слой уплотнительной пасты. На наружной поверхности обечайки приварена кольцевая коробка 8 перепуска воздуха. Под коробкой в обечайке против спрямляющего аппарата VI ступени просверлены отверстия А 08 мм для прохода воздуха из проточной части компрессора в полость коробки. На кольцевой коробке приварены: два четырехугольных фланца для монтажа клапанов перепуска воздуха за VI ступенью компрессора в атмосферу, угольник для подачи воздуха к воздушному фильтру насоса-регулятора НР-40ВР, три бобышка, расположенные в поперечной плоскости для крепленая переднею коллектора противопожарной системы, и две бобышки для установки кронштейна противообледени- тельного клапана. За кольцевой коробкой на обечайке справа вверху приварен четырехугольный фланец для крепления трубы отбора воздуха за VIII ступенью компрессора для систем вертолета. Отбор воздуха на вертолетные нужды разрешается при температуре наружного воздуха ниже +15°С. При работе двигателя на номинальном режиме на земле количество отбираемого воздуха не должно превышать 0,16 кГ/сек.

Сборка деталей внутренней стенки среднего корпуса компрессора осуществляется последовательным монтажом промежуточных колец и спрямляющих аппаратов. Соединение обеспечивается штифтами, а центрирование- буртиками и цилиндрическими расточками деталей. Перед спрямляющим аппаратом IV ступени устанавливается регулировочное кольцо, с помощью которого регулируют зазор между этим кольцом и наружным кольцом спрямляющего аппарата IV ступени. При поджатых деталях внутренней стенки среднего корпуса компрессора усилием 100± 10 кГ зазор должен быть не более О,1мм. При работе двигателя от действия окружных составляющих аэродинамических сил на лопатки спрямляющих аппаратов возникает реактивный крутящий момент, который передаётся от детали к детали с помощью штифтов. Так как этот момент от ступени к ступени возрастает, то и количество штифтов, передающих его, также растёт от двенадцати за IV ступенью до тридцати за IX ступенью.

Задний корпус компрессора. Относится к числу наиболее нагруженных узлов двигателя. Он воспринимает нагрузки, возникающие как в самом корпусе, так и от других узлов двигатели. Кроме того, он осуществляет связь силовой системы корпуса с силовой системой ротора. От него через узлы креплении двигателя передаются нагрузки на вертолет. Задний корпус состоит из наружного и внутреннего колец, двух рядов лопаток спрямляющего и выходного спрямляющего аппаратов.

Наружное кольцо изготовлено из поковки высоколегированной стали 1Х12Н2ВМФ. Впереди оно имеет фланец с торцовым центрирующим буртиком для крепления обечайки среднего корпуса компрессора и ряд штифтов для присоединения спрямляющего аппарата IX ступени. К заднему фланцу крепится наружный корпус диффузора камеры сгорания, который центрируется по опорному пояску цилиндрической части фланца. Между фланцами образован кольцевой паз, к которому установлены: вверху- узел подвески двигателя, слева, справа и внизу -- узлы крепления двигателя к раме вертолета. Внутри наружное кольцо имеет бурт. Спереди до упора в этот бурт устанавливается промежуточное кольцо X ступени, которое фиксируется от проворачивания стопором, входящим в продольный паз на внутренней поверхности наружного кольца. Сзади внутрь наружного кольца до упора в бурт устанавливается ряд лопаток спрямляющего аппарата, а затем в упор к ним -- ряд лопаток выходного спрямляющего аппарата.

Внутреннее кольцо выполнено из поковки стали 1Х12Н2ВМФ. На его наружной поверхности имеются четыре кольцевые канавки, куда устанавливаются ленты, с помощью которых припаиваются лопатки спрямляющего и выходного спрямляющего аппаратов. Внутри кольцо имеет фланец, к которому спереди крепится корпус второй опоры двигателя, а сзади -- внутренний корпус диффузора камеры сгорания.

1.5 Передняя и задняя опоры компрессора (назначение, конструкция, смазка, суфлирование)

Первая опора роторов двигателя (передняя опора ротора компрессора) состоит из корпуса опоры, роликоподшипника, корпуса зубчатых колес и корпуса подшипников с ведущим зубчатым колесом центрального привода, рессоры, крышки, кока двигателя, деталей крепления и уплотнения. Корпус опо-

ры отлит из магниевого сплава, представляет собой наружный обод с внутренней втулкой, соединенные четырьмя профилированными стойками.

К переднему фланцу наружного обода крепится воздухозаборник вертолета, задним фланцем обода корпус опоры крепится к корпусу компрессора. На ободе корпуса опоры против стоек расположены четыре наружных фланца. На верхнем фланце крепится коробка приводов, на нижнем фланце -- нижний агрегат маслосистемы, на правом и левом фланцах -- трубы подвода горячего воздуха.

В правой нижней части обода выполнены четыре бобышки для крепления коробки электросистемы двигателя. В вертикальных стойках выполнены отверстия, через которые проходят рессоры передачи крутящего момента от центрального привода к агрегатам коробки приводов и к нижнему маслоагрегату, и каналы для подвода и слива масла. Внутрь горизонтальных стоек вмонтирован воздушный коллектор, состоящий из стальных трубок, по которым подводится горячий воздух в лопатки входного направляющего аппарата компрессора. По одной из трубок подводится горячий воздух для обогрева стоек корпуса опоры, лопаток ВНА компрессора и кока двигателя. Внутри втулки корпуса опоры смонтированы: корпус привода, отлитый из магниевого сплава, рессора передачи крутящего момента от турбины компрессора (через ротор компрессора) к центральному приводу, корпус подшипников, собранный с ведущим зубчатым колесом привода, крышка первой опоры и наружное кольцо роликоподшипника ротора компрессора.

Корпус привода (ведомых зубчатых колес) крепится к корпусу опоры, а крышка первой опоры крепится к корпусу подшипников ведущего зубчатого колеса, закрепленного на корпусе.

Кок двигателя состоит из профилированной наружной стенки и внутреннего дефлектора, изготовленных из алюминиевого сплава, и крепится к крышке шпилькой, ввернутой в переднюю часть крышки. При включенной противообледенительной системе в полость между наружной стенкой и дефлектором кока поступает горячий воздух, который омывает изнутри стенку и через отверстия в коке выходит в проточную часть воздухозаборника.

В профилированных стойках корпуса опоры предусмотрена система каналов различного назначения. Так, в верхней стойки проходят каналы, предназначенные для:

1. Подвода воздуха на обогрев передней кромки стойки;

2. Размещение рессоры передачи крутящего момента к коробке приводов:

3. Замера давления воздуха в верхней наружной полости корпуса цен- трального привода (не используется):

4. Подача масла на смазку подшипника передней опоры и деталей центрального привода:

5. Наддува предмасляной полости передней опоры.

Рис. 5.2. Первая опора роторов двигателя (разрез):

1- корпус подшипников; 2- корпус привода; 3- корпус опоры; 4- рессора передачи к коробке приводов; 5- жиклёр; 6- стопор; 7- упругий элемент; 8- крышка; 9- кольцо маслоуплотнительное; 10- колбцедержатель;

II- роликовый подшипник; 12- корпус роликового подшипника; 13- кольцо регулировочное; 14- рессора передачи к центральному приводу; 15- рессора передачи к нижнему маслоагрегату; 16- крышка первой опоры; 17- кок двигателя.

Внутреннее кольцо роликоподшипника закреплено на передней шейке ротора компрессора, а наружное кольцо монтируется в стальном корпусе подшипника. Величина перемещения кольца в осевом направлении обеспечивается подбором кольца по толщине. Между сопрягаемыми цилиндрическими поверхностями наружного кольца роликоподшипника и корпусом подшипника монтируется упругий элемент, состоящий из двух стальных втулок -- наружной втулки зигзагообразного профиля с рабочими площадками на выступах и внутренней цилиндрической втулки. Зигзагообразный профиль наружной втулки обеспечивает перемещение упругого элемента, при котором гасятся радиальные колебания ротора компрессора. Цилиндрическая втулка предохраняет внутренние рабочие площадки наружной втулки от износа в случае поворота наружного кольца роликоподшипника. Провороту втулок упругого элемента препятствует стопор.

Масляная полость первой опоры сзади уплотнена контактно-кольцевым уплотнением, состоящим из трех чугунных колец, кольцедержателя и корпуса подшипника 12 с азотированной внутренней задней цилиндрической поверхностью.

Для создания воздушного подпора контактно-кольцевого уплотнения имеется полость Е, которая поддувается воздухом, отбираемым из диффузора камеры сгорания. Воздушная полость Е уплотнена гребешковым лабиринтным уплотнением. На внутренней цилиндрической поверхности крышки 8, по которой работают гребешки лабиринта, имеется слой навулканизированной резины.

Перепад давлений для подбора лабиринтных уплотнений между воздушной и масляной полостями обеспечивается жиклером в штуцере диффузора камеры сгорания.

Зубчатые колеса и подшипники первой опоры смазываются маслом. Масло на смазку и охлаждение деталей передней опоры подаётся от верхнего масляного агрегата под давлением 3- 3,5 кГ/см2 через жиклёр 5 (см. рис. 5.2.) и далее по каналам в корпусе передней опоры и в корпусе центрального привода поступает на смазку деталей центрального привода и к форсунке. Из форсунки масло выходит в виде струи, направленной в зазор между бронзовым сепаратором и внутренним кольцом роликоподшипника. Суммарный расход масла на смазку деталей центрального привода и роликоподшипника передней опоры составляет 2,3+0,5 л/мин, а расход масла через форсунку -- 0,8+0,2 л/мин. Масляная полость передней опоры герметично отделена от полости коробки приводов, спереди она закрыта крышкой 2, а сзади- контактно- кольцевым уплотнением и гребешковым лабиринтом, с наддувом воздуха между ними. Масляная полость сообщена с откачивающей секцией нижнего масляного агрегата. При работе двигателя из этой полости вместе с маслом откачивается и некоторое количество воздуха. Масло с воздухом перекачивается через масляный радиатор в маслобак, где воздух выделяется из масла и через расширительный бачок выходит в атмосферу.

Таким образом, в масляной полости передней опоры устанавливается примерно атмосферное давление. На наддув предмасляной полости воздух поступает от штуцера наружного корпуса диффузора камеры сгорания, проходит по внешней трубке, штуцеру, расположенному слева вверху на корпусе передней опоры, и далее по внутренним каналам корпуса опоры попадает в эту полость. Необходимый для воздушного подпора перепад давлений между предмасляной и масляной полостями регулируется в пределах 0, 05- 0, 3 кг/см2 подбором жиклёра, который монтируется на штуцере наружного корпуса диффузора камеры сгорания. Так как в предмаслянной полости давление несколько выше, чем в масляной, то чистый воздух из этой полости может частично проходить через гребешковый лабиринт в воздушный тракт двигателя и через контактно- кольцевое уплотнение-- в масляную полость передней опоры, но его количество ограничено.

Вторая опора роторов двигателя (задняя опора ротора компрессора) представляет собой однорядный шариковый радиально- упорный подшипник, который, помимо нагрузки от веса ротора и неуравновешенных масс, воспринимает суммарную нагрузку, равную разности осевых сил от ротора компрессора и ротора турбины. Он фиксирует ротор турбокомпрессора двигателя относительно корпуса в осевом направлении.

Стальной корпус опоры крепится через фланец направляющего аппарата X ступени компрессора к внутреннему фланцу диффузора камеры сгорания, а корпус лабиринтов, выполненных из титанового сплава, соединен болтами с корпусом опоры. В задней части корпуса опоры выполнена расточка под наружное кольцо шарикоподшипника; в передней части корпуса выполнены две втулки -- наружная для воздушного и внутренняя для масляного уплотнений полости опоры. В стенках корпуса опоры выполнены пять эллипсных отверстий для слива масла и одиннадцать отверстий для перепуска воздуха из полости Л в полость Б, просочившегося через передний лабиринт. В корпусе лабиринтов имеется одиннадцать отверстий, совпадающих с отверстиями корпуса опоры.

Воздух, просочившийся через задний лабиринт, по восьми отверстиям в корпусе лабиринтов также отводится в полость Б, откуда по двум трубкам 9 и алюминиевым патрубкам выбрасывается в атмосферу. Необходимый дли воздушного подпора уплотнений перепад между воздушной и масляной полостями опоры устанавливается жиклером.

Разъемное внутреннее кольцо шарикоподшипника совместно с лабиринтом, регулировочным кольцом и кольцедержателями закреплено на задней шейке ротора компрессора, а наружное кольцо его смонтировано в корпусе опоры. Перемещение наружного кольца в осевом направлении обеспечивается подбором регулировочного кольца. Между сопрягаемыми цилиндрическими поверхностями наружного кольца шарикоподшипника и корпуса опоры установлен упругий элемент, по конструкции аналогичный упругому элементу первой опоры. Втулки упругого элемента зафиксированы от проворачивания стопором.

Рис. 5.3. Вторая опора роторов двигателя (разрез и вид спереди):

1- шариковый подшипник; 2- корпус опоры; 3- стопор; 4- форсунка;

5- штуцер подвода масла; 6- трубка подвода масла; 7- корпус лабиринтов; 8 и 14- втулки; 9- трубка отвода воздуха; 10- жиклёр; 11 и 18- кольцедержатель; 12 и 17- кольца маслоуплотнительные; 13- штуцер слива масла; 15 и 19- кольца регулировочные; 16- упругий элемент; 20- бандажная втулка.

Масляная полость опоры отделена от воздушных полостей контактно-кольцевыми уплотнениями и гребешковыми лабиринтами. Контактно-кольцевые уплотнения состоят из шести чугунных колец, кольцедержателей и втулки с азотированной внутренней цилиндрической поверхностью. Внутренние цилиндрические поверхности втулки и корпуса опоры, по которым работают гребешковые лабиринты, покрыты специальной мастикой, обеспечивающей минимальные зазоры между гребешками лабиринтного уплотнения.

Для смазки и охлаждения шарикоподшипника задней опоры ротора двигателя масло подаётся под давлением 3-- 3,5 кГ/см2 от верхнего масляного агрегата к штуцеру. Затем оно проходит по трубке, отверстию в стенке конусной втулки корпуса лабиринтов и попадает в дуговую полость, откуда по трём осевым отверстиям подаётся к масляным форсункам. Струя выходящего из форсунок масла направлена в зазор между сепаратором и внутренним кольцом шарикоподшипника. Таким образом, обеспечивается интенсивная струйная трёхточечная смазка и охлаждение трущихся поверхностей шарикоподшипника. Суммарный расход масла через форсунки равен 4,5+0,5 л/мин.

Суфлирование полостей задней опоры обеспечивается двумя путями: суфлированием предмасляных полостей и суфлированием масляной полости опоры.

Суфлирование предмасляных полостей осуществляется следующим образом: воздух, поступающий под высоким давлением из полости за рабочим колесом X ступени компрессора к переднему уплотнению опоры, частично прорывается через двухрядный гребешковый лабиринт, а воздух, поступающий из полости за X ступенью компрессора в полость внутреннего диффузора камеры сгорания, проникает через гребешковый лабиринт заднего кольце-держателя.

Масляная полость задней опоры (полость подшипника) сообщается с атмосферой через трубку, штуцер, внешнюю трубу и приводной центробежный суфлёр, расположенный в коробке приводов. В центробежном суфлёре происходит отделение паров масла. Воздух отводится в атмосферу, а масло сливается в полость коробки приводов.

Таким образом, в масляной полости устанавливается примерно атмосферное давление, которое ниже, чем давление в предмасляных полостях. Поэтому масло из масляной полости не может попасть в предмасляные, а значит, и в газовоздушный тракт двигатель. Из предмасляных же полостей суфлирование в полость подшипника непрерывно будет перетекать некоторое количество воздуха. Однако за счёт контактно- кольцевых уплотнений оно ограничено до минимума, поэтому исключается сдув масла с подшипника.

1.6 Физическая сущность помпажа и причины его возникновения

Помпажем называют неустойчивый режим работы компрессора, связанный с периодическим возникновением и развитием срывов потока воздуха с лопаток рабочих колес и спрямляющих аппаратов, что вызывает местные (по тракту двигателя) колебания воздушных масс.

Межлопаточные каналы всех ступеней компрессора профилируются исходя из расчётного режима работы (номинального режима).

При работе компрессора на не расчётном режиме параметры потока воздуха (давление, температура, скорость и плотность) в течения проточной части изменяются. Проходные сечения, подобранные для расчётного режима, в этом случае не будут соответствовать новым значениям параметров воздушного потока, и при изменении углов набегания потока на лопатки возможен его срыв и образование завихрений. Как правило, эти срывы и завихрения потока при неблагоприятных условиях происходят на части ступеней, вызывая неустойчивую работу, или помпаж всего компрессора.

Наибольшее влияние на возникновение помпажа оказывает частота вращения ротора. При уменьшении её по сравнению с расчётными значениями уменьшаются расход воздуха, степень повышения давления и мощность, потребляемая компрессором.

Уменьшение Gв приводит к уменьшению осевой скорости и разрыву потока, что и вызывает появление срывов на первых ступенях компрессора. При этом последние ступени могут работать в турбинном режиме или в режиме запирания.

Срыв потока происходит и при постоянной частоте вращения при изменении расхода воздуха Gв, связанном с изменением атмосферных условий или с особенностями работы и управления двигателем.

Итак, периодические срывы потока, возникшие в компрессоре при появлении помпажа, являются мощными источниками, возбуждающими колебания воздушных масс с большой амплитудой, что приводит к выбросу воздуха из компрессора во входное устройство, к вибрациям и даже поломкам лопаток компрессора, нарушению нормального, устойчивого сгорания топливо-воздушной смеси в камере сгорания, повышению температуры газа перед турбиной, к значительному снижению мощности турбины и т. д. Вот почему неустойчивая работа компрессора недопустима.

В процессе технической эксплуатации газотурбинных двигателей неустойчивая работа компрессора может возникнуть при запуске, на переходных режимах и на максимальных оборотах.

При запуске двигателя, особенно в условиях низких температур, помпаж может произойти:

1. по причине малых секундных расходов воздуха и малых значений рк на малых оборотах;

2. при слишком раннем отключении стартера или недостаточном напряжении источников питания;

3. при резком увеличении подачи топлива.

При работе двигателя на максимальных оборотах также возможно появление помпажа из-за рассогласовании в работе первых и последних ступеней компрессора. Отклонение оборотов ротора компрессора от расчетных в сторону увеличении приводит к появлению звуковых и даже сверхзвуковых скоростей на лопатках первых ступеней, что приводит к работе этих ступеней на режиме запирания.

Изменение рк вызывает изменение соотношения плотностей воздуха перед последней (z-й) и первой ступенями, что видно из выражения;

где п-- показатель политропы сжатия воздуха в компрессоре рк - степень повышения давления воздуха в ступенях, расположенных перед последней ступенью. На любом установившемся режиме работы компрессора имеет место равенство расходов воздуха через все его ступени, в том числе и через первую и последнюю, то есть где: Gв1 = C1 ·P1 ·F1 ·GBZ = CZ ·PZ ·FZ.

GB1 =GBZ.

Из выражений видно, что плотность воздуха перед первой ступенью р 1 может изменяться за счет изменения расхода воздуха, а перед последней ступенью -- кроме того, еще и вследствие изменения рк. Таким образом, при изменении режима работы двигателя плотность воздуха перед последней ступенью изменяется в большей степени, чем перед первой. Посмотрим, как это отразится на характере обтекания лопаток первой и последней ступеней компрессора, например, при уменьшении частоты вращения ротора компрессора ниже расчетного значения. При уменьшении частоты вращения ротора (nv) происходит уменьшение степени повышения давления (рк v|) и расхода воздуха (Gвv). Если бы не было влияния рк на соотношение плотностей то вследствие уменьшения расхода воздуха произошло бы уменьшение скоростей приблизительно пропорционально уменьшению окружной скорости и треугольники скоростей на новом режиме остались бы подобными треугольникам скоростей на расчетном режиме. При этом остались бы неизменными и равными расчетным углы атаки потока на лопатки первой и последней ступеней. С учетом влияния рк на изменения картина «деформации» треугольников скоростей будет выглядеть несколько иначе.

При уменьшении частоты вращения ротора одновременно происходит снижение расхода воздуха (Gвv) и снижение степени повышения давления компрессора (рк v|). Снижение Gв приводит к уменьшению скорости его движения через все ступени компрессора. Снижение рк , наоборот, приводит к увеличению объема воздуха, что при неизменной площади проточной части способствует увеличению скорости его движения. В результате совместного влияния этих двух причин перед последней ступенью произойдет лишь небольшое уменьшение CZ. Это приведёт к уменьшению углов атаки на лопатках РК z-й ступени.

1.7 Меры предупреждения помпажа компрессора

Регулирование осевого компрессора применяется для обеспечения его устойчивой работы и высоких значений як на всех рабочих режимах двигателя.

В рассмотренных нами случаях первопричиной помпажа и помпажного срыва является возникновение и развитие срыва потока со спинок лопаток компрессора. Поэтому основным способом предотвращения неустойчивой работы (регулирования) компрессора в различных условиях эксплуатации является уменьшение углов атаки в тех ступенях, где они оказываются близкими к критическим.

Необходимо знать:

- эксплуатационные причины помпажа;

- признаки возникновения помпажа;

- последствия помпажа

Компрессор двигателя ТВ2-117А имеет конструктивные меры борьбы с помпажем: клапаны перепуска воздуха (КПП) и поворотные лопатки ВНА и НА.

Эксплуатационные причины помпажа

* запуск двигателя с ранним отключением стартера;

* запуск двигателя при попутной или боковой скорости ветра, превышающей допустимую;

* отказ или неправильная работа агрегатов механизации компрессора (КПВ и поворотных лопаток ВНА и НА);

* попадание посторонних предметов на вход в двигатель;

...

Подобные документы

  • Анализ конструкции компрессора высокого давления. Характеристика двигателя РД-33, анализ его основных технических данных. Назначение рабочих лопаток осевого компрессора. Особенности расчета замка лопатки, деталей камеры сгорания и дисков рабочих колес.

    курсовая работа [1,9 M], добавлен 27.02.2012

  • Устройство, принцип действия осевого компрессора. Предварительный расчет осевого компрессора. Поступенчатый расчёт компрессора по средней линии тока. Профилирование рабочего колеса (спрямляющего аппарата). Расчёт треугольников скоростей по высоте лопатки.

    курсовая работа [200,4 K], добавлен 19.07.2010

  • Описание конструкции компрессора газотурбинного двигателя. Расчет вероятности безотказной работы лопатки и диска рабочего колеса входной ступени дозвукового осевого компрессора. Расчет надежности лопатки компрессора при повторно-статических нагружениях.

    курсовая работа [868,6 K], добавлен 18.03.2012

  • Особенности устройства осевых компрессорных машин. Принцип действия осевого компрессора, его характеристики. Универсальная характеристика осевого компрессора, осуществление регулирования его работы (изменения производительности) изменением числа оборотов.

    презентация [30,7 K], добавлен 07.08.2013

  • Характеристика центробежного компрессора, который состоит из корпуса и ротора, имеющего вал с симметрично расположенными рабочими колёсами. Расчёт центробежного компрессора и осевой турбины. Общие положения об агрегате усилия компрессора и турбины.

    курсовая работа [228,8 K], добавлен 10.07.2011

  • Проектирование осевого компрессора и профилирование лопатки первой ступени компрессорного давления. Расчет параметров планов скоростей и исходные данные для профилирования рабочей лопатки компрессора, её газодинамические и кинематические параметры.

    контрольная работа [1,0 M], добавлен 22.02.2012

  • Расчет на прочность узла компрессора газотурбинного двигателя: описание конструкции; определение статической прочности рабочей лопатки компрессора низкого давления. Динамическая частота первой формы изгибных колебаний, построение частотной диаграммы.

    курсовая работа [1,8 M], добавлен 04.02.2012

  • Технологическое назначение и схема компрессора марки 205 ГП 40/3,5. Описание конструкции оборудования, его материальное исполнение. Монтаж и эксплуатация компрессора, требования к эксплуатации оборудования. Расчет, проверка прочности цилиндра компрессора.

    контрольная работа [1,8 M], добавлен 30.03.2010

  • Рассмотрение основ работы компрессора К-7000-41-1, предназначенного для подачи сжатого воздуха в доменную печь. Расчет показателей для построения графиков зависимости газодинамических характеристик компрессора при постоянной частоте вращения ротора.

    курсовая работа [202,2 K], добавлен 16.01.2015

  • Проект двигателя для привода газоперекачивающего агрегата. Расчет термодинамических параметров двигателя и осевого компрессора. Согласование параметров компрессора и турбины, профилирование компрессорной ступени. Газодинамический расчет турбины на ЭВМ.

    курсовая работа [429,8 K], добавлен 30.06.2012

  • Знакомство с особенностями проведения термодинамического и кинематического расчетов компрессора. Рассмотрение проблем распределения коэффициентов напора по ступеням. Этапы расчета параметров потока на различных радиусах проточной части компрессора.

    курсовая работа [1,2 M], добавлен 11.05.2014

  • Описание конструкции двигателя. Термогазодинамический расчет турбореактивного двухконтурного двигателя. Расчет на прочность и устойчивость диска компрессора, корпусов камеры сгорания и замка лопатки первой ступени компрессора высокого давления.

    курсовая работа [352,4 K], добавлен 08.03.2011

  • Конструкция центробежного компрессора, корпуса, рабочего колеса, устройств для восприятия осевого усилия, направляющих аппаратов и обратных канатов. Конструктивное устройство центробежных вентиляторов. Принцип действия аммиачного турбокомпрессора.

    контрольная работа [351,7 K], добавлен 17.01.2011

  • Задачи технического диагностирования объектов нефтяной и газовой промышленности. Обследование технических объектов. Применяемые методы контроля и ДТС. Устройство, принцип работы и техническая характеристика компрессора. Оценка показателей надежности.

    курсовая работа [645,7 K], добавлен 09.04.2015

  • Характеристика осевого компрессора, камеры сгорания и турбины газогенератора. Расчёт на прочность пера рабочей лопатки компрессора и наружного корпуса камеры сгорания. Динамическая частота первой формы изгибных колебаний, построение частотной диаграммы.

    курсовая работа [785,2 K], добавлен 09.02.2012

  • Характеристика поршневых компрессоров: устройство, принцип действия, недостатки. Схема и действительная производительность одноступенчатого компрессора двойного действия. Строение горизонтального двухступенчатого компрессора с дифференциальным поршнем.

    презентация [114,4 K], добавлен 07.08.2013

  • Характеристика компрессоров: одноступенчатые и многоступенчатые, стационарные и передвижные типы. Принцип работы винтового компрессора. Схема и идеальный цикл компрессора простого действия. Коэффициенты полезного действия и затрата мощности на привод.

    реферат [565,5 K], добавлен 30.01.2012

  • Расчет и профилирование элементов конструкции двигателя: рабочей лопатки первой ступени осевого компрессора, турбины. Методика расчета треугольников скоростей. Порядок определения параметров камеры сгорания, геометрических параметров проточной части.

    курсовая работа [675,3 K], добавлен 22.02.2012

  • Компрессор как механизм для сжимания и подачи газов под давлением, анализ видов: поршневые, ротационные, лопаточные. Знакомство с работой многоступенчатого компрессора. Общая характеристика основных этапов расчета процессов сжатия в компрессорах.

    контрольная работа [534,4 K], добавлен 13.02.2014

  • Термогазодинамический расчет двигателя. Согласование работы компрессора и турбины. Газодинамический расчет осевой турбины на ЭВМ. Профилирование рабочих лопаток турбины высокого давления. Описание конструкции двигателя, расчет на прочность диска турбины.

    дипломная работа [3,5 M], добавлен 22.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.