Обеспечение информационной защищенности автоматизированных систем управления воздушным движением в условиях роста интенсивности полетов
Изучение расширения возможностей использования воздушного пространства России для полетов воздушных судов. Анализ построения АС УВД. Разработка математических моделей определения структурно-технологического программного и информационного обеспечения.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 17.05.2016 |
Размер файла | 2,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
На правах рукописи
Специальность 05.22.13
Навигация и управление воздушным движением.
Автореферат
диссертации на соискание ученой степени доктора технических наук
ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННОЙ ЗАЩИЩЕННОСТИ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ ВОЗДУШНЫМ ДВИЖЕНИЕМ В УСЛОВИЯХ РОСТА ИНТЕНСИВНОСТИ ПОЛЕТОВ
Акиншин Руслан Николаевич
Москва 2009
Работа выполнена на кафедре «Управление воздушным движением» Московского государственного технического университета гражданской авиации воздушный полет судно программный
Научный консультант: Заслуженный деятель науки и техники РФ, доктор физико-математических наук, профессор Козлов Анатолий Иванович
Официальные оппоненты: Заслуженный деятель науки РФ, доктор технических наук, профессор Балыбердин Валерий Алексеевич
Заслуженный деятель науки РФ, доктор технических наук, профессор Логвин Александр Иванович
Доктор технических наук, профессор Олейников Александр Яковлевич
Ведущая организация: НИИ «Восход», г. Москва.
Защита состоится 2009 г. на заседании диссертационного совета Д 223.011.01 при Московском государственном техническом университете гражданской авиации по адресу: 125993, г. Москва., Кронштадтский бульвар, д. 20.
Автореферат разослан 2009 г.
Ученый секретарь диссертационного совета
Заслуженный работник высшего профессионального образования РФ, доктор технических наук, профессор С.К. Камзолов
Актуальность темы. Расширение возможностей использования воздушного пространства России для полетов воздушных судов (ВС) отечественных и зарубежных авиакомпаний невозможно без существенного повышения степени технической оснащенности современными средствами воздушной и наземной связи, наблюдения и автоматизации управления воздушным движением (УВД), отвечающим требованиям глобальной эксплуатационной концепции организации воздушного движения Международной организации гражданской авиации (ИКАО), районных центров единой системы организации воздушного движения в районах Арктики, Крайнего Севера и Сибири, где проходят действующие и вновь открываемые воздушные трассы.
В настоящее время разрабатываются автоматизированные системы сбора, обработки, хранения и распространения аэронавигационных данных (АССОАД), обеспечивающих аэронавигационные системы и пользователей воздушного пространства Российской Федерации (РФ) аэронавигационной информацией.
АССОАД предназначена для обеспечения безопасности полетов, повышения экономичности и регулярности полетов авиации различных ведомств в районе аэродрома, на воздушных трассах и во внетрассовом воздушном пространстве путем автоматизации процессов текущего планирования, сбора, обработки и отображения радиолокационной и радиопеленгационной информации (в перспективе - информации, полученной по каналам автоматического зависимого наблюдения) и метеоинформации.
Безопасность, регулярность и экономичность полетов тесно связаны друг с другом и существенно зависят от эффективности УВД. Радикальным методом решения возникающих при этом проблем является автоматизация сбора передачи и обработки информации о воздушной обстановке.
Разработка комплексов автоматизации наблюдения за воздушной обстановкой нового поколения началась в конце 80-х - начале 90-х годов. Работы велись различными предприятиями и фирмами. В перечень отечественных разработок входили «Синтез КСА-УВД» (ВНИИРА, СПб), «Коринф» (Радар ГА, Москва), «Строка-Ц» (РИМР, СПб), «Карм-ДРУ» (СПАС, Москва), «Топаз-2000» (ЛЭМЗ, Москва), «Норд» и «Альфа» (НИТА, СПб.).
Наиболее полное развитие к настоящему времени получили такие системы, как «Топаз-2000», «Синтез» и «Альфа». На базе этих комплексов средств автоматизации наблюдения строятся автоматизированные системы (АС) УВД высокого уровня. К наиболее известным зарубежным АС УВД следует отнести «EUROCAT 2000». Ряд принципов заложенных в ней использован при разработке АС УВД «Альфа».
Уровень надежности оборудования, входящего в состав АС УВД, для решения поставленных задач должен характеризоваться следующими показателями: наработка на отказ - не хуже 6000 ч.; коэффициент готовности - не менее 0.999.
АС УВД должна предоставлять пользователям достоверную аэронавигационную и метеорологическую информацию в реальном масштабе времени с целью выбора предпочтительных маршрутов полета, обеспечивать поддержание требуемого уровня безопасности воздушного движения.
Важнейшей задачей по обеспечению безопасности полетов, подлежащей автоматизации, является функция предотвращения столкновений одного ВС с другим. Проблема предотвращения столкновений ВС имеет ряд фаз своего решения. Первая - обнаружения и сигнализации об угрозах столкновений. Вторая состоит в выработке управляющих команд. Операции по этим фазам могут проводиться как на земле, так и на борту ВС, но обязательно с помощью АС УВД.
Важнейшая общая закономерность АС УВД, в частности, состоит в том, что пропускная способность всегда должна опережать рост интенсивности воздушного движения. Если такого рода запас отсутствует, то критические ситуации, связанные с перегрузкой диспетчера, неизбежны, именно они и являются основными определяющими уровень безопасности воздушного движения.
Особую остроту принимает проблема надежной защиты информации, циркулирующей в АС УВД, т.е. предупреждение ее искажения и уничтожения, несанкционированной модификации, злоумышленного получения и использования.
О серьезности проблемы говорит хотя бы такой факт, что один человек, имеющий доступ к данным АС УВД, за незначительное время (чуть более 10 минут) в состоянии полностью парализовать крупный аэропорт. Для этого достаточно ввести в программное обеспечение АС УВД всего несколько десятков строк кода программы-вируса. Если данная система не будет иметь специальных средств защиты функционирования, то это грозит опасностью жизням сотен и тысяч авиапассажиров.
В связи с этим, целесообразно разделять ресурсы, необходимые для непосредственного решения основных функциональных задач АС УВД, и ресурсы, требующиеся для обеспечения безопасности функционирования программных средств и баз данных.
Соотношение между этими видами ресурсов в реальных системах зависит от сложности и состава решаемых функциональных задач, степени их критичности и требований к безопасности всей системы. В различных системах ресурсы на обеспечение надежности и безопасности могут составлять от 5-20% до 100-300% от ресурсов, используемых на решение функциональных задач, то есть в особых случаях (критические системы) могут превышать последние в 2-4 раза. В большинстве гражданских систем средства обеспечения безопасности обычно требуют 5-20% всех видов ресурсов.
Наиболее серьезными проблемами в области защиты информации остается обеспечение защиты информации от несанкционированного доступа (НСД) к ней и от преднамеренных программно-технических воздействий на информацию с целью ее разрушения, уничтожения или искажения в процессе обработки и хранения.
Анализ существующих в настоящее время работ Анодиной Т.Г., Балыбердина В.А., Герасименко В.А., Кейна В.М., Киселева В.Д., Крыжановского Г.А., Кузнецова А.А., Кузнецова В.Л., Куклева Е.А, Кульбы В.В., Логвина А.И., Мамиконова А.Г., Марковича Е.Д., Молдавяна А.А., Нечаева Е.Е., Пятко С.Г., Рубцова В.Д., Рудельсона Л.Е., Савицкого В.И., Соломенцева В.В. и др. в области решения задач повышения устойчивости информационно-вычислительных процессов, сохранности и защищенности информации в АСУ показал, что использование существующих подходов не в полной мере учитывает специфику построения и эксплуатации АС УВД для решения данного круга задач, поскольку:
1. Не разработана единая методология создания устойчивой среды обработки информации, адаптивной к условиям функционирования АС УВД, в том числе на этапах эксплуатации и реконструкции.
2. Недостаточно полно формализованы подходы к обеспечению сохранности информации, способы и методы структурно-технологического, виртуально-восстановительного и восстановительного резервирования данных АС УВД.
3. Не в полной мере исследованы процессы действий нарушителя при реализации программных атак в защищаемой АС УВД для создания и оценки качества функционирования системы защиты информации (СЗИ) АССОАД.
4. Недостаточно полно формализованы задачи и методы определения состава комплексов СЗИ АС УВД и учета влияния средств и методов защиты информации на функциональные характеристики защищаемой системы.
Таким образом, возникает важная актуальная народно-хозяйственная задача повышения информационной защищенности автоматизированных систем сбора, обработки, хранения и распространения данных, обеспечивающих аэронавигационные системы и пользователей воздушного пространства РФ аэронавигационной информацией в условиях роста интенсивности полетов, чему и посвящена диссертационная работа, целью которой является разработка и обоснование теоретических и прикладных методов обеспечения информационной безопасности АС УВД при наличии опасных дестабилизирующих воздействий для решения сформулированной задачи.
Поставленная цель достигается следующими решениями основных задач:
1. Анализом принципов построения АС УВД и разработкой обобщенной методики управления информационно-вычислительным процессом для обеспечения информационной защищенности на основе комплексного применения имеющихся средств и методов защиты и сохранности информации в интересах поддержания устойчивой работоспособности АС УВД.
2. Разработкой математических моделей определения структурно-технологического резерва программного и информационного обеспечения (ПО и ИО) АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве РФ.
3. Созданием математической модели определения содержания виртуально-восстановительного резерва и его размещения по узлам локальных вычислительных сетей (ЛВС) АС УВД.
4. Разработкой моделей восстановительного резервирования данных АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве РФ и алгоритмов декомпозиции общей задачи восстановительного резервирования.
5. Разработкой общей методики проектирования СЗИ АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве РФ.
6. Синтезом моделей программных атак на информацию АС УВД, позволяющих проводить их анализ, выбор способов противодействия им и нейтрализацию последствий от реализации таких программных атак.
7. Разработкой математической модели действий нарушителя по несанкционированному доступу к данным защищаемой АС УВД.
8. Разработкой модели рационального выбора состава СЗИ с учетом влияния средств и методов защиты информации на функциональные характеристики защищаемой АС УВД.
9. Разработкой методов и методики решения задач управления информационно-вычислительным процессом и обеспечения сохранности и защищенности информации АС УВД.
10. Проведением экспериментальных и модельных исследований по обеспечению информационной защищенности АС УВД.
На защиту выносятся теоретические и прикладные методы обеспечения информационной безопасности АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве РФ при наличии опасных дестабилизирующих воздействий.
Научная новизна работы заключается в том, что в ней впервые:
1. Разработана обобщенная методика управления информационно-вычислительным процессом для обеспечения информационной защищенности АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве РФ при условии сохранения на заданном уровне безопасности полетов.
2. Обоснована общая математическая модель структурно-технологического резервирования ПО и ИО АС УВД, позволяющая определять нормы резервирования структуры и объема аэронавигационных данных для многофункциональных задач АС УВД, а также нормы на резервный объем памяти, что позволит повысить безопасность информации в условиях воздействия дестабилизирующих факторов.
3. Разработана математическая модель определения содержания виртуально-восстановительного резерва массивов данных и его размещения по узлам АС УВД, позволяющая оценить оперативность обработки аэронавигационных данных и их сохранность в условиях случайных и преднамеренных воздействий.
4. Предложен комплекс математических моделей восстановительного резервирования аэронавигационной информации, основанного на решении задач распределения программных модулей (ПМ) и информационных массивов (ИМ), их восстановительном резервировании и определении рациональных параметров процесса обновления восстановительного резерва в АС УВД, позволяющий повысить устойчивость решения задач УВД к дестабилизирующим воздействиям и сократить время получения аэронавигационных данных.
5. Разработаны математические модели для оптимизации состава СЗИ АС УВД (по критериям: максимума вероятности успешного противодействия системы защиты действиям нарушителя; минимума вероятности достижения нарушителем всех своих целей; минимума среднего значения потерь от действий нарушителя, при реализации им всех своих целей; минимума интегрального показателя «стоимость-риск»), отличающиеся от известных возможностью оценки качества функционирования СЗИ путем генерации различных вариантов программных атак на основе разработанной математической модели действий нарушителя по реализации им своих целей и учета влияния средств и методов защиты информации на функциональные характеристики защищаемой АС УВД.
Синтезированы модели программных атак на аэронавигационную информацию АС УВД, позволяющие проводить их исследование, осуществлять выбор способов противодействия и нейтрализацию последствий от их воздействия, анализировать более сложные и ранее неизвестные виды программных атак.
6. Теоретически обоснованы и экспериментально проверены алгоритмы модифицированных методов ветвей и границ и встречного решения функциональных уравнений динамического программирования для решения задач организации информационно-вычислительного процесса, оптимизации состава комплексов средств защиты и восстановительного резервирования аэронавигационной информации АС УВД, позволяющие существенно сократить время вычислительного эксперимента.
7. Предложена методика оптимизации информационно-вычислительного процесса, позволяющая обеспечить сохранность и защищенность аэронавигационной информации АС УВД в условиях роста интенсивности полетов.
Практическая ценность работы заключается в том, что предложенные методики, методы, модели и алгоритмы могут быть использованы для обеспечения информационной защищенности АС УВД РФ при их разработке, модернизации и повышении эффективности эксплуатации; методы и алгоритмы доведены до рабочих программ и позволяют решать широкий круг научно-технических задач.
Разработанный математический аппарат может быть использован в научно-исследовательских организациях специалистами в области создания и организации АС УВД с распределенной обработкой данных, разработки и исследования эффективных алгоритмов для управления информационными процессами, специалистами в области защиты информации, а также студентами и аспирантами высших учебных заведений.
Апробация работы: материалы диссертации докладывались, обсуждались и одобрены на научно-технических конференциях Тульского артиллерийского инженерного института (2001, 2004, 2005 гг.); научных сессиях, посвященных Дню радио Тульского государственного университета (1999, 2001, 2002, 2004, 2005, 2006 гг.); научно-технических конференциях Научно-исследовательского испытательного технического центра ФПС РФ г. Москва (2001, 2003, 2005 гг.); научной конференции Тульского государственного университета и Тульского артиллерийского инженерного института (2001 г.); международной научно-практической конференции “Мировое сообщество в борьбе с терроризмом” г. Москва (2001 г.); региональной научно-технической конференции “Проблемы информационной безопасности и защиты информации” Тульского государственного университета (2002 г.); межрегиональной научно-технической конференции «Интеллектуальные и информационные системы» г. Тула (2003 г.); всероссийских научно-технических конференциях Тульского государственного университета (2001, 2003, 2004, 2005, 2006 гг.), межведомственных конференциях «Проблемы развития вооружений, военной и специальной техники пограничной службы ФСБ России» г.Москва (2004, 2006 гг.); XIV международной конференции по спиновой электронике и гировекторной электродинамике г. Москва (2006 г.); международных межведомственных конференциях «Граница» ФСБ России г. Москва (2005, 2006 гг.); XV-ой международной конференции «Радиолокация и радиосвязь» г. Москва (2007 г.).
Публикации. По теме диссертации опубликовано более 90 печатных работ, в том числе 19 статей в ведущих рецензируемых научных журналах и изданиях, рекомендованных ВАК Министерства образования и науки России для опубликования основных результатов диссертаций на соискание ученой степени доктора технических наук, две авторские, две коллективные монографии и четыре патента на полезные модели.
Реализация результатов работы. Основные результаты исследований нашли применение в разработках предприятий НИИ «Восход», МКБ «Компас», ОАО НПО «Лианозовский электромеханический завод», в/ч 21374, ОАО «ЦКБА», ОАО «АК «ЦНИИСУ», ЦНИИ «Радиосвязь», МГТУ им. Н.Э. Баумана, внедрены в учебный процесс МГТУ ГА, Голицынского пограничного института ФСБ России, Тульского артиллерийского инженерного института и Тульского филиала Московского университета МВД, что подтверждено соответствующими актами реализации.
Структура и объем работы. Работа содержит 313 страниц машинописного текста, 20 таблиц и 70 рисунков, 48 страниц приложений, состоит из введения, 5 глав, заключения, списка литературы из 154 наименований на 15 листах.
Основное содержание работы
Во введении обоснована актуальность проблемы и дана краткая характеристика путей ее решения, сформулирована цель работы и обоснованы положения, выносимые на защиту, указана структура диссертации, формы апробации и внедрения результатов.
В первой главе дан анализ состояния и перспектив отечественных и зарубежных АС УВД, обоснованы общие подходы к созданию защищенной среды обработки информации в них.
Поскольку АС УВД разрабатываются на базе сетей электронно-вычислительных машин (ЭВМ), для территориально рассредоточенных пользователей, возможна организация обработки данных путём привлечения дополнительных вычислительных ресурсов системы при решении сложных задач.
Контроль координатно-временной информации будет обеспечиваться наземными и спутниковыми составляющими автоматизированной аэронавигационной системы (трассовые и аэродромные радиолокационные комплексы типа ТРЛК-10, ТРЛК-11, АРЛК-11, «ИРТЫШ-М», «ИРТЫШ-СК», «ЭКРАН-85», а также комплексы, состоящие из радиолокационных станций; автоматические радиопеленгаторы типа АРП-90; в дальнейшем возможно наращивание аэродромно-районной АС УВД для использования спутниковой системы автоматического зависимого наблюдения).
Для выполнения своего назначения аэродромно-районная АС УВД обеспечивает автоматизацию следующих процессов УВД:
- сбор, обработка и отображение координатной и дополнительной информации о воздушной обстановке, поступающей от радиолокационных комплексов и автоматических радиопеленгаторов;
- сбор, обработка и расчет планируемых траекторий, распределение и отображение плановой информации при сопряжении с сетью автоматизированной фиксированной электросвязи (АФТН) и/или автоматизированной системой планирования использования воздушного пространства;
- сбор, обработка и отображение метеорологической информации;
- анализ воздушной обстановки по плановой информации с целью организации потоков;
- обнаружение потенциально конфликтных ситуаций между воздушными судами;
- анализ воздушной обстановки по радиолокационной информации о действительном и экстраполированном местоположении для фиксирования нарушений норм эшелонирования и обнаружения потенциально конфликтных ситуаций между воздушными судами и наземными препятствиями;
- документирование и воспроизведение информации о воздушной обстановке и процессе управления;
- автоматизированное взаимодействие со смежными АС УВД и с АСУ ведомственной авиации;
- обеспечение тренировки диспетчеров УВД на средствах системы одновременно с обеспечением УВД.
Аэродромно-районная АС УВД строится на базе стандартных вычислительных средств с использованием средств отображения широкого применения и стандартных средств системного и общего ПО. В аэродромно-районной АС УВД используются IBM-совместимые ЭВМ с процессорами Pentium и растровые цветные индикаторы высокого разрешения как общего применения, так и в промышленном исполнении.
Если диспетчер не получает необходимую ему входную информацию от АС УВД или получает ее в искаженном виде, то эффективность функционирования УВД снижается до недопустимо низкого уровня - выходные данные системы могут быть неприемлемыми вследствие задержки времени в передаче информации и искажений, вызванных введением «вирусов» в контур системы управления.
Обеспечение безопасности информации в современных АС УВД имеет специфические особенности. Это объясняется сложностью комплексного решения проблемы, поскольку АС УВД состоит из нескольких неоднородных подсистем (организации, планирования, УВД, связи, регистрации и т.д.), имеющих различные технологические процессы, уровни автоматизации процессов, технические средства, функционирующие по разным принципам, информационное обеспечение принятия решения и критерии эффективности.
Отмечается, что АС УВД функционируют в условиях постоянного воздействия угроз, представляющих собой совокупность специально организованной информации и информационных технологий, позволяющих целенаправленно изменять (уничтожать, искажать), копировать, блокировать информацию, преодолевать СЗИ, ограничивать допуск законных пользователей, осуществлять дезинформацию, нарушать функционирование носителей информации, дезорганизовывать работу технических средств, компьютерных систем и информационно-вычислительных сетей. Это обусловлено потенциальной возможностью широкомасштабного использования средств НСД, многообразием их форм и способов применения, стандартизацией системного и программного обеспечения, протоколов обмена данными.
Разработана общая методика управления информационно-вычислительным процессом для обеспечения информационной безопасности АС УВД, которая представлена на рисунке 1.
Реализация данной методики направлена на обеспечение устойчивости информационно-вычислительного процесса АС УВД. Методика включает в свой состав блок организации информационно-вычислительного процесса и блок обеспечения защищенности информации, циркулирующей в АС УВД.
Блок организации информационно-вычислительного процесса отвечает за распределение информационных ресурсов и обеспечение сохранности информации. При решении первой задачи осуществляется рациональное распределение ПМ и ИМ по узлам АС УВД. При решении второй задачи осуществляется три вида резервирования информации (структурно-технологическое, восстановительное и виртуально-восстановительное). Результатами реализации операций первого блока являются:
1. Комплексное и взаимосвязанное взаимодействие элементов обеспечения сохранности информации.
2. Снижение объема информации, циркулирующей в АС УВД.
3. Увеличение вероятности решения задач.
4. Увеличение вероятности своевременного решения задач.
Блок обеспечения защищенности информации включает следующую последовательность операций:
1. Определение целей и задач СЗИ.
2. Анализ структуры АС УВД, целей нарушителя, угроз информации, средств и методов защиты.
3. Разработку моделей угроз информации и действий нарушителя по реализации им своих целей.
4. Определение состава комплекса средств защиты информации и учет их влияния на функциональные характеристики АС УВД.
В результате реализации этого блока операций осуществляется:
1. Оптимальный по заданным критериям состав СЗИ.
2. Рационализация объема затрат на организацию СЗИ.
СЗИ АС УВД предложено строить по многоуровневой схеме, что позволит комплексно использовать различные средства и методы защиты и за счет этого повысить общую эффективность системы в целом при снижении расходов на ее организацию и обслуживание. Методика проектирования систем защиты информации АС УВД, представленная на рисунке 2, включает следующую последовательность операций:
1. Определение целей и задач СЗИ.
2. Определение полного перечня угроз информации в АС УВД и выработку мер противодействия.
3. Анализ угроз информации АС УВД с выбором способов противодействия им и нейтрализации последствий.
4. Разработка структуры СЗИ, включающей разработку моделей возможных действий нарушителя, выделение уровней защиты информации с распределением целей и задач между ними, уточнение задач защиты с выделением рубежей защиты и распределением подзадач защиты между рубежами.
5. Определение состава комплекса средств защиты, включающего комплекс средств защиты рубежей и уровней, компоненты СЗИ и систему управления СЗИ.
Предложено на этапе проектирования АС УВД, совместно с разработкой структуры информационно-вычислительного процесса, планировать и разрабатывать мероприятия по защите информации. Это обеспечит интеграцию системы защиты в АС УВД с элементами информационно-вычислительного процесса. При этом, на этапе проектирования мероприятия по защите информации планируются, начиная с контуров высшего уровня.
По мере движения «сверху-вниз» производится поэтапная детализация и конкретизация целей, задач и структуры системы защиты с поэтапным назначением мероприятий по защите информации.
В СЗИ должны быть заложены возможности ее совершенствования и развития в соответствии с условиями эксплуатации и конфигурации АС УВД. В момент конструирования АС УВД возможно применение комплексного подхода, фрагментарный подход применяется в течение эксплуатации данной системы при дополнительном уточнении угроз.
Рассмотрена модель СЗИ на уровне ЛВС, отражающая функциональный взгляд на систему защиты: функциональные блоки, взаимосвязи между ними, инфраструктуру для поддержки этих механизмов. Достоинством модели реализации системы защиты в распределённой среде является возможность размещения механизмов защиты по уровням ПО и компонентам АС УВД.
Рассмотрены тенденции развития в построении атак, к которым относятся: рост уровня автоматизации атак, увеличение сложности программ атак, быстрое раскрытие уязвимостей, увеличение прохождения атак через межсетевые экраны, ассиметричных угроз и атак из инфраструктуры.
Вторая глава посвящена разработке математических моделей обеспечения сохранности информации АС УВД и контроля за воздушной обстановкой.
Показано, что наиболее эффективным подходом к решению проблемы обеспечения необходимого уровня сохранности информации в условиях постоянно расширяющегося перечня угроз, средств и методов их реализации, является резервирование. Определено, каким образом и в каких случаях целесообразно использовать резервирование информации.
В связи с тем, что возможные топологии однородной ЛВС могут быть не равновероятны, разработана математическая модель оптимизации структурно-технологического резерва ПО и ИО АС УВД по критерию минимума вероятности нерешения задачи.
Найти такие значения xm*nm, что
,
при ограничениях:
- на структурное дублирование модулей для n,m,n/,m/,m1*,m2*, для которых выполняются условия C=0, 0;
- на распределение отдельных модулей по отдельным узлам =1, для выделенных nm-ых операционных модулей и m*-ых узлов;
- на наибольшее возможное время решения задачи
(1)
где T* -максимально возможное время решения задачи;
- на максимальный объем внешней памяти узлов ЛВС
m*, m*=.
Поставленная задача относится к задачам нелинейного программирования с булевыми переменными. Она может быть сведена к целочисленной оптимизационной задаче линейного программирования путем логарифмирования целевой функции и упрощения ограничения (1) до линейного.
Использование структурно-технологического резервирования ПО и ИО задач, решаемых АС УВД, позволяет повысить безопасность логических структур АС УВД в условиях действия дестабилизирующих факторов с учетом ограничений на максимальное время решения задач. Реализация предложенной модели синтеза структурно-технологического резерва позволяет, для конкретных ЛВС, определять нормы резервирования на структуру и объем резерва ПО и ИО распределенных задач АС УВД, функционирующих на базе ЛВС, с учетом установленной нижней границы безопасности. Также могут быть определены нормы на резервный объем внешней памяти в случае параллельной обработки.
При решении задачи сохранности информации методами резервирования и восстановления данных предлагается использовать виртуально-восстановительный резерв, в состав которого входят как сами данные, так их копии и/или предыстории.
В результате, формализована задача определения оптимального содержания виртуально-восстановительного резерва и его размещения по узлам ЛВС, решаемая на этапе предпроектного анализа.
В случаях, когда АС УВД состоят из однородных элементов по признаку степени риска возникновения чрезвычайных ситуаций, в качестве основных критериев синтеза виртуально-восстановительного резерва предлагается использовать максимальный критерий равномерного распределения выигрыша по узлам ЛВС, критерий минимума степени виртуальности резерва и др.
Задача проектирования виртуально-восстановительного резерва по первому критерию имеет следующий вид.
Найти: ,
при ограничениях:
- на степень виртуальности резерва
P*,
где P* - максимально допустимая степень виртуальности резерва;
- на относительное время корректировок информационных элементов
T*кор
где T*кор - максимально допустимое относительное время корректировки информационного элемента (на интервале T);
- на объем внешней памяти m-ого узла ЛВС
B*m,,
где B*m - максимально допустимый объем памяти m-ого узла для хранения информации;
- на отсутствие дублирования информационного элемента в узлах ЛВС
.
Результатом решения задачи синтеза виртуально-восстановительного резерва является оптимальный по заданным критериям информационный состав массивов данных, размещенных по узлам ЛВС. Использование виртуально-восстановительного резервирования данных в АС УВД, функционирующих на базе ЛВС, основанное на более гибком использовании понятия качества информации, позволяет повысить оперативность обработки данных, а также их сохранность в условиях действия дестабилизирующих факторов.
Одним из существенных факторов, определяющих устойчивость информационно-вычислительного процесса и функционирования системы в целом к действию дестабилизирующих факторов, является рациональное размещение информационных ресурсов АС УВД. Решение указанной задачи способствует выбору оптимальных инженерных решений на различных этапах проектирования, эксплуатации, совершенствования и развития АС УВД. Их решение обеспечивает как анализ, так и оптимальный синтез системы вычислительных средств и их компонентов.
Для сокращения размерности задач оптимизации информационно-вычислительного процесса предложено рассматривать АС УВД в виде совокупности вложенных контуров управления. Пример структурной декомпозиции АС УВД приведен на рисунке 3. Основным назначением этого разбиения является такая организация системы, которая приводит к необходимости внесения изменений либо в один из ее элементов, либо, в крайнем случае, в минимальное их число.
Каждому контуру управления должна соответствовать своя детализация информационно-вычислительного процесса, возрастающая по мере движения вниз (в направлении более подробного описания процессов), которая позволяет осуществлять взаимную увязку основных элементов информационно-вычислительного процесса на соответствующем уровне. Число контуров управления должно определяться исходя из практических потребностей проводимого исследования. При таком подходе решение любой достаточно сложной задачи может быть достигнуто в результате последовательного уточнения значений параметров системы и ее структурных компонентов с помощью расчетов на совокупности математических моделей.
Предложенный подход позволяет проектировать сложные информационно-вычислительные процессы по принципу «сверху-вниз» с позиции назначения и наилучшего решения основной целевой задачи всей системы. Это обеспечивает концептуальное единство информационно-вычислительных процессов и возможность рационального распределения ресурсов по мере декомпозиции системы.
На этапе проектирования предлагается решение задач оптимизации информационно-вычислительного процесса (распределение ПМ и ИМ, а также их резерва) осуществлять по принципу «сверху-вниз». В контурах управления нижнего уровня (узел АС УВД) задачи оптимизации информационно-вычислительного процесса выражаются в определении состава и структуры АС УВД и распределении задач (программ), ИМ (баз данных) и их восстановительного резерва между несколькими ЭВМ с учетом их приоритета и интенсивности решения, ограничений на объем памяти и время решения каждой задачи, а также в определении требуемого для обеспечения заданного уровня показателя сохранности информации объема восстановительного резерва каждого ПМ и ИМ. Таким образом, решение последовательности задач оптимизации позволяет определять и уточнять размещение информационных ресурсов на этапе проектирования АС УВД.
На этапе функционирования задача распределения программ, ИМ и их восстановительного резервирования решается при выходе из строя отдельных компонентов системы и при вводе в эксплуатацию новых прикладных программ. Для повышения устойчивости информационно-вычислительного процесса на этапе эксплуатации сети целесообразно распределение (перераспределение) информационных ресурсов осуществлять по принципу «снизу-вверх».
Основной задачей при оптимизации информационно-вычислительного процесса является организация распределения задач по работоспособным ЭВМ. Решение этой задачи связано с характеристиками задач и требованиями к виду деградации. При отказах отдельных ЭВМ возможно перераспределение решаемых системой задач между работоспособными ЭВМ. Это позволяет сохранить работоспособность системы за счет снижения в допустимых пределах каких-либо показателей качества ее функционирования. Системы, в которых реализуется указанная возможность, получили название систем с постепенной деградацией.
При выходе из строя значительного числа ЭВМ контура управления распределение (перераспределение) ПМ, ИМ и их восстановительного резерва по работоспособным ЭВМ выполняется в зависимости от необходимости и целесообразности решения задач.
В контурах высших уровней распределение программ, ИМ и их резерва между контурами осуществляется с учетом минимума передаваемой информации. В этом случае правильное и своевременное решение указанных задач способствует поддержанию работоспособности системы с прежней производительностью и пропускной способностью.
Разработан комплекс взаимосвязанных математических моделей оптимизации восстановительного резервирования информации в АС УВД, в состав которого входят: математическая модель оптимизации восстановительного резервирования информации в АС УВД и математическая модель определения параметров обновления восстановительного резерва информации.
Данные модели позволяют поэтапно и взаимосвязано решать задачи распределения информационных ресурсов по узлам сети, их восстановительного резервирования.
Пусть задана сеть (контур управления), состоящая из L ЭВМ, каждая из которых имеет mj (j=1,…,L) пунктов обработки информации (персональных ЭВМ, дисплеев и т.п.).
В сети решается К задач, которые используют данные из M информационных массивов. На каждом h-м пункте j-й ЭВМ (j=1, 2, ... , L ) (h=1, 2, ... , mj ) решается строго определенный круг задач с использованием определенных информационных массивов и генерацией соответствующих запросов (сообщений).
Распределение ПМ и ИМ по узлам сети определяется планом распределения, задаваемым матрицами
где:
k = 1, 2, ... , K , f =1, 2, ... , M , j = 1, 2, ... , L .
Обозначим через z, объем восстановительного резерва k-го ПМ и f-го ИМ (число копий (предысторий) k-го ПМ, f-го ИМ) (k=1,2,...,K, f=1,2,...,M) соответственно.
При постановке задач оптимизации восстановительного резервирования информации в АС УВД могут быть использованы следующие критерии: максимум вероятности решения всех задач; минимум времени решения всех задач; минимум объема информации циркулирующей в сети.
В результате решения каждой задачи необходимо определить подмножество узлов АС УВД, размещение в каждом из которых ПМ (ИМ) и их резерва обеспечивает экстремальное значение используемого критерия оптимизации. Кроме того, при решении задач оптимизации восстановительного резервирования по критериям максимума вероятности решения всех задач и минимума времени их решения, необходимо определить объем резерва.
По критерию максимума вероятности решения всех задач, задача оптимизации восстановительного резервирования формулируется следующим образом.
Определить значения (k=1,2,…,K; j=1,2,…,L; f=1,2,…,M) такие, что
при ограничениях:
а) на время решения k-й задачи h-м абонентом j-й ЭВМ
б) на объем информации, циркулирующей в сети, при решении h-м абонентом j-го узла k-й задачи
в) на объем внешнего запоминающего устройств j-й ЭВМ
г) на значения переменных
;
где Vj -объем внешнего запоминающего устройств j-й ЭВМ;
- максимально допустимое время решения h-м абонентом j-й ЭВМ k-й задачи; - максимально допустимый объем информации, циркулирующей в системе при решении h-м абонентом j-й ЭВМ k-й задачи; - вероятность успешной передачи информации между узлами j (l) и i (r) при решении h-м абонентом (обращении k-го ПМ) j-й ЭВМ (размещенного в l-м узле) k-й задачи (к f-му ИМ); - вероятности доведения запроса на решение (на доступ к информации) и сообщения, содержащего результаты решения (обращения) h-м абонентом (k-м ПМ) j-й ЭВМ (размещенного в l-й ЭВМ) k-й задачи (к f-му ИМ) в i-м узле (находящемуся в r-м узле) сети соответственно; - вероятность того, что k-й ПМ, хранящийся на l-й ЭВМ, не будет в процессе обращения к нему h-м абонентом j-й ЭВМ разрушен или же будет успешно восстановлен, и вероятность того, что f-й ИМ, хранящийся на r-й ЭВМ, не будет в процессе обращения к нему k-го ПМ, находящегося на l-й ЭВМ, разрушен или же будет успешно восстановлен соответственно; - вероятность того, что k-й ПМ (f-й ИМ), хранящийся в l (r)-м узле будет разрушен к моменту обращения к нему h-го абонента (k-го ПМ) j (l)-й ЭВМ соответственно; , () - среднее время восстановления k-го ПМ (f-го ИМ) в j (r)-м узле; - среднее время передачи сообщения из i-го (l-го) узла сети в j-й (r-й) при решении (обращении) h-м абонентом (k-го ПМ) j-й ЭВМ (размещенного в l-м узле) k-й задачи (к f-му ИМ); qjhkf - число обращений k-го ПМ к f-му ИМ при его решении h-м абонентом j-й ЭВМ; - время решения k-го ПМ на l-й ЭВМ h-м абонентом j-го узла при наличии всех исходных данных; если h-й абонент j-й ЭВМ имеет право решать k-ю задачу, - в противном случае; - интенсивность решения k-й задачи h-м абонентом j-й ЭВМ; - длина запроса на решение (доступ к) k-й задачи (f-му ИМ) h-м абонентом (k-м ПМ) j-й ЭВМ(при g-м обращении к нему); - длина сообщения, получаемого в результате решения (доступа к) k-го ПМ (f-му ИМ) h-м абонентом (k-м ПМ) j-й ЭВМ (при g-м обращении к нему); - длина запроса на восстановление k-го ПМ (f-го ИМ); uk - объем k-го ПМ; - объем f-го ИМ.
Большая размерность общей задачи оптимизации восстановительного резервирования информации, дискретность, нелинейный характер целевых функций и ограничений не позволяет решить ее существующими методами и выдвигает проблему снижения размерности.
Для сокращения размерности задач оптимизации восстановительного резервирования информации предложена их декомпозиция на ряд взаимосвязанных подзадач, которые сведены к задачам следующих классов:
оптимизация распределения ПМ и ИМ в системе вычислительных средств АС УВД без учета их резервирования - к классу задач целочисленного линейного программирования со смешанными ограничениями;
оптимизация распределения восстановительного резерва ПМ и ИМ без учета возможности его разрушения (без определения объема резерва) - к классу целочисленных линейных задач;
оптимизация объема восстановительного резерва ПМ и ИМ - к двум стандартным задачам оптимального резервирования.
Для решения задач распределения ПМ, ИМ и их резерва по узлам сети предлагается использовать метод ветвей и границ, а для решения задачи оптимизации объема восстановительного резерва - метод встречного решения функциональных уравнений динамического программирования.
Третья глава посвящена разработке математических моделей обеспечения защищенности информации в АС УВД с распределенной обработкой данных контроля обстановки в воздушном пространстве России.
Надежная защита информации АС УВД и контроля за воздушной обстановкой может быть эффективной лишь в том случае, если она является надежной на всех объектах и во всех компонентах системы, которые могут быть подвергнуты угрозам со стороны дестабилизирующих факторов. При этом принципиальное значение имеет однозначное определение и формирование полных перечней тех объектов и элементов, которые, с одной стороны, могут быть подвергнуты угрозам с целью нарушения защищенности информации, а с другой - могут быть достаточно четко определены (обособленны) с целью организации защиты информации.
Потенциальные угрозы информации в АС УВД отличаются многообразием, сложностью своей структуры и функций, их действие направлено практически против всех структурных компонентов АС УВД, а их источники могут располагаться как в самой АС УВД, так быть и вне ее. Все существующие на сегодняшний день угрозы информации в АС УВД подразделены на несколько больших групп по следующим критериям: характеру источника возникновения, местоположению источника угроз, отношению угроз к процессу обработки информации, отношению угроз к элементам АС УВД, продолжительности реализации, воздействию на информационную среду, частоте попыток реализации, обнаружению попыток реализации.
Показано, что наибольшую опасность для АС УВД представляют преднамеренные угрозы, классификация которых приведена в работе.
Учитывая то, что АС УВД, построенные на базе сетей ЭВМ, интегрированы в глобальные информационно-вычислительные сети, наиболее опасным является реализация противником угроз информации, источник которых находится вне элементов АС УВД.
В связи с тем, что объем материальных средств, выделяемых на защиту информации, обычно ограничен, возникает задача рационального их распределения. При этом материальные средства целесообразно расходовать, в первую очередь, на нейтрализацию угроз, реализация которых может нанести АС УВД наибольший вред. Это ставит задачу предварительной оценки возможных угроз информации в системе, которая должна решаться на всех этапах жизненного цикла АС УВД.
Для формализованного описания ряда типовых угроз информации - программных атак использован аппарат сетей Петри. Такой выбор обусловлен следующими достоинствами сетей Петри: графическое представление моделируемой системы, способность наглядно описывать взаимодействие между процессами, наличие различных методов анализа, опыт широкого применения сетей Петри в качестве инструмента моделирования мультипрограммных, асинхронных, распределенных, параллельных недетерминированных и/или стохастических систем обработки информации и протекающих в них информационно-вычислительных процессов. Большим достоинством сетей Петри является возможность анализа таких свойств параллельных процессов, как безопасность, активность, сохраняемость, достижимость. Задача моделирования программной атаки может быть сформулирована следующим образом: дана сеть Петри PN, моделирующая атакуемую АС УВД; требуется дополнить исходную сеть Петри элементами, моделирующими процесс программной атаки, и определить достижимость во вновь полученной сети Петри состояния, соответствующего достижению цели атаки, или активность переходов исходной сети с учетом влияния внесенных элементов.
Проведенный анализ позволил определить, что для решения задач исследования временных параметров моделируемых процессов целесообразно использовать расширение формализма сетей Петри, известное как Е-сети.
Представлены модели программных атак на АС УВД («удаленное сканирование АС УВД», «ложный объект АС УВД», «отказ в обслуживании», «подмена субъекта взаимодействия в АС УВД»). Роль моделей программных атак заключается в адекватной формализации именно тех процессов, которые являются основными терминальными наблюдаемыми и управляемыми процессами в программно-информационной борьбе.
Формально модель Е задается в виде: E=<P, T, I, O, G>, где Р - множество позиций, Т - множество переходов, I - множество входных функций переходов, О - множество выходных функций переходов, G - множество глобальных переменных модели. Атака «ложный объект АС УВД» представлена в виде Е-сетевой модели на рисунке 4.
Описанные модели не только представляют самостоятельный практический интерес, но и являются примером возможной формализации описания других программных атак.
Представлена классификация и краткая характеристика современных средств и методов защиты информации в АС УВД.
Действие систем защиты должно сводиться к предотвращению причин и условий, ведущих к утечке, искажению или разрушению информации; обеспечению раннего обнаружения факта утечки, искажения или разрушения информации; ограничению (уменьшению) размера потерь от утечки, искажения или разрушения информации; обеспечению эффективного восстановления информации при ее разрушении и/или искажении.
Существующие в настоящее время средства и методы защиты информации, составляющие основу современных СЗИ, представлены в работе. К ним относятся физические, программные, аппаратные, программно-аппаратные и криптографические средства защиты информации.
Каждая из разновидностей средств и методов защиты информации обладает своими достоинствами и недостатками, областью применимости, поэтому конкрет-ный их выбор, при построении СЗИ, зависит от ряда факторов, таких как: структура, принципы и условия функционирования информационных систем, с учетом результатов анализа возможных целей нарушителя и угроз информации; стоимостные, эффективностные и эксплутационные характеристики средств защиты и др.
Использование конкретных средств защиты для построения СЗИ определяется важностью материального, информационного или другого ресурса, подлежащего защите, а также уровнем необходимой секретности, материальными возможностями организации, возможностями проведения различных организационных мероприятий, существующим законодательством и целым рядом других не менее значимых факторов.
Наличие информации о структуре информационно-вычислительного процесса АС УВД, анализа возможных угроз информации и средств их нейтрализации позволило осуществить моделирование действий нарушителя в данной системе с целью выбора состава комплексов средств защиты информации.
Обозначим через M общее число угроз информации; A - множество номеров угроз информации; F - число возможных целей нарушителя в защищаемой АС УВД; D -множество номеров средств защиты, которые могут быть использованы в системе защиты; Bf - множество номеров угроз информации, реализуемых нарушителем при достижении f-й цели; - множество номеров средств защиты, которые потенциально могут быть использованы для противодействия реализации нарушителем f-й цели на j-м рубеже защиты (для нейтрализации j-й угрозы, входящей в f-ю цель) (f = 1,2,…,F; j = 1,2,…,M).
Причем, , , и .
В этом случае процесс реализации нарушителем каждой из своих целей может быть представлен в виде направленного графа, пример которого приведен на рисунке 5.
Вершины графа представляют собой состояния АС УВД, соответствующие попытке реализации нарушителем некоторой угрозы информации. Состояние системы S0 является начальным, то есть таким, при котором еще ни одна из угроз информации не реализована.
Состояние Sj () соответствует попытке реализации j-й угрозы. В случае ее успешной реализации, осуществляется переход к следующему состоянию системы, в противном случае (при штатном реагировании СЗИ) осуществляется переход к состоянию (на рисунке 5 ). Состояние является конечным и соответствует достижению нарушителем f-й цели (f=1,2,…,F). Дуги графа соответствуют направлениям переходов между состояниями. Каждая дуга характеризуется значением вероятности перехода между состояниями системы. Пунктиром обозначены дуги, соответствующие переходу из данного состояния в состояние .
Вероятность нахождения системы в k-м состоянии, при попытке реализации нарушителем f-й цели, будет определяться следующим выражением.
где I f - число уровней в ранжированном графе состояний, описывающем деятельность нарушителя при попытке реализации f-й цели; Gfi - множество номеров вершин, составляющих i-й уровень графа состояний, описывающего деятельность нарушителя при попытке реализации f-й цели, причем
; ;
- вероятность преодоления j-го рубежа защиты при попытке достижения нарушителем f-й цели ;
- вероятность успешного функционирования m-го средства защиты по противодействию деятельности нарушителя на j-м рубеже при попытке реализации им f-й цели (; f=1,2,…,F; ); qj - коэффициент согласования при переходе системы в j-е состояние; - уровень квалификации нарушителя при реализации f-й цели, , при попытке реализации им f-й цели (f=1,2,…,F), xjm=1, если m-е средство используется на j-м рубеже защиты, xjm=0 - в противном случае, (; ); - вероятность перехода из l-го состояния графа в k-е при попытке реализации нарушителем f-й цели.
Эффективность функционирования СЗИ может быть определена с помощью следующих параметров.
1. Средняя величина потерь АС УВД от реализации нарушителем всех целей.
,
где cjf = c1jf +c2jf + c3jf; c1jf, c2jf, c3jf - объем потерь системы от нарушения конфиденциальности информации, объем потерь от невыполнения ряда работ, стоимость восстановления системы защиты по реализации нарушителем j-й угрозы при попытке достижения f-й цели соответственно.
2. Вероятность реализации нарушителем всех целей
.
3. Вероятность успешного противодействия системы защиты действиям нарушителя по реализации им всех своих целей
.
4. Общая стоимость системы защиты
...Подобные документы
Особенности технологического процесса фракционирования прямогонного бензина, требования к нему. Разработка автоматизации участка предварительного нагрева нефтепродуктов. Расчет и выбор элементов силовой части, разработка программного обеспечения.
дипломная работа [5,6 M], добавлен 08.11.2013Обзор основных функций автоматизированных систем управления технологическими процессами (АСУ ТП), способы их реализации. Виды обеспечения АСУ ТП: информационное, аппаратное, математическое, программное, организационное, метрологическое, эргономическое.
презентация [33,7 K], добавлен 10.02.2014Назначение и классификация моделей, подходы к их построению. Составление математических моделей экспериментально-статистическими методами. Моделирование и расчет цифровых систем управления. Разработка и исследование модели статики процесса ректификации.
учебное пособие [1,8 M], добавлен 26.03.2014Анализ существующей системы автоматизации технологического процесса и требования, предъявляемые к ним. Описание этапов ее модернизации с детальной разработкой системы регулирования подачи свежего пара. Состав информационного программного обеспечения.
курсовая работа [1,3 M], добавлен 27.12.2014Сущность и структура гибкого автоматизированного механизма. Характеристика основного технологического оборудования. Сущность и главное назначение автоматизированных транспортно-складских систем. Автоматизированные системы инструментального обеспечения.
контрольная работа [43,7 K], добавлен 27.07.2010Понятие и состав автоматизированных систем управления, основные принципы их построения и методы анализа. Функциональная структура предприятия. Синтез структур АСУП. Модульность при построении АСУП. Обеспечение достоверности при обработке информации.
контрольная работа [196,3 K], добавлен 13.04.2012Внедрение станков с системой электронного программного управления. Назначение технологического оборудования (станка), электропривода и электронной системы программного управления. Модуль адаптера магистрали, таймер и анализ его работы со станком.
дипломная работа [2,6 M], добавлен 19.06.2013Общая характеристика материалов, фурнитуры, аксессуаров и дополнений, используемых в композиции. Решение эскизной части, особенности конструктивного и технологического решения моделей в коллекции. Анализ возможностей промышленного изготовления моделей.
курсовая работа [1,2 M], добавлен 30.12.2009Моделирование автоматизированной системы регулирования. Методики разработки моделей систем управления и их исследования средствами пакета Simulink. Реализация численного анализа математических моделей объектов управления. Вычислительные эксперименты.
курсовая работа [1,6 M], добавлен 30.12.2016Характеристика сточной воды на предприятия. Общие принципы построения автоматизированных систем контроля и управления технологическими процессами в заданной организации. Перечень применяемых приборов, принцип их действия и функциональные особенности.
контрольная работа [176,7 K], добавлен 11.02.2015Разработка автоматизированной системы регулирования температуры в туннельной печи, в зоне обжига керамического кирпича, путем изменения подачи газо-воздушной смеси. Описание технологического оборудования и технологического процесса производства кирпича.
курсовая работа [850,5 K], добавлен 21.10.2009Основные черты технического обеспечения современных автоматизированных систем управления технологическим процессом. Расчет среднеквадратичной погрешности контроля. Анализ приборов управления и регулирования, характеристика измерительных приборов.
курсовая работа [1,2 M], добавлен 22.05.2019Методические и технологические аспекты проблемы разработки автоматизированных систем обучения, предназначаемых для подготовки специалистов по эксплуатации и применению сложных АТК. Назначение, цели, ожидаемый эффект применения АСО и пути их достижения.
статья [154,7 K], добавлен 21.07.2011Анализ конструкций блок-контейнеров и применяемых систем автоматизированного проектирования. Разработка модификации, технологического процесса производства в рамках автоматизированных систем. Внутренняя планировка блок-контейнеров модульного городка.
дипломная работа [1,6 M], добавлен 27.10.2017Сущность, предназначение, признаки, функции и виды автоматизированных складских систем (АСС) м автоматизированных транспортных систем (АТС). Составные элементы и оборудование АСС И АТС, его характеристика и предназначение. Система управления АСС И АТС.
реферат [71,5 K], добавлен 05.06.2010Коллекция жакетов весенне-летнего ассортимента для девочек старшей школьной группы. Анализ композиционного и технологического решения, конструктивного построения моделей-аналогов. Эскизная проработка новых моделей. Проектно-конструкторская документация.
курсовая работа [314,0 K], добавлен 16.01.2010Задачи использования адаптивных систем автоматического управления, их классификация. Принципы построения поисковых и беспоисковых самонастраивающихся систем. Параметры работы релейных автоколебательных систем и адаптивных систем с переменной структурой.
курсовая работа [1,2 M], добавлен 07.05.2013Разработка рычажной системы легкого самолета типа ХАЗ-30. Расчет циклограммы награждения для типового профиля полетов. Определение директивных напряжений. План-проспект сертификационного базиса. Анализ вредных и опасных факторов в лабораторном зале ЛИПа.
дипломная работа [915,6 K], добавлен 31.01.2015Общая характеристика и изучение переходных процессов систем автоматического управления. Исследование показателей устойчивости линейных систем САУ. Определение частотных характеристик систем САУ и построение электрических моделей динамических звеньев.
курс лекций [591,9 K], добавлен 12.06.2012Получение математических моделей системы автоматического управления. Количественный анализ структуры системы в частотной области. Синтез управляющего устройства. Моделирование функционирования САУ с использованием электронно-вычислительной машины.
курсовая работа [487,5 K], добавлен 19.10.2014