Композиционные материалы и их свойства

Изучение строения волокнистых композиционных и дисперсно-упрочненных материалов. Технологии производства композитных материалов с металлической матрицей. Технология пултрузии. Процесс прессования. Применение новых композитных материалов в сварке.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 21.06.2016
Размер файла 336,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

RTM-classic. Такой метод отлично подойдет для стандартных объёмов 500 -10000 изделий в год. Конструкция матрицы состоит из композиционных или стальных форм, которые повторяют с двух сторон внешние обводы детали. Конструкции обладают высокотемпературными характеристиками, которые удерживаются точным совмещением закрытых стальных рам, которые поддерживаются в местах зажимов.

RTM-Light. Этот метод идеален для производства матриц 0,2м2 до 100м2. Конструкция матрицы состоит из композиционных или стальных форм. Контур матрица состоит из более легкой и гибкой конструкции. Половинки матрицы соединяются между собой под воздействием вакуума.

Преимущества технологии RTM:

· автоматизированное производство, благодаря чему уменьшается случайный характер вмешательства человека;

· происходит сокращение и контроль количества используемого сырья;

· снижено влияние материла на экологию;

· улучшены условия труда;

· создаются относительно прочные изделия, за счет лучшей пропитки;

· относительно дешевое оборудование.

9. Сварка композитных материалов

Для сварки композитных материалов применяются лучевые способы (электронно-лучевая и лазерная сварка) и дуговая сварка плавящимся и неплавящимся электродом в среде аргона или гелия. Основные трудности сварки этих материалов связаны с различными теплофизическими свойствами наполнителя и матрицы. При воздействии источника тепла в большинстве случаев в первую очередь плавится металл матрицы, как имеющий более низкую температуру плавления. Наполнитель может расплавиться частично.

При лучевых способах сварки в верхней части шва армирующий материал полностью расплавляется. Значительные изменения свойств композита происходят при дуговой сварке в зоне термического влияния. Изменения в шве и зоне термического влияния неблагоприятно сказываются на свойствах сварного соединения.

При сварке плавлением требуется расплавляемый элемент (присадочная вставка), а в некоторых случаях и присадочная проволока, материалом которых заполняются зазоры стыка. Расплавляемый элемент может быть прямоугольной, тавровой или двутавровой формы.

Сварку композитов дугой выполняют в среде аргона или смеси аргона с гелием с минимальным тепловложением. При использовании вольфрамового электрода рекомендуется применять импульсный режим сварки, что позволяет регулировать длительность воздействия дуги на металл сварочной ванны, т.е. температурный режим плавления основного и присадочного материалов. Опасность расплавления армирующих волокон устраняется увеличением длительности пауз. Этот способ рекомендуется для композиционных материалов с термодинамическими совместимыми компонентами (Cu-W, Cu-Mo, Sb-W) или армированных термостойкими наполнителями, например, волокнами карбида кремния, бора (покрытиями карбида бора или кремния). В качестве присадочного материала используют проволоки или прутки с объемным содержанием армирующей фазы 15... 20%. При сварке соединения образуются в основном по металлической матрице. Более благоприятными свойствами обладают сварные соединения при сварке вдоль армирования.

Сложной является проблема сварки композиционных материалов системы алюминий - бор между собой и с алюминиевыми сплавами типа Д16Т; 1420. Объемное содержание нитей бора в этих материалах 30... 55 %, толщина 0,8... 2,0 мм, условный плакирующий слой 50... 200 мкм. Подготовку поверхности под сварку производят только химическим путем, включая операции травления, осветления и пассивирования. Наилучшие результаты достигаются при сварке вращающимся вольфрамовым электродом, на переменном токе в смеси аргона и гелия (20:80) при использовании технологических проставок из алюминиевых сплавов типа АМг, 1420, 1201.

При электронно-лучевой и лазерной сварке малая протяженность зоны термического влияния позволяет получать сварные соединения с более высокими свойствами, чем при дуговой сварке.

При сварке алюминиевых композиционных материалов, армированных борными и стальными волокнами, возникают две проблемы. Первая -это трудность образования сварного соединения без повреждения волокон и снижения их прочности при расплавлении алюминиевой матрицы. Прямое воздействие источника нагрева (дуги, луча при ЭЛС) приводит к разрушению и плавлению волокон. Второе - это то, что наличие волокон изменяет перемещение теплоты в сварочной ванне и затрудняет перемещение в ней расплавленного металла. Основными дефектами швов являются пористость, несплавление, повреждение волокон. Устранению дефектов при аргонодуговой и электронно-лучевой сварке способствует применение импульсных режимов и использование тавровых и двутавровых проставок из матричного алюминиевого сплава между свариваемыми кромками. Этим способом можно изготовлять элементы конструкций типа балок, труб и т.п.

10. Преимущества и недостатки композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги, которые являются полуфабрикатом для изготовления конструкций.

Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

· высокая удельная прочность (прочность 3500 МПа)

· высокая жёсткость (модуль упругости 130…140 -- 240 ГПа)

· высокая износостойкость

· высокая усталостная прочность

· из КМ возможно изготовить размеростабильные конструкции

· легкость

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки.

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а, следовательно, развитого промышленного производства и научной базы страны. Но в случае изделий сложной формы, коррозионно-стойких изделий, высокопрочных диэлектрических изделий композиты оказываются в выигрыше.

Анизотропия свойств

Анизотропия -- зависимость свойств КМ от выбора направления измерения. Например, модуль упругости однонаправленного углепластика вдоль волокон в 10-15 раз выше, чем в поперечном.

Тем не менее, во многих случаях анизотропия свойств оказывается полезной. Например, трубы, работающие при внутреннем давлении испытывают в два раза большие разрывающие напряжения в окружном направлении по сравнении с осевым. Следовательно, труба не должна быть равнопрочной во всех направления. В случае композитов это условие легко обеспечить, увеличив вдвое армирование в окружном направлении по сравнению с осевым.

Низкая ударная вязкость

Низкая ударная вязкость также является причиной необходимости повышения запаса прочности. Кроме этого, низкая ударная вязкость обуславливает высокую повреждаемость изделий из КМ, высокую вероятность возникновения скрытых дефектов, которые могут быть выявлены только инструментальными методами контроля.

Высокий удельный объём

Высокий удельный объем является существенным недостатком при применении КМ в областях с жесткими ограничениями по занимаемому объёму. Это относится, например, к области сверхзвуковой авиации, где даже незначительное увеличение объёма самолёта приводит к существенному росту волнового аэродинамического сопротивления.

Гигроскопичность

Композиционные материалы гигроскопичны, то есть склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ. При длительной эксплуатации и многократном переходе температуры через 0 по Цельсию вода, проникающая в структуру КМ, разрушает изделие из КМ изнутри (эффект по природе аналогичен разрушению автомобильных дорог в межсезонье).

КМ могут впитывать также другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин.

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными. Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Низкая эксплуатационная технологичность

Композиционные материалы могут иметь низкую эксплуатационную технологичность, низкую ремонтопригодность и высокую стоимость эксплуатации. Это связано с необходимостью применения специальных трудоёмких методов (а подчас и ручного труда), специальных инструментов для доработки и ремонта объектов из КМ. Часто изделия из КМ вообще не подлежат какой-либо доработке и ремонту.

11. Применение новых композиционных материалов

Применение новых композиционных материалов является важным фактором в решении таких фундаментальных экономических проблем, как ограниченность природных ресурсов, недостаток стратегических материалов, поддержание темпов экономического развития и роста производительности труда, сохранение конкурентоспособности на мировом рынке.

Области применения

Товары широкого потребления: железобетон, удилища для рыбной ловли из стеклопластика и углепластика, лодки из стеклопластика, автомобильные покрышки, металлокомпозиты.

Композиты надёжно обосновались в спорте: для высоких достижений нужны высокая прочность и малый вес, а цена особой роли не играет.

Спортивное оборудование: велосипеды, оборудование для горнолыжного спорта -- палки и лыжи, хоккейные клюшки и коньки, байдарки, каноэ и вёсла к ним, детали кузовов гоночных автомобилей и мотоциклов, шлемы

Медицина. Материал для зубных пломб. Пластиковая матрица служит для хорошей заполняемости, наполнитель из стеклянных частиц повышает износостойкость.

Машиностроение. В машиностроении композиционные материалы широко применяются для создания защитных покрытий на поверхностях трения, а также для изготовления различных деталей двигателей внутреннего сгорания (поршни, шатуны).

Вооружение и военная техника. Благодаря своим характеристикам (прочности и лёгкости) КМ применяются в военном деле для производства различных видов брони: бронежилетов, брони для военной техники.

Авиация и космонавтика. В авиации и космонавтике с 1960-х годов существует настоятельная необходимость в изготовлении прочных, лёгких и износостойких конструкций. Композиционные материалы применяются для изготовления силовых конструкций летательных аппаратов, искусственных спутников, теплоизолирующих покрытий шаттлов, космических зондов. Из них изготавливают горизонтальные и вертикальные стабилизаторы, рули, элементы хвостового оперения лонжероны, лопасти винтов обшивку крыльев и др. Всё чаще композиты применяются для изготовления обшивок космических аппаратов, и наиболее нагруженных силовых элементов.

Детали из бороалюминия по сравнению с титановыми сплавами дают снижение массы на 30-40 %, обеспечивая более высокую длительную и усталостную прочность при нагреве до 500 °С.

Годы более эффективно применение бороалюминия в ракетно-космической технике. Его использование для изготовления крупных деталей для ракет "Атлас”, космических кораблей "Аполлон”, "Шаттл" позволило уменьшить их массу на 20-50 %. Это, в свою очередь, увеличило полезную нагрузку, а для военных самолетов - дальность полета, объем вооружения и т. д. Снижение полетной массы истребителя F-15 на 6 %, или около 1100 кг, приводит к увеличению дальности полета на 15 %.

12. Применение композитных материалов в сварке

Дисперсно-упрочненный композиционный материал (ДУКМ)

Исследования в области контактной сварки привели к разработке и внедрению в промышленность перспективного класса дисперсно-упрочненных композиционных материалов (ДУКМ) на основе порошковой меди. Испытания показали, что стойкость электродов из ДУКМ в сварочном производстве в несколько раз выше по сравнению с электродами из традиционно применяемых литых бронз. К дисперсно-упрочненным относят композиционные спеченные материалы, содержащие искусственно вводимые высокодисперсные, равномерно распределенные частицы фаз, не взаимодействующих активно с матрицей и не растворяющихся в ней до температуры плавления.

Дисперсно-упрочненные композиционные материалы (ДУКМ) на основе порошковой меди торговой марки ДИСКОМ® представляют собой медную основу (матрицу), в которой равномерно распределены упрочняющие частицы термостабильных оксидов и карбидов нанодисперсного (30…40 нм) уровня, обладающих низкой работой выхода электронов, и получаемые в результате механического легирования в высокоэнергетических мельницах (аттриторах). Благодаря наличию в медной матрице указанных наночастиц, медные ДУКМ имеют температуру рекристаллизации, близкую к температуре плавления меди, обладают высокими дугостойкостью и жаростойкостью. При этом электропроводность и теплопроводность ДУКМ незначительно отличаются от таких же характеристик меди.

Преимуществами материала ДУКМ являются:

* повышенная твердость и прочность,

* высокая жаростойкость и жаропрочность,

* высокая износостойкость, особенно в условиях скользящего электрического контакта,

* низкая адгезионная способность,

* превосходная механическая обрабатываемость.

Заключение

Композиционные материалы постепенно занимает все большее место в нашей жизни. Уже достаточно трудно представить современную стоматологию без композитных материалов. Области применения композиционных материалов многочисленны. Кроме авиационно-космической, ракетной и других специальных отраслей техники, они могут быть успешно применены в энергетическом турбостроении, в автомобильной и горнорудной, металлургической промышленности, в строительстве и т.д. Диапазон применения этих материалов увеличивается день ото дня и сулит еще много интересного. Можно с уверенностью сказать, что это материалы будущего.

композиционный металлический матрица сварка

Список использованной литературы

1. Композиционные материалы: справочник / В.В. Васильев [и др.]. под общ. ред. В.В. Васильева, Ю.М. Тарнопольского. - М.: Машиностроение, 1990. - 512 с.

2. Тялина, Л.Н. Новые композиционные материалы: учеб. пособие / Л.Н. Тялина, А.М. Минаев, В.А. Пручкин. - Издат. ГОУ ВПО ТГТУ Тамбов, 2011. - 80 с.

3. Лахтин, Ю. М., Леонтьева В. П. Материаловедение: Учебник для высших технических заведений. - 3-е изд., перераб. и доп. - М.: Машиностроение, 1990.

4. Материалы будущего: перспективные материалы для народного хозяйства. Пер. с нем./ Под ред. А. Неймана. - Л.: Химия, 1985.

5. Тарнопольский, Ю. М., Жигун И. Г., Поляков В. А. Пространственно-армированные композиционные материалы: Справочник. - М.: Машиностроение, 1987.

Размещено на Allbest.ru

...

Подобные документы

  • Типы композиционных материалов: с металлической и неметаллической матрицей, их сравнительная характеристика и специфика применения. Классификация, виды композиционных материалов и определение экономической эффективности применения каждого из них.

    реферат [17,4 K], добавлен 04.01.2011

  • Структура композиционных материалов. Характеристики и свойства системы дисперсно-упрочненных сплавов. Сфера применения материалов, армированных волокнами. Длительная прочность КМ, армированных частицами различной геометрии, стареющие никелевые сплавы.

    презентация [721,8 K], добавлен 07.12.2015

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Исследование роли композитных материалов в многослойных конструкциях в аэрокосмической промышленности. Анализ дефектов, встречающихся в процессе эксплуатации. Совершенствование ультразвуковой дефектоскопии с помощью многослойных композитных материалов.

    дипломная работа [2,2 M], добавлен 08.04.2013

  • Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.

    доклад [277,6 K], добавлен 26.09.2009

  • Физические принципы, используемые при получении материалов: сепарация, центрифугирование, флотация, газлифт. Порошковая металлургия. Получение и формование порошков. Агрегаты измельчения. Наноматериалы. Композиционные материалы.

    реферат [292,6 K], добавлен 30.05.2007

  • Общие закономерности строения композитных наноматериалов, их виды: на основе керамической, слоистой, металлической и полимерной матрицы. Механические, электрические, термические, оптические, электрохимические, каталитические свойства нанокомпозитов.

    реферат [377,0 K], добавлен 19.05.2015

  • Технология монтажа санитарно-технических систем и оборудования. Изготовление узлов из термопластов, стальных и чугунных труб. Состав, строение и свойства композиционных материалов. Монтаж водостоков, внутриквартальной и дворовой сети газопотребления.

    дипломная работа [587,2 K], добавлен 18.01.2014

  • Подготовительные технологические процессы для производства изделий из композиционных материалов. Схема раскроя препрегов. Расчет количества армирующего материала и связующего, необходимого для его пропитки. Формообразования и расчет штучного времени.

    курсовая работа [149,9 K], добавлен 15.02.2012

  • Технико-экономическое обоснование производства. Характеристика готовой продукции, исходного сырья и материалов. Технологический процесс производства, материальный расчет. Переработка отходов производства и экологическая оценка технологических решений.

    методичка [51,1 K], добавлен 03.05.2009

  • Подготовительные технологические процессы, расчет количества ткани и связующего для пропитки. Изготовление препрегов на основе тканевых наполнителей. Методы формообразования изделия из армированных композиционных материалов, расчёт штучного времени.

    курсовая работа [305,7 K], добавлен 26.03.2016

  • Производство изделий из композиционных материалов. Подготовительные технологические процессы. Расчет количества армирующего материала. Выбор, подготовка к работе технологической оснастки. Формообразование и расчет штучного времени, формование конструкции.

    курсовая работа [457,2 K], добавлен 26.10.2016

  • Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.

    курсовая работа [43,7 K], добавлен 03.04.2010

  • Порошковая металлургия. Основными элементами технологии порошковой металлургии. Методы изготовления порошковых материалов. Методы контроля свойств порошков. Химические, физические, технологические свойства. Основные закономерности прессования.

    курсовая работа [442,7 K], добавлен 17.10.2008

  • Трубная продукция нового поколения для нефтедобывающей отрасли из всевозможных полимерных, композитных материалов, стекловолокна, стеклопластика как альтернатива металлу. Технология применения металлопластиковых труб в нефтедобывающем промысле.

    дипломная работа [620,9 K], добавлен 12.03.2008

  • Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат [42,3 K], добавлен 19.07.2010

  • Основные технические свойства пластмасс и их использование в производстве. Особенности переработки полимерных материалов в изделия методом горячего прессования. Технология литья по выплавляемым моделям. Составляющие литейного модельного комплекта.

    контрольная работа [764,6 K], добавлен 23.01.2010

  • Исторические сведения о возникновении керамических материалов, область их применения. Основные физико-химические свойства керамики, применяемые сырьевые материалы. Общая схема технологических этапов производства керамических материалов, ее характеристика.

    курсовая работа [74,2 K], добавлен 02.03.2011

  • Отличия макро- и микроскопического строения материалов. Сравнение теплопроводности древесины и стали. Классификация дефектов кристаллического строения. Причины появления точечных дефектов. Особенности получения, свойства и направления применения резин.

    контрольная работа [318,1 K], добавлен 03.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.