Контрольно-измерительные машины

Схема использования измерительного робота для сортировки проконтролированных изделий на размерные группы. Технические характеристики координатной измерительной машины российской фирмы "ЛАПИК": конструкция механической части, скорость перемещения.

Рубрика Производство и технологии
Вид лекция
Язык русский
Дата добавления 11.05.2016
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Тема 3

Контрольно-измерительные машины

В мелкосерийном и среднесерийном производстве при частой сменяемости выпускаемых изделий широкое применение находят контрольно-измерительные машины: измерительные роботы и координатно-измерительные машины (КИМ). С их помощью автоматизируются процессы измерения и наладки в автоматизированных комплексах машиностроения.

Измерительные роботы - автоматические измерительные устройства, отличающиеся хорошими манипуляционными свойствами, высокими скоростями перемещений и измерений.

Измерительные роботы могут выполнять типовые контрольные операции: качественная оценка состава рабочей среды; установление присутствия определенных объектов, их счет, определение расположения, сортировка; оценка значения параметров деталей. Типовая структура измерительного робота показана на рисунке 2.16.

Рис. 2.16. Схема измерительного робота

Датчики d служат для определения вариаций измеряемых параметров в запястье 1 и шарнире 2 захватного устройства 3. Область применения - механическая обработка, сборка, шлифовка, упаковка, а при использовании датчиков визуальной информации (телекамера) геометрическое распознавание внешней среды в двух- и трехмерном геометрическом пространстве и т.д. Захватные устройства могут быть механическими, вакуумными, электромагнитными. Базы данных и знаний содержат информацию о последовательности действий, позициях и времени выполнения операций, набор возможных объектов, образцовых значений. Датчики d могут определять наличие объекта, его положение, регулировать усилие захватного устройства и т.д.

Измерительные роботы позволяют выполнять работы в труднодоступных (морское дно, космос и т.п.) и опасных для здоровья (запыление пространства, радиация, взрывоопасность и т.п.) местах, сократить утомительные операции, простои оборудования.

На рисунке 2.17 (а) показана схема использования измерительного робота для сортировки проконтролированных изделий на размерные группы.

Рис. 2.17. Схема измерительного робота-рассортировщика

Проконтролированные изделия подаются транспортным диском 1 в зоны захвата 2 робота 3. Система управления обеспечивает такие перемещения робота 3, при которых изделия сбрасываются в нужную ячейку приемника 4.

Конструкция робота показана на рисунке 2.17 (б). После запуска робота от пульта управления 2 приводится в действие привод 13 продольного перемещения манипулятора 10, который перемещается до тех пор, пока не сработает фотореле, состоящее из осветителя 4 и фоторезистора 3. Это фотореле по отражению света обнаруживает наличие детали между губками 5 и 7 захватного устройства манипулятора. По сигналу фотореле привод 13 отключается и включается привод 12 поперечного перемещения. Привод перемещает кисть захватного устройства до тех пор, пока деталь не окажется между губками 5 и 7 и не произойдет затемнения фотодиода фотореле 6. Затем включается привод 9 сжатия кисти и блок коммутации. Датчик 8 габаритных размеров захваченной детали через схемы сравнения вводит необходимые программы с координатами точек доставки детали. Для этой цели служат также датчик 1 продольного и датчик 11 поперечного положения манипулятора 10. Когда заданное положение кисти будет достигнуто, приводы отключаются, деталь освобождается, и цикл перемещения робота повторяется.

В более сложных робототехнических комплексах захватное устройство находит в строго фиксированных местах нужное измерительное средство и осуществляет качественную и количественную оценку параметров изделия.

Новые возможности для современного производства создают широкоуниверсальные, автоматические, достаточно гибкие средства контроля - координатные измерительные машины (КИМ). С их применением повышается точность и достоверность результатов измерения. Использование принципов оперативного и диалогового программирования дало возможность применения КИМ как универсального средства контроля в единичном и мелкосерийном производствах.

В КИМ используется координатный метод измерения, сводящийся к последовательному нахождению координат ряда точек изделия и последующему расчету размеров, отклонений размера, формы и расположения в соответствующих системах координат. Структурная схема КИМ представлена на рисунке 2.18. измерительный машина робот

Рис. 2.18. Структурная схема КИМ

Рис. 2.19. КИМ фирмы dEA и измерительная головка

Конструкция КИМ реализует идею мехатронных систем в станкостроении и обеспечивает высокую жесткость корпуса 1 и прецизионное функционирование механики. Использование виброопор обеспечивает высокоточные измерения даже без использования специального фундамента. Измерительная головка 2 является одним из основных элементов КИМ, т.к. её погрешность непосредственно входит в результат измерения. Функциональные возможности измерительной головки во многом определяют функциональные возможности КИМ, классы поверхностей и объем параметров изделий, доступные для контроля. В КИМ используются различные типы измерительных головок в зависимости от встречающихся на практике метрологических задач. В любом случае измерительная головка дает первичную измерительную информацию, на основе которой определяются размеры детали. Эта информация может быть получена или в виде фактических координат точек проверяемой поверхности или в виде отклонений этих координат от заданных в определенном направлении.

Датчики 3 больших перемещений обеспечивают измерение перемещений измерительной головки 2 относительно измеряемой детали по пространственным координатам X,Y, Z. Автоматическое управление перемещениями измерительной головки 2 в рабочем пространстве КИМ осуществляется от вычислительного управляющего устройства 6 с погрешностью позиционирования до 0,05 мкм. Связь вычислительно-управляющего устройства с приводами перемещения измерительной головки обеспечивается интерфейсом 4. Отображение результатов измерений обеспечивается блоком цифровой индикации координат 5 и печатающим устройством 7, которые позволяют оператору контролировать движение измерительной головки и выполнение программы, находясь непосредственно у измеряемой детали. КИМ может быть оснащена графопостроителем 8.

КИМ позволяет осуществить переход от контроля размеров к контролю форм в лабораторных и цеховых условиях и позволяют проводить измерения крупногабаритных деталей сложной формы размером до трех метров, таких как: корпусные изделия машиностроения, турбины, прессформы, штампы. Для них характерны высокая прецизионность и производительность (таблица 2.1)

Таблица 2.1. Технические характеристики КИМ российской фирмы «ЛАПИК»

Основные модели

КИМ-500

КИМ-750

КИМ-1000

КИМ-1200

КИМ-1400

КИМ-1200/2100

КИМ-1200/2400

КИМ-1400/3000

Конструкция механической части

Двухрамная, шарнирно-стержневая

Двухрамная, шарнирно-стержневая с продольным столом

Длина, мм Ширина, мм Высота, мм

2100

2400

2700

2300

2400

3050

2400

3050

3200

2800

3400

3650

2950

3500

3750

5300

3450

4000

5700

3450

4000

6000

3500

4100

Число одновременно и согласованно управляемых координат

6

6

6

6

6

6 (7)

6 (7)

6 (7)

Каретка - конфигурация: Платформа Стюарта

Малая

Малая

Малая,

средняя

Малая,

средняя,

большая

Средняя,

большая

Малая,

средняя,

большая

Малая,

средняя,

большая

Средняя,

большая

Диаметр базы шарниров, мм

363

363

363; 430

363;

430, 500

430, 500

363;

430, 500

363;

430, 500

430, 500

Максимальный поворот каретки вокруг осей X, Y, Z, °

45°,45°, 60°

Дискретность отсчета угловых перемещений платформы, "

1,0 "

1,0 “/ 0,5 "

1,0 “/ 0,5 “/ 0,3 "

Длина щупов, мм - нормированная

- максимальная

50-100

200

50-170

220

50-220

300

50-270

400

50-270

500

50-270

400

50-270

400

50-270

500

Скорость перемещения каретки (регулируемая), мм/сек

00,1-125

0,01-160

Скорость поворота каретки, є/сек

0,003-30

Точность поворота каретки, "

0,04

0,03

Максимальное перемещение по осям, ммX

Y

Z

500

450

350

750

550

400

1000

750

600

1200

1000

800

1400

1200

900

1200

1100/2100

800

1200

1100/2400

900

1400

1200/3000

1000

Масса, кг

2800

3600

3800

5000

6000

9000

10000

12000

Система отсчета перемещений

интерферометрическая фирмы "ЛАПИК"

интерферометрическая фирмы "ЛАПИК" + оптическая линейка

Дискретность отсчета линейных перемещений по координатам, мкм

0,05

0,05

0,05

0,05

0,05

0,05/0,1

0,05/0,1

0,05/0,1

Погрешность измерения, мкм

0,5 + L/500

1,1 + L/350

1,5 + L/280

2,5 + L/225

0,7 + L/500

1.3 + L/350

2,0 + L/280

3,0 + L/225

0,9 + L/400

1,7 + L/350

2,5 + L/280

3,9 + L/225

1.0 + L/400

2.1 + L/350

3.2 + L/280

5,5 + L/225

1,3 + L/350

2,5 + L/300

4,0 + L/250

6,0 + L/200

-

4,0 + L/300

6,0 + L/250

10,0+L/200

-

4,0 + L/300

6,0 + L/250

10,0+L/200

-

4,8 + L/300

7,0 + L/250

14,0+L/200

Погрешность локальных измерений

0,8 + L/50

0,9 + L/50

1,0 +L/50

1,2 + L/50

1,4 + L/50

1,4 + L/50

1,4 + L/50

1.6 + L/50

Щуповые головки

«ЛАПИК», «ЛАПИК МГ», РН6 «RENISHAW», РН10М «RENISHAW»

Щуповые датчики

«ЛАПИК», «ЛАПИК МГ», ТР200 «RENISHAW», ТП7М «RENISHAW», SP25M «RENISHAW»

«ЛАПИК», ТР2 «RENISHAW», ТР20 «RENISHAW», ТР200 «RENISHAW», SP25M «RENISHAW»

Измерительное усилие, г, не более:

датчика «ЛАПИК»: - при токовом касании

-- при механическом касании, в диапазоне

С щуповой головкой «Renishaw» по осям X.Y/Z

0,03

20,0-100,0

2,0/0,7

Скорость съема точек, точек/сек:

С щуповой головкой «ЛАПИК»

С щуповой головкой «Renishaw»

С поворотной головкой

Со сканирующей головкой

10

2

1

100

10

2

1

100

8

2

1

100

6

1

1

100

5

1

1

100

6

1

1

100

6

1

1

100

5

1

1

100

Размещено на Allbest.ru

...

Подобные документы

  • История компании "Роснефть", ее основные виды деятельности, конкурентные преимущества. Общая характеристика компрессорной станции. Контрольно-измерительные приборы и аппаратура, схема их работы и основные технические характеристики, модернизация датчика.

    контрольная работа [41,3 K], добавлен 04.12.2012

  • Обработка ткацкого навоя, процесс сушения нити. Анализ взаимодействия оператор – промышленная установка. Предварительный выбор двигателя, способа управления и комплектного преобразователя. Контрольно-измерительные устройства шлихтовальной машины.

    дипломная работа [973,5 K], добавлен 09.04.2012

  • История появления стиральной машины. Активаторные стиральные машины: особенности, конструкция, достоинства. Устройство автоматической стиральной машины. Классы стирки, отжима и энергопотребления стиральной машины. Основные операции, выполняемые СМА.

    презентация [1,3 M], добавлен 16.03.2012

  • Назначение производства, номенклатура продукции и услуг, организационно-производственная структура предприятия. Контрольно-измерительные приборы: описание нормативно-технической документации. Методика поверочных испытаний контрольно-измерительной техники.

    отчет по практике [479,5 K], добавлен 03.10.2021

  • Основные характеристики и назначение двухигольной швейной машины 237 класса производства ЗАО "Завод "Промшвеймаш". Механизм петлителей и принцип действия машины. Описание и предназначение вышивальной машины ВМ -50, виды строчек на разных видах ткани.

    курсовая работа [2,9 M], добавлен 13.01.2012

  • Характеристика способов изготовления трубчатой заготовки из полимерных материалов. Разновидности и конструкция головок экструзионно-выдувных агрегатов. Использование заготовок с программным изменением толщины стенок. Принципиальная схема выдувной машины.

    реферат [1,6 M], добавлен 28.01.2010

  • Устройство одноигольной промышленной швейной машины 862 класса, особенности технологического назначения. Механизм перемещения материалов в швейной машине. Механизм отклонения иглы, регулировка иглы по высоте. Конструкционно-кинематическая схема машины.

    контрольная работа [1,7 M], добавлен 27.01.2012

  • Кинематическая схема механизма захвата, технические данные манипулятора. Энергетический баланс механической части электропривода. Передаточное число редуктора, номинальная скорость вращения выбранного двигателя и скорость движения исполнительного органа.

    курсовая работа [1,4 M], добавлен 22.05.2019

  • Изучение конструкции, определение назначение и описание принципа действия картонирующей машины. Определение перечня работ текущего и капитального ремонта узлов машины. Контрольно-регулировочные работы и разработка графика смазки узлов и механизмов.

    курсовая работа [761,8 K], добавлен 30.12.2014

  • Автоматизация загрузки штучных предметов обработки в технологические машины и линии пищевой промышленности. Схема системы автоматической загрузки прессованного сахара. Проблемы автоматической загрузки изделий в форме кубиков без потери качества изделий.

    статья [336,3 K], добавлен 22.08.2013

  • Понятие и классификация погрузочных машин, их разновидности и выполняемые функции, особенности и условия практического применения. Буропогрузочные машины: типы и внутреннее устройство, сферы использования на сегодня. Погрузочно-транспортные машины.

    реферат [880,6 K], добавлен 25.08.2013

  • Исследование современного оборудования хлебопекарного производства. Технические характеристики тестоделительных машин с валковым нагнетанием теста. Описания разработанной тестоделительной машины. Расчет производительности валкового нагнетателя теста.

    курсовая работа [3,5 M], добавлен 13.06.2013

  • Использование измельчения материала в бегунах в поточно-механизированных линиях. Параметры проектируемой машины. Кинематический и конструкторский расчёт привода машины. Правила технической эксплуатации машины при обслуживании. Схема и карта смазки.

    курсовая работа [1,6 M], добавлен 28.11.2014

  • Назначение и область применения пакетирующей машины, ее техническая характеристика, конструкция. Характер износа наиболее ответственных деталей проектируемой машины в процессе эксплуатации. Выбор метода проведения ремонтов шагового цепного конвейера.

    дипломная работа [3,1 M], добавлен 11.08.2011

  • Конструкторская компоновка общего вида и технологический расчет узлов машины для нанесения логотипа на металлическую тару. Разработка пневматической схемы машины и расчет конструкции пневмоблока управления. Описание технологической схемы сборки машины.

    дипломная работа [4,8 M], добавлен 20.03.2017

  • Назначение погрузчика фронтального одноковшового ТО-28А, технические характеристики и параметры погрузчика и его систем, устройство работы рулевого управления. Технологический расчет требований долговечности машины, ее элементов и ресурса машины.

    курсовая работа [1,1 M], добавлен 22.08.2011

  • Феросплавные печи и их конструкция. Машины и механизмы феросплавных печей. Механизмы перемещения и перепуска электрода. Механизм вращения копуса печи. Рудовосстановительная печь. Oпределение мощности трансформатора электрических параметров печи.

    курсовая работа [1,4 M], добавлен 04.12.2008

  • Устройство и условное изображение синхронной трехфазной машины. Расположение полюсов магнитного поля статора и ротора. Зависимость электромагнитного момента синхронной машины от угла. схема включения синхронного двигателя при динамическом торможении.

    реферат [347,0 K], добавлен 10.06.2010

  • Устройство, работа и область применения прядильно-крутильной машины ПК-100. Технологическая схема машины. Устройство полого веретена ВПК-32. Особенности процесса формирования пряжи на машине. Устройство крутильной машины двойного кручения ТКД-400Ш.

    лабораторная работа [3,6 M], добавлен 20.08.2014

  • Изучение состава оборудования цеха выплавки стали. Назначение, конструкция и принцип действия машины подачи кислорода. Конструктивный расчет гидропривода подъема платформы и приводного вала машины подачи кислорода в рамках её технической модернизации.

    дипломная работа [1,4 M], добавлен 20.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.