Анализ теплопроводности теплоизоляционных материалов на основе металлургических шлаков и глин

Теплоизоляционный материал, предназначенный для футеровки промышленных печей. Теплопроводность пористых материалов. Плотность и теплопроводность жаростойких глиношлаковых образцов. Влияние плотности изделий и вида наполнителя на теплопроводность.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 24.05.2016
Размер файла 17,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АНАЛИЗ ТЕПЛОПРОВОДНОСТИ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ И ГЛИН

Батынова Алина Алесандровна

Тарасов Роман Викторович

Аннотация

Для специальных теплоизоляционных материалов особое значение имеет показатель теплопроводности. В статье представлены сведения о теплопроводности жаростойких композиционных материалов на основе молотых шлаков и глин.

Ключевые слова: теплоизоляционные материалы, теплопроводность

Многие технологические процессы осуществляются при высоких температурах, в связи с чем возникает необходимость использования эффективных теплоизоляционных материалов. В качестве теплоизоляционного материала, предназначенного для футеровки промышленных печей, могут использоваться композиционные материалы на основе молотых металлургических шлаков и глин [1…3]

Необходимость определения значений теплопроводности различных материалов необходимо для правильного их использования при различных условиях эксплуатации, а также для проведения ряда теплотехнических расчетов, например, потерь теплоты через футеровку печей.

Как правило, теплопроводность керамики и изделий на ее основе зависит от состава кристаллической и стекловидной фаз, а также от пористости.

Прямой зависимости между кажущейся плотностью и теплопроводностью нет. Теплопроводность значительно влияет на термическую стойкость изделий. В керамических материалах передача тепловой энергии зависит от свойств материала (химический и минералогический состав, структура, влажность, кажущаяся плотность), но и от температуры и пористости. Следовательно, при формировании структуры композита следует учитывать пригодность глин и используемых металлургических шлаков [4…8].

С повышением температуры проводимость тепла сначала снижается, а затем возрастает за счет конвекции и увеличения доли лучистого переноса тепла внутри этих материалов.

Пористость материала снижает его теплопроводность почти в линейной зависимости. В пористом материале тепло передается через каркас и воздушные прослойки - поры (если материал сухой).

Снижение теплопроводности пористого материала можно объяснить ростом контактного теплового сопротивления ввиду того, что теплопроводность пор значительно меньше, чем теплопроводность любой из твердых фаз при низких температурах, а коэффициент теплопроводности воздуха наименьший из всех коэффициентов теплопроводности природных и искусственных материалов: ?=0,023 Вт/(м?°С).

Форма и размер не оказывают значительного влияния на коэффициент теплопроводности, однако ориентация пор при определенной пористости существенно изменяет коэффициент теплопроводности. Закрытая пористость способствует снижению теплопроводности.

Теплопроводность пористых материалов значительно повышается с ростом температуры. Она пропорциональна температуре в кубе и линейно пропорциональна величине пор. Повышение влажности пористых материалов увеличивает теплопроводность, так как коэффициент теплопроводности воды (?=0,58 Вт/(м?°С)) почти в 25 раз больше коэффициента теплопроводности воздуха.

Особое значение имеет показатель теплопроводности для специальных теплоизоляционных материалов, например, футеровки промышленных печей.

Для определения теплопроводности жаростойких глиношлаковых материалов была отформована серия образцов различных составов (табл. 1). Образцы представляли собой пластинки материала размером 10?10?1,9 см и изготавливались методами прессования и виброуплотнения. После твердения в нормальных условиях образцы были высушены при t=105-107°С до постоянной массы и испытаны. После испытаний образцы были помещены в печь, где прокаливались при температуре t=800-850°С в течение 4 часов, после чего были снова испытаны на теплопроводность.

теплопроводность футеровка пористый жаростойкий

Таблица 1. Составы исследуемых жаростойких глиношлаковых образцов

п.п

Составы композиций

Соотношение компонентов в массовых %

В % от массы композиционного вяжущего

Вид формования

Шлак

Глина

Бой шамотного кирпича фр. 1,25-2,5 мм

Вода

NaOH

1

29,41

60

47,11

40

-

25,0

34,0

1,47

2

виброуплотнение

2

22,72

60

15,15

40

37,87

100

22,72

60

1,47

2

виброуплотнение

3

52,62

60

35,08

40

-

10,52

12

1,75

2

прессование

4

26,55

60

17,69

40

44,25

100

10,61

24

0,88

2

прессование

Как показали проведенные испытания, значительное влияние на теплопроводность оказывают плотность изделий и вид наполнителя (табл. 2).

Таблица 2. Плотность и теплопроводность жаростойких глиношлаковых образцов

№ п.п.

Плотность в высушенном состоянии r, г/см3

Плотность обожженных образцов r, г/см3

Коэффициент теплопроводности l, Вт/м?°С

Коэффициент теплопроводности обожженных образцов l, Вт/м?°С

1

1,77

1,70

0,373

0,357

2

1,86

1,78

0,459

0,380

3

2,00

1,91

0,565

0,507

4

2,10

1,92

0,570

0,554

Плотность готовых изделий в свою очередь обусловлена видом формования (прессование или виброуплотнение) и количеством заполнителя. Так как в наполненных составах количество вводимого заполнителя было одинаковым (100% от массы ГШВ), то здесь особую роль играет вид заполнителя и его фракционный состав. Максимальные значения теплопроводности получены на образцах, содержащих бой шамотного кирпича фр. 1,25-2,5 мм, что может быть объяснено высоким показателем теплопроводности самого заполнителя, приготовленного дроблением шамотного кирпича.

Виброуплотнение, как вид формования, позволяет получить эффективные жаростойкие изделия с более низкой плотностью, чем у прессованных, что, в свою очередь, значительно снижает показатели теплопроводности. Если у необожженных ненаполненных прессованных ГШ образцов теплопроводность составляет 0,565 Вт/м?°С, то у виброуплотненных 0,373 Вт/м?°С, что ниже на 44%. У наполненных необожженных виброуплотненных образцов теплопроводность в среднем ниже на 25-35% по сравнению с прессованными.

После однократного обжига теплопроводность глиношлаковых композитов понизилась, что объясняется ростом показателей пористости за счет структурных изменений материала при воздействии высоких температур. Для ненаполненных обожженных глиношлаковых образцов теплопроводность снижается на 4,2% для виброуплотненного состава и на 10,2% для прессованного. В наполненных составах теплопроводность образцов после обжига снижается в среднем на 2,8% для прессованных на 17,2% для виброуплотненных.

Таким образом, исследования на теплопроводность указывают на достаточно высокую эффективность использования жаростойких ГШ материалов с учетом подбора оптимального вида формования, вида заполнителя и степени наполнения им.

Библиографический список

1. Тарасов, Р.В. Эффективный жаростойкий материал на основе модифицированного глиношлакового вяжущего [Текст] / Р.В. Тарасов: канд. диссертация. - ПГАСА, 2002.-150 с.

2. Калашников, В.И. Новый жаростойкий материал для футеровки промышленных печей [Текст] / В.И. Калашников, В.Л. Хвастунов, Р.В. Тарасов, Д.В. Калашников // Строительные материалы. - 2003. - №11. - С.40-42.

Размещено на Allbest.ur

...

Подобные документы

  • Анализ существующих видов теплоизоляционных материалов. Анализ теплоизоляционной краски: история создания, состав, сфера применения. Влияние теплоизоляционной краски на теплотехнические характеристики материалов, определение коэффициента теплопроводности.

    дипломная работа [2,3 M], добавлен 10.07.2017

  • Расчет размеров футеровки, толщины кладки стен и купола водонагревателя объемом 3300 м. Определение температуры на стыке слоев и теплопроводности для каждого слоя. Построение графика зависимости температуры стыков, схемы футеровки воздухонагревателя.

    контрольная работа [885,2 K], добавлен 07.10.2015

  • Физико-механические свойства металлургических шлаков. Производство пемзы из доменного шлака. Анализ переработки сталеплавильных шлаков. Перспективы применения центробежно-ударной техники для переработки металлургических шлаков. Способы грануляции шлака.

    реферат [1,2 M], добавлен 14.10.2011

  • Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

    контрольная работа [318,1 K], добавлен 03.10.2014

  • Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.

    презентация [5,0 M], добавлен 23.04.2016

  • Классификация и основные свойства теплоизоляционных материалов и изделий. Характеристика их отдельных видов, созданных на основе синтетического сырья. Сопротивление теплопередаче наружных стен зданий. Методы получения высокопористой структуры материалов.

    реферат [27,6 K], добавлен 01.05.2017

  • Теплопроводность материала. Теплоизоляция строительных конструкций. Изучение влияния влажности на свойства древесины. Возникновение коробления при механической обработке сухих пиломатериалов. Изготовление отделочных материалов на основе полимеров.

    контрольная работа [156,0 K], добавлен 16.03.2015

  • Строительные материалы и изделия, предназначенные для тепловой изоляции конструкций зданий и сооружений. Номенклатура выпускаемой продукции. Характеристика сырьевых материалов. Описание технологического процесса и физико-химических основ производства.

    курсовая работа [85,9 K], добавлен 10.03.2011

  • Эффективное использование энергии на промышленном предприятии. Нормативно-правовая база энергосбережения. Оценка энергоэффективности, определение коэффициента теплопроводности. Огнеупорные материалы. Разработка конструкции теплоизолированной трубы.

    дипломная работа [4,6 M], добавлен 05.04.2012

  • История развития ООО "УРСА Серпухов". Общая характеристика предприятия как одного из самых известных брендов строительных материалов. Ассортимент продукции, технологическая схема производства. Требования, предъявляемые к сырью, контроль качества.

    отчет по практике [579,7 K], добавлен 09.08.2015

  • Построение трехмерной геометрической модели печи в Autodesk Inventor 10. Теплопроводность в замкнутых объемах и прослойках. Подготовка исходных данных для расчетов в Ansys. Нагрев печи без садки при свободной конвекции и схема опытной установки.

    презентация [2,4 M], добавлен 12.12.2013

  • Влияние графитовых наполнителей на радиофизические характеристики композиционных материалов на основе полиэтилена. Разработка на базе системы полиэтилен-графит композиционного материала с наилучшими радиопоглощающими и механическими показателями.

    диссертация [795,6 K], добавлен 28.05.2019

  • Технологическая схема обработки материалов давлением, обоснование выбора типа печи, конструкция ее узлов, расчет горения топлива и нагрева заготовки. Количество тепла, затрачиваемого на нагрев металла, потери в результате теплопроводности через кладку.

    курсовая работа [1,6 M], добавлен 19.01.2016

  • Группы меди по химическому составу и способам металлургической переработки (рафинирования). Электрические, магнитные свойства металла. Низколегированные бронзы высокой электро- и теплопроводности. Принципы легирования жаропрочных сплавов на медной основе.

    контрольная работа [519,4 K], добавлен 07.01.2014

  • Коэффициенты теплопроводности твердых тел, жидкостей и газов. Нестационарные процессы теплопроводности, охлаждение (нагревание) неограниченной пластины. Способ определения теплопроводности жидкой тепловой изоляции при нестационарном тепловом режиме.

    дипломная работа [1,9 M], добавлен 20.03.2017

  • Для решения задач теплопроводности применяют аналитические методы и численный метод. Чаще применяются: метод Фурье, метод источников и операторный метод. Уравнение процесса, удовлетворяющее дифференциальному уравнению теплопроводности и краевым условиям.

    учебное пособие [319,4 K], добавлен 05.02.2009

  • Отбор образцов, проб и выборок для исследования свойств текстильных материалов, методы оценки неровности текстильных материалов. Однофакторный эксперимент. Определение линейного уравнения регрессии первого порядка. Исследование качества швейных изделий.

    лабораторная работа [128,0 K], добавлен 03.05.2009

  • Строение и свойства топливных шлаков. Агломерированные шлаки и золы. Способы механизированного получения шлаковой пемзы. Производство удобрений из шлаков. Способы получение комплексных удобрений. Основные недостатки смесей из пористых материалов.

    реферат [167,6 K], добавлен 14.10.2011

  • Организационно-правовая форма предприятия "Сибтехмонтаж", структура управления. Производство теплоизоляционных материалов из пенополиуретана. Характеристика и свойства изделий. Ознакомление с технологическим процессом теплогидроизоляции трубопроводов.

    отчет по практике [449,8 K], добавлен 22.07.2010

  • Виды древесины. Декоративные и физические свойства: внешний вид и запах; влажность и связанные с ней изменения - усушка, разбухание, водопоглощение, растрескивание и коробление; плотность, электро -, звуко- и теплопроводность, показатели макроструктуры.

    практическая работа [15,8 K], добавлен 27.02.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.