Технологический процесс изготовления вала
Технологичность вала редуктора. Определение типа производства. Определение размеров и отклонений заготовки из поковки. Контроль размеров вала и шероховатости поверхностей. Расчет режимов резания, технологического процесса изготовления шлицевого вала.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 14.09.2016 |
Размер файла | 368,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Расходы по содержанию и эксплуатации оборудования, приходящиеся на единицу изделия, 3об определяются по формуле:
где : - стоимость машино-часа работы оборудования, руб./ч.
- норма времени i-й технологической операции, производимой
на оборудовании j-го вида при изготовлении калькулируемой продукции (операции), нормо-ч;
m - количество операций;
n- количество видов оборудования;
Рвн - процент выполнения норм времени. К расчету принимаем Рвн= 95%.
Тогда:
Экономия затрат расходов по содержанию и эксплуатации оборудования, приходящихся на единицу изделия, составит:
4.16 Расчет затрат на комплектующие изделия и покупные полуфабрикаты
Расчет затрат на комплектующие изделия и покупные полуфабрикаты производился по формуле:
где: - норма расхода i-гo наименования комплектующего изделия, покупных полуфабрикатов, натуральные единицы;
- оптовая действующая цена i-гo наименования комплектующих изделий, покупных полуфабрикатов, руб./ед. Оптовая действующая цена на комплектующие изделия составляет: на болты - 40 руб./кг, на винты - 40 руб./кг:
КТЗ - коэффициент, отражающий затраты на заготовку и транспортировку комплектующих изделий, покупных полуфабрикатов от поставщиков к заводу-изготовителю продукции (транспортно-заготовительные расходы). Согласно ([17] с. 16) КТЗ можно принять в размере 1,04-1,05:
n - количество наименований комплектующих изделий, покупных полуфабрикатов, расходуемых на изготовление калькулируемой продукции.
4.17 Расчет цеховых расходов
Цеховые расходы Зц представляют собой комплекс затрат, в состав которых включаются расходы по содержанию цехового персонала, амортизация зданий и сооружений, содержанию зданий, сооружений и инвентаря цеха и прочие расходы.
Затраты по содержанию цехового персонала - складываются из основной и дополнительной заработной платы цехового персонала. Годовой фонд основной заработной платы одного рабочего определяется по формуле:
где: - часовая тарифная ставка i-гo разряда рабочего, руб. Согласно п. 7.5 при базовом технологическом процессе разряд работ - 5-й (чст = 37,89 руб./ч), а при проектируемом технологическом процессе- 4-й (чст = 33,37 руб./ч);
166,7 - норма часов работы одного рабочего в месяц; 12 - число месяцев в году.
Тогда:
Согласно ([17] с. 26) годовой фонд дополнительной заработной платы вспомогательных рабочих можно принять равным:
до реконструкции - 15%, после реконструкции - 20% от основной заработной платы.
Тогда:
где: 1 - количество вспомогательных рабочих соответственно при базовом и проектируемом технологическом процессе.
Годовой фонд заработной платы ИТР рассчитывается как:
где: 3600 - среднемесячная заработная плата ИТР
4- количество ИТР, чел.
Годовой фонд заработной платы служащих рассчитывается как:
где: 2800 - среднемесячная заработная плата служащих
3 - количество служащих, чел.
Годовой фонд заработной платы МОП рассчитывается как:
где: 1600 - среднемесячная заработная плата МОП см.
2 - количество МОП, чел.
Тогда, затраты по содержанию цехового персонала рассчитываются по формуле:
где: ,,,,-см. выше
Кдоп.зп - принимаем в размере 1,1-1,3 (см. п. 7.5).
Тогда:
Экономия по содержанию цехового персонала составит:
Общезаводские расходы Ззав составляют 50 % от основной зарплаты производственных рабочих.
Тогда:
Потерями от брака Збр согласно ([9] с. 426) можно пренебречь. Затраты на содержание зданий, сооружений и инвентаря цеха рассчитываются, исходя из следующих нормативов: отопление помещений - 20 руб./м; освещение цеха - 30 руб./м2 в год; вентиляция помещений - 10 руб./м3в год; уборка цеха - 10 руб./м2 в год.
Прочие цеховые расходы рассчитываются, исходя из 400 руб. на одного производственного рабочего см. ([17] с. 27).
Сумма амортизации зданий и сооружений рассчитывается, исходя из следующих норм амортизационных отчислений: 3% - для зданий, 12% - для оборудования, 10% - для передаточных, транспортных и прочих средств. Тогда, амортизация для оборудования составит:
где: 50000 - место складирования заготовок, руб.;
1350000 - токарный центр с фрезерной функцией FT 20 m;
20000 - контрольный стол, руб.;
356000 - фрезерно-центровальный станок МР-71М, руб.;
989000 - круглошлифовальный станок 3М153, руб.;
5800 - стоимость стола для ведения документации, руб.;
Амортизация для передаточных средств составит:
где: 450000 - стоимость кран-балки Q = 0,5 т.
Амортизация для цеха составит:
Тогда, сумма амортизации зданий и сооружении составит:
Тогда, цеховые расходы составят:
Табл.4.2Сводная таблица калькуляции
Статьи калькуляции |
Затраты по вариантам, руб. |
||
Базовый |
Проектируемый |
||
Комплектующие изделия, покупные полуфабрикаты |
83,2 |
83,2 |
|
Итого: прямые материальные затраты |
83,2 |
83,2 |
|
Основная заработная плата производственных рабочих |
92,9 |
45,5 |
|
Дополнительная заработная плата производственных рабочих |
7,432 |
3,64 |
|
Отчисления на социальные нужды от заработной платы производственных рабочих |
95,42 |
16,7 |
|
Итого: заработная плата рабочих с отчислениями на социальное страхование |
195,752 |
65,84 |
|
Расходы по содержанию и эксплуатации оборудования |
980,23 |
664,81 |
|
Цеховые расходы |
2700662,5 |
2704448,8 |
|
Итого: цеховая себестоимость |
2701642,73 |
2705113,61 |
|
Общезаводские расходы |
677235,42 |
622324,44 |
|
Итого: заводская себестоимость |
2587106,92 |
2545114,38 |
|
Внепроизводственные расходы |
12935,54 |
12725,57 |
|
Полная заводская себестоимость |
2600042,46 |
2557839,95 |
|
Плановые накопления (прибыль) |
650010,615 |
639459,988 |
|
Оптовая цена предприятия |
3250053,075 |
3197299,938 |
Внепроизводственные расходы составляют 0,5% от заводской себестоимости производства, см ([17] с.28).
Тогда:
Оптовая цена предприятия определяется по формуле:
где: Сполн - полная заводская себестоимость;
Пплан - планируемый объем прибыли;
Нрент- норматив рентабельности. Согласно ([17] с. 28) для объектов ремонта подвижного состава Нрент - 25 %.
Тогда:
4.18 Барьерная ставка
Стоимость капитала - это средневзвешенная цена, которую предприятие уплатило за денежные средства, используемые для формирования своего капитала; определяется соотношением заемного и собственного капиталов:
HR=СК=ДД •СД +ДСК •ССК =0,2Ч0,176+0,8Ч0,041=0,068
где СК - стоимость капитала, %;
ДД=0,2- доля долга;
ДСК=0,8 - доля собственного капитала;
СД - стоимость долга, %;
ССК - стоимость собственного капитала, %.
Так как выплаты процентов уменьшают величину налогооблагаемой величины, то соответственно уменьшается и величина налоговых выплат. Экономия на налогах частично компенсирует выплаты по долгам. Поэтому реальный процент выплат по долгам с учетом экономии составит:
СД=(1-СН) •ПС,
где СН =0,2 - ставка налога на прибыль;
ПС - уровень процентной ставки.
Ставки ссудного процента и депозитные ставки рассчитываются с учетом внутригодовых реинвестиций и очищаются от инфляции.
где Nкб =0,22 - номинальная банковская ставка по кредитам;
р=2 - число периодов начисления процентов внутри года.
СД=(1-0,2) •0,22=0,176
ССК=
где Nин =0,15 - годовой уровень инфляции
Табл.4.3. Прогноз чистых денежных потоков
0 |
1 |
2 |
N |
||
1.Инвестиции |
|||||
Стоимость оборудования |
1396335 |
||||
2.Изменение расходов |
|||||
Основная заработная плата |
156390 |
156390 |
156390 |
||
Дополнительная заработная плата |
12513 |
12513 |
12513 |
||
Отчисления на социальные нужды |
1197795 |
1197795 |
1197795 |
||
Расходы по содержанию и эксплуатации оборудования |
455820 |
455820 |
455820 |
||
Цеховые расходы |
3524,3 |
3524,3 |
3524,3 |
||
Общезаводские расходы |
54910,98 |
54910,98 |
54910,98 |
||
Внепроизводствен-ные расходы |
209,97 |
209,97 |
209,97 |
||
Всего: |
1881163,25 |
1881163,25 |
1881163,25 |
||
Налог на прибыль |
18% |
18% |
18% |
||
Приращение доходов |
376232,65 |
376232,65 |
376232,65 |
||
3.Корректировка денежных потоков |
|||||
амортизация |
-37324,88 |
-37324,88 |
-37324,88 |
||
ЧДП |
1396335 |
338907,77 |
338907,77 |
338907,77 |
NPV=1142346,16 руб
Где:
ЧДП - чистый денежный поток, руб.;
HR - барьерная ставка;
n - число лет функционирования объекта;
IRR - Внутренняя норма доходности.
IRR=1,805
Вывод: так как по показателю эффективности NPV больше 0 (+1142346,16), а IRR больше барьерной ставки БС, то можно сделать вывод об эффективности разработанной технологии.
5. Безопасность жизнедеятельности
Защита от шума в механическом цехе
Шум как гигиенический фактор это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение. Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.
Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса. Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение общей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда.
По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий (вызывает нервное напряжение и вследствие этого снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека).Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах. Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).
Шум как физическое явление это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. Для
человека область слышимых звуков определяется в интервале от 16 до 20 000 Гц. Наиболее чувствителен слуховой анализатор к восприятию звуков частотой 1000--3000 Гц (речевая зона).
По природе возникновения шумы машин или агрегатов делятся на:
?механические,
? аэродинамические и гидродинамические
? электромагнитные.
При работе различных механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.
На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.
Аэродинамические и гидродинамические шумы:
?шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;
?шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов;
?кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.
Шумы электромагнитного происхождения возникают в различных электротехнических изделиях (например при работе электрических машин). Их причиной является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от 2030 дБ (микромашины) до 100110 дБ (крупные быстроходные машины).
Проявление вредного воздействия шума на организм человека весьма разнообразно.
Длительное воздействие интенсивного шума (выше 80 дБА) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, выражающееся временным смещением порога слышимости , которое исчезает после окончания воздействия шума, а при большой длительности и (или) интенсивности шума происходят необратимые потери слуха (тугоухость), характеризуемые постоянным изменением порога слышимости.
Различают следующие степени потери слуха:
· I степень (легкое снижение слуха) - потеря слуха в области речевых частот составляет 10 - 20 дБ, на частоте 4000 Гц - 20 - 60 дБ;
· II степень (умеренное снижение слуха) - потеря слуха в области речевых частот составляет 21 - 30 дБ, на частоте 4000 Гц - 20 - 65 дБ;
· III степень (значительное снижение слуха) - потеря слуха в области речевых частот составляет 31 дБ и более, на частоте 4000 Гц - 20 - 78 дБ.
Действие шума на организм человека не ограничивается воздействием на орган слуха. Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Человек, подвергающийся воздействию интенсивного (более 80 дБ) шума, затрачивает в среднем на 10 - 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую им при уровне звука ниже 70 дБ(А). Установлено повышение на 10 - 15% общей заболеваемости рабочих шумных производств. Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 - 70 дБ(А). Из вегетативных реакций наиболее выраженным является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также повышения артериального давления (при уровнях звука выше 85 дБА).
Воздействие шума на центральную нервную систему вызывает увеличение латентного (скрытого) периода зрительной моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 - 60 дБА), существенно изменяет биопотенциалы мозга, их динамику, вызывает биохимические изменения в структурах головного мозга.
При импульсных и нерегулярных шумах степень воздействия шума повышается.
Изменения в функциональном состоянии центральной и вегетативной нервных систем наступают гораздо раньше и при меньших уровнях шума, чем снижение слуховой чувствительности.
В настоящее время "шумовая болезнь" характеризуется комплексом симптомов:
· снижение слуховой чувствительности;
· изменение функции пищеварения, выражающейся в понижении кислотности;
· сердечно-сосудистая недостаточность;
· нейроэндокринные расстройства.
Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т.д. Воздействие шума может вызывать негативные изменения эмоционального состояния человека, вплоть до стрессовых. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБА производительность труда снижается на 20%.
Ультразвуки (свыше 20000 Гц) также являются причиной повреждения слуха, хотя человеческое ухо на них не реагирует. Мощный ультразвук воздействует на нервные клетки головного мозга и спинной мозг, вызывает жжение в наружном слуховом проходе и ощущение тошноты.
Не менее опасными являются инфразвуковые воздействия акустических колебаний (менее 20 Гц). При достаточной интенсивности инфразвуки могут воздействовать на вестибулярный аппарат, снижая слуховую восприимчивость и повышая усталость и раздражительность, и приводят к нарушению координации. Особую роль играют инфрачастотные колебания с частотой 7 Гц. В результате их совпадения с собственной частотой альфа - ритма головного мозга наблюдаются не только нарушения слуха, но и могут возникать внутренние кровотечения. Инфразвуки (6 8 Гц) могут привести к нарушению сердечной деятельности и кровообращения.
Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот.
При исследовании шумов обычно слышимый диапазон 16 Гц 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.
Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.
Полоса частот, верхняя граница которой превышает нижнюю в два раза, т.е. f2 = 2 f1 , называется октавой.
Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых
f2 = 21/3 f1 = 1,26 f1 .
Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой:
Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (fсг мин = 31,5 Гц, fсг макс = 8000 Гц).
fсг, Гц |
f1 , Гц |
f2 , Гц |
|
16 |
11 |
22 |
|
31,5 |
22 |
44 |
|
63 |
44 |
88 |
|
125 |
88 |
177 |
|
250 |
177 |
355 |
|
500 |
355 |
710 |
|
1000 |
710 |
1420 |
|
2000 |
1420 |
2840 |
|
4000 |
2840 |
5680 |
|
8000 |
5680 |
11360 |
По частотной характеристике различают шумы:
· низкочастотные ( fсг < 250);
· cреднечастотные (250 < fсг <= 500);
· высокочастотные (500 < fсг <= 8000).
Производственные шумы имеют различные спектральные и временные характеристики, которые определяют степень их воздействия на человека. По этим признакам шумы подразделяют на несколько видов.
Способ классификации |
Вид шума |
Характеристика шума |
|
По характеру спектра шума |
· широкополосные |
Непрерывный спектр шириной более одной октавы |
|
тональные |
В спектре которого имеются явно выраженные дискретные тона |
||
По временным характеристикам |
· постоянные |
Уровень звука за 8 часовой рабочий день изменяется не более чем на 5 дБ(А) |
|
· непостоянные: § колеблющиеся во времени § прерывистые § импульсные |
Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ(А) Уровень звука непрерывно изменяется во времени Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с |
Шумоизмерительные приборы - шумомеры - состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) - быстро, S (slow) - медленно, I (pik) - импульс. Шкалу F применяют при измерениях постоянных шумов, S - колеблющихся и прерывистых, I - импульсных.
Стандартные частотные характеристики А, В, С, D
Рис. 3.5
А - характеристика, приближающаяся к частотной характеристике чувствительности человеческого уха;
В, С - характеристики, использующиеся при измерении громких звуков, для которых чувствительность человеческого уха меньше изменяется в зависимости от частоты;
D - характеристика, используемая при измерении шумов самолетов.
По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 - для лабораторных и натурных измерений; 2 - для технических измерений; 3 - для ориентировочных измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц.
Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.
Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот.
В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.Частотная характеристика фильтра К( f ) =Uвых /Uвх представляет собой зависимость коэффициента передачи сигнала со входа фильтра Uвх на его выход Uвых от частоты сигнала f. Частотная характеристика типового октавного полосового фильтра показана на рис.3.6. Полосовой фильтр характеризуется полосой пропускания B = f2 - f1, т.е. областью частот между двумя частотами f1 и f2, на которых частотная характеристика К( f ) имеет значение (затухание) не более 3 дБ .
Рис.3.6. Частотная характеристика октавного фильтра
f1 и f2 - частоты среза фильтра, f0 = ( f1 * f2 )1/2 - центральная частота фильтра
Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов
Шум оказывает негативное влияние на весь организм человека. Шумы средних уровней (менее 80 дБА) не вызывают потери слуха, но тем не менее оказывают утомляющее неблагоприятное влияние, которое складывается с аналогичными влияниями других вредных факторов и зависит от вида и характера трудовой нагрузки на организм.
Нормирование шума призвано предотвратить нарушение слуха и снижение работоспособности и производительности труда работающих.
Для разных видов шумов применяются различные способы нормирования.
Для постоянных шумов нормируются уровни звукового давления LPi (дБ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для ориентировочной оценки шумовой характеристики рабочих мест допускается за шумовую характеристику принимать уровень звука L в дБ(А), измеряемый по временной характеристике шумомера «S - медленно».
Нормируемыми параметрами прерывистого и импульсного шума в расчетных точках следует считать эквивалентные (но энергии) уровни звукового давления Lэкв в дБ в октавных полосах частот со среднегеометрическими частотами 63, 125, 500, 1000, 2000, 4000 и 8000 Гц.
Для непостоянных шумов нормируется так же эквивалентный уровень звука в дБ(А).
Допустимые уровни звукового давления для рабочих мест служебных помещений и для жилых и общественных зданий и их территорий различны.
Нормативным документом, регламентирующим уровни шума для различных категорий рабочих мест служебных помещений является ГОСТ 12.1.003-83 «ССБТ. Шум. Общие требования безопасности».
Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в дБ в октавных полосах частот, уровни звука и эквивалентные уровни звука в дБА для жилых и общественных зданий и их территорий следует принимать в соответствии со СНиП 11-12-88 "Защита от шума".
Слух позволяет человеку воспринимать звуковую информацию. Вместе с тем, насыщение окружающего пространства шумами повышенной интенсивности может привести к искажению звуковой информации и нарушению слуховой активности человека.
Проявление вредного воздействия шума на организм человека весьма разнообразно.
Наиболее опасно длительное воздействие интенсивного шума на слух человека, которое может привести к частичной или полной потере слуха. Медицинская статистика показывает, что тугоухость в последние годы выходит на ведущее место в структуре профессиональных заболеваний и не имеет тенденции к снижению.
Поэтому важно знать особенности восприятия звука человеком, допустимые с точки зрения обеспечения здоровья, высокой производительности и комфортности уровни шума, а также средства и способы борьбы с шумом.
Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проектирования, строительства и эксплуатации производственных предприятий, машин и оборудования. В целях повышения эффективности борьбы с шумом введены обязательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказывающих вредное воздействие на окружающую среду и отрицательно влияющих на здоровье людей.
Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источнике за счет изменения технологии и конструкции машин. К мерам этого типа относятся замена шумных процессов бесшумными, ударных -- безударными, например замена клепки -- пайкой, ковки и штамповки обработкой давлением; замена металла в некоторых деталях незвучными материалами, применение виброизоляции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источником повышенного шума, устанавливают в специальные помещения, а пульт дистанционного управления размещают в малошумном помещении. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых материалов, покрытых перфорированными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.
Пртивошумы - средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.
Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. «Беруши» - коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала.
Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.
Противошумные шлемы - самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.
Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периодические медицинские осмотры. Таким осмотрам подлежат лица, работающие на производствах, где шум превышает предельно допустимый уровень (ПДУ) в любой октавной полосе.
Виброакустическая аппаратура, как правило, универсальна: при условии ее оснащения преобразователями звукового давления и вибрации, а также шкалами, она позволяет измерять как шумовые, так и вибрационные характеристики. Универсальная аппаратура используется для контроля параметров при приемо-сдаточных испытаниях и в условиях эксплуатации. Для-исследовательских или мониторинговых целей используется аппаратура, предназначенная для анализа отдельно шумовых либо вибрационных параметров.
Измерение уровня звука в дБА или уровня звукового давления в дБ осуществляется шумомерами. Воспринимаемое микрофоном звуковое давление преобразуется в шумомере в электрический сигнал, который после усиления подается через аттенъюато-ры на блок фильтров часютной коррекции.
Блок-схема шумомера: 1 -- микрофон; 2-- усилитель; 3 -- схемы частотной коррекции; 4 -- внешние фильтры; 5 -- среднеквадратичный детектор; 6 -- запоминающее устройство; 7-- выход; 8-- аналоговый или цифровой измерительный прибор.
Вибропреобразователь (акселерометр) крепится в измерительных точках с помощью магнита, либо щупа; измерительная ось вибропреобразователя должна быть перпендикулярной содержащий стандартные схемы Л, В, С, D.Затем сигнал подается на индикатор (аналоговый или цифровой). Для выполнения спектрального анализа шума шумомеры либо оснащаются собственными полосовыми фильтрами, либо имеют возможность подключения внешних фильтров. Характеристики шумомеров определены ГОСТ 17187-81, стандартами СЭВ 1351-78, МЭК R/179/1973 и МЭК-651. В качестве приемника звука в шумомерах применяются конденсаторные микрофоны. Для предотвращения влияния оператора на результаты измерений, микрофон часто подключают к шумомеру через удлинитель. Наличие удлинительного кабеля снижает чувствительность измерительного тракта. Поэтому между шумомером и микрофоном включается предусилитель заряда или напряжения. При использовании предусилителей заряда длина кабеля не сказывается на чувствительности измерительной системы. Перед проведением и после акустических испытаний проводится калибровка измерительного тракта шумомера. Для этих целей применяется акустический калибратор -- источник звука, создающий постоянное звуковое давление на фиксированной частоте. Например, акустический калибратор типа 4230(Б и К) создает УЗД, равный 94 дБ на частоте 1000 Гц. Виброакустическая аппаратура оснащается источником собственного калибровочного сигнала, с помощью которого контролируется состояние аппаратуры без внешних устройств (микрофона и кабеля). Последние выпускаются с калибровочными данными, согласующимися с внутренним электрическим сигналом прибора. Поскольку микрофон является достаточно уязвимым звеном системы, предпочтение отдается калибровке всего измерительного тракта с помощью акустического калибратора.
Расчет ожидаемых уровней звукового давления в расчетной точке (расчётной точкой примем место в механическом цехе возле слесарного верстака) и требуемого снижения уровней шума.
Если в помещение находится несколько источников шума с разными уровнями излучаемой звуковой мощности, то уровни звукового давления для среднегеометрических частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и расчетной точке следует определяет по формуле:
Здесь:
L - ожидаемые октавные уровни давления в расчетной точке, дБ; ч - эмпирический поправочный коэффициент, принимаемый в зависимости от отношения расстояния rот расчетной точки до акустического центра к максимальному габаритному размеру источника 1макс, рис.2 (методические указания). Акустическим центром источника шума, расположенного на полу, является проекция его геометрического центра на горизонтальную плоскость. Так как отношение r/lмакс во всех случаях, то примем и
Lpi- октавный уровень звуковой мощности источника шума, дБ;
Ф - фактор направленности; для источников с равномерным излучением принимается Ф=1; S - площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. В расчетах принять, где r - расстояние от расчетной точки до источника шума; S = 2рr2
= 2рr2 = |
2 |
x |
3,14 |
x |
7,5 |
2 = 353,25 м2 |
||
= 2рr2 = |
2 |
x |
3,14 |
x |
11 |
2 = 759,88 м2 |
||
= 2рr2 = |
2 |
x |
3,14 |
x |
8 |
2 = 401,92 м2 |
||
= 2рr2 = |
2 |
x |
3,14 |
x |
9,5 |
2 = 566,77 м2 |
||
= 2рr2 = |
2 |
x |
3,14 |
x |
14 |
2 = 1230,88 м2 |
ш- коэффициент, учитывающий нарушение диффузности звукового поля в помещении, в зависимости от отношения постоянной помещения В к площади ограждающих поверхностей помещения
В - постоянная помещения в октавных полосах частот, определяемая по формуле; м - частотный множитель определяемый.
м
Для 250 Гц: м=0,55 ;
м3
Для 250 Гц: м=0,7 ;
м3
Для 250 Гц: ш=0,93
Для 250 Гц: ш=0,85
т - количество источников шума, ближайших к расчетной точке, для которых (*). В данном случае выполняется условие для всех 5 источников, поэтому т =5.
n- общее количество источников шума в помещении с учетом коэффициента одновременности их работы.
Найдем ожидаемые октавные уровни звукового давления для 250 Гц:
L = 10lg ( 1x8x10/ 353,25 +1x8x10/ 759,88 + 1x3,2x10/ 401,92 + 1x2x10/ 566,77 +1x8x10/ 1230,88 + 4 х 0,93 х(8x10 + 8x10+
+3,2x10+2x10 +8x10) / 346,5 )= 93,37дБ
Найдем ожидаемые октавные уровни звукового давления для 500 Гц:
L= 10lg (1x1,6x10/ 353,25 + 1x5x10/ 759,88 + 1x6,3x10/ 401,92 +
+1x 1x10/ 566,77 + 1x1,6x10 / 1230,88 + 4 х 0,85 х(1,6x10 + 5x10+
+6,3x10+ 1x10+1,6x10) / 441)= 95,12 дБ
Требуемое снижение уровней звукового давления в расчетной точке для восьми октавных полос по формуле:
,
где
-требуемое снижение уровней звукового давления, дБ;
- полученные расчетом октавные уровни звукового давления, дБ;
Lдоп - допустимый октавный уровень звукового давления в изолируемом от шума помещений, дБ, табл. 4 (методические указания).
Для 250 Гц : ДL = 93,37 - 77 = 16,37 дБ Для500 Гц : ДL = 95,12 - 73 = 22,12 Дб
Рассчитаем защитные перегородки, которые будут отделять механический цех по изготовлению валов от вспомогательных помещений
Звукоизолирующие ограждения, перегородки применяются для отделения «тихих» помещений от смежных «шумных» помещений; выполняются из плотных, прочих материалов. В них возможно устройство дверей, окон. Подбор материала конструкции производится по требуемой звукоизолирующей способности, величина которой определяется по формуле:
,
где
-суммарный октавный уровень звуковой мощности
излучаемой всеми источниками определяемый с помощью табл. 1 (методические указания).
Для250Гц: дБ
Для 500 Гц:
дБ
Bи - постоянная изолируемого помещения
В1000=V/10=(8x20x9)/10=144 м2
Для 250 Гц: м=0,55 BИ=В1000·м=144·0,55=79,2 м2
Для 500 Гц: м=0,7 BИ=В1000·м=144·0,7=100,8 м2
т - количество элементов в ограждении (перегородка с дверью т=2) Si- площадь элемента ограждения
Sстены = ВхН - Sдвери = 20 · 9 - 2,5 = 177,5 м2
Для 250 Гц:
Rтреб.стены = 112,4 - 77 - 10lg79,2 + 10lg177,5 + 10lg2 = 41,9 дБ
Rтреб.двери = 112,4 - 77 - 10lg79,2 + 10lg2,5 + 10lg2 = 23,4 дБ
Для 500 Гц:
Rтреб.стены = 115,33 - 73 - 10lg100,8 + 10lg177,5 + 10lg2 = 47,8 дБ
Rтреб.двери = 112,4 - 73 - 10lg100,8 + 10lg2,5 + 10lg2 = 29,3 дБ
Звукоизолирующее ограждение состоит из двери и стены, подберем материал конструкций. Дверь - глухая щитовая дверь толщиной 40мм, облицованная с двух сторон фанерой толщиной 4мм с уплотняющими прокладками .Стена - кирпичная кладка толщиной с двух сторон в 1 кирпич.
Пожарная безопасность
Пожар - это горение вне специального очага, которое не контролируется и может привести к массовому поражению и гибели людей, а также к нанесению экологического, материального и другого вреда.
Горение это химическая реакция окисления, сопровождающаяся выделением теплоты и света. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя и источника загорания. Окислителями могут быть кислород, хлор, фтор, бром, йод, окиси азота и другие. Кроме того, необходимо чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник загорания имел определенную энергию.
Наибольшая скорость горения наблюдается в чистом кислороде. При уменьшении содержания кислорода в воздухе горение прекращается. Горение при достаточной и над мерной концентрации окислителя называется полным, а при его нехватке - неполным.
Выделяют три основных вида самоускорения химической реакции при горении: тепловой, цепной и цепочно-тепловой. Тепловой механизм связан с экзотермичностью процесса окисления и возрастанием скорости химической реакции с повышением температуры. Цепное ускорение реакции связано с катализом превращений, которое осуществляют промежуточные продукты превращений. Реальные процессы горения осуществляются, как правило, по комбинированному (цепочно-тепловой) механизму.
Процесс возникновения горения подразделяется на несколько видов:
Вспышка быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.
Возгорание возникновение горения под воздействием источника зажигания.
Воспламенение возгорание, сопровождающееся появлением пламени.
Самовозгорание явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания. Различают несколько видов самовозгорания:
Химическое - от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;
Микробиологическое - происходит при определенной влажности и температуры в растительных продуктах (самовозгорание зерна);
Тепловое - вследствие долговременного воздействия незначительных источников тепла (например, при температуре 100 С тирса, ДВП и другие склоны к самовозгоранию).
Самовоспламенение самовозгорание, сопровождается появлением пламени.
Взрыв чрезвычайно быстрое (взрывчатое) превращение, сопровождающееся выделением энергии с образованием сжатых газов.
Основными показателями пожарной опасности являются температура самовоспламенения и концентрационные пределы воспламенения.
Температура самовоспламенения характеризует минимальную температуру вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.
Температура вспышки самая низкая (в условиях специальных испытаний) температура горючего вещества, при которой над поверхностью образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для последующего горения.
По этой характеристике горючие жидкости делятся на 2 класса: 1) жидкости с tвсп 610 C (бензин, этиловый спирт, ацетон, нитроэмали и т.д.) легковоспламеняющиеся жидкости (ЛВЖ); 2) жидкости с tвсп 610 C (масло, мазут, формалин и др.) горючие жидкости (ГЖ).
Температура воспламенения температура горения вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигание возникает устойчивое горение.
Температурные пределы воспламенения температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения жидкостей.
Горючими называются вещества, способные самостоятельно гореть после изъятия источника загорания.
По степени горючести вещества делятся на: горючие (сгораемые), трудногорючие (трудносгораемые) и негорючие (несгораемые).
К горючим относятся такие вещества, которые при воспламенении посторонним источником продолжают гореть и после его удаления.
К трудногорючим относятся такие вещества, которые не способны распространять пламя и горят лишь в месте воздействия источника зажигания.
Негорючими являются вещества, не воспламеняющиеся даже при воздействии достаточно мощных источников зажигания (импульсов).
Горючие вещества могут быть в трех агрегатных состояниях: жидком, твердом и газообразном. Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ.
Из горючих газов и пыли образуются горючие смеси при любой температуре, в то время как твердые вещества и жидкости могут образовать горючие смеси только при определенных температурах.
В производственных условиях может иметь место образование смесей горючих газов или паров в любых количественных соотношениях. Однако взрывоопасными эти смеси могут быть только тогда, когда концентрация горючего газа или пара находится между границами воспламеняемых концентраций.
Минимальная концентрация горючих газов и паров в воздухе, при которой они способны загораться и распространять пламя, называющееся нижним концентрационным пределом воспламенения.
Максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения.
Указанные пределы зависят от температуры газов и паров: при увеличении температуры на 100 0С величины нижних пределов воспламенения уменьшаются на 810 %, верхних увеличиваются на 1215 %.
Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.
Пыли горючих и некоторых не горючих веществ (например, алюминий, цинк) могут в смеси с воздухом образовать горючие концентрации.
Наибольшую опасность по взрыву представляет взвешенная в воздухе пыль. Однако и осевшая на конструкциях пыль представляет опасность не только с точки зрения возникновения пожара, но и вторичного взрыва, вызываемого в результате взвихривания пыли при первичном взрыве.
Минимальная концентрация пыли в воздухе, при которой происходит ее загорание, называется нижним пределом воспламенения пыли.
Поскольку достижение очень больших концентраций пыли во взвешенном состоянии практически нереально, термин "верхний предел воспламенения" к пылям не применяется.
Воспламенение жидкости может произойти только в том случае, если над ее поверхностью имеется смесь паров с воздухом в определенном количественном соотношении, соответствующим нижнему температурному пределу воспламенения.
Причины возникновения пожаров.
Причинами возникновения пожаров чаще всего являются:
1. неосторожное обращение с огнем,
2. несоблюдение правил эксплуатации производственного оборудования,
3. самовозгорание веществ и материалов,
4. разряды статического электричества,
5. грозовые разряды,
6. поджоги.
В зависимости от места возникновения различают: пожары на транспортных средствах; степные и полевые пожары; подземные пожары в шахтах и рудниках; торфяные и лесные пожары; пожары в зданиях и сооружениях. Последние, в свою очередь, подразделяются на наружные (открытые), при которых хорошо просматриваются пламя и дым, и внутренние (закрытые), характеризующиеся скрытыми путями распространения пламени.
Причины возникновения пожаров на предприятии
Пожар на предприятии наносит большой материальный ущерб народному хозяйству и очень часто сопровождается несчастными случаями с людьми.
Основными причинами, способствующими возникновению и развитию пожара, являются:
нарушение правил применения и эксплуатации приборов и оборудования с низкой противопожарной защитой;
использование при строительстве в ряде случаев материалов, не отвечающих требованиям пожарной безопасности;
отсутствие на многих объектах народного хозяйства и в подразделениях пожарной охраны эффективных средств борьбы с огнем.
Пожарная профилактика
Для предупреждения распространения пожара с одного здания на другое между ними устраивают противопожарные разрывы. При определении противопожарных разрывов исходят из того, что наибольшую опасность в отношении возможного воспламенения соседних зданий и сооружений представляет тепловое излучение от очага пожара. Количеством принимаемой теплоты соседним с горящим объектом зданием зависит от свойств горючих материалов и температуры пламени, величины излучающей поверхности, площади световых проемов, группы возгораемости ограждающих конструкций, наличия противопожарных преград, взаимного расположения зданий, метеорологических условий и т.д.
К противопожарным преградам относят стены, перегородки, перекрытия, двери, ворота, люки, тамбур-шлюзы и окна. Противопожарные стены должны быть выполнены из несгораемых материалов, иметь предел огнестойкости не менее 2.5 часов и опираться на фундаменты. Противопожарные стены рассчитывают на устойчивость с учетом возможности одностороннего обрушения перекрытий и других конструкций при пожаре.
Противопожарные двери, окна и ворота в противопожарных стенах должны иметь предел огнестойкости не менее 1.2 часа, а противопожарные перекрытия не менее 1 часа. Такие перекрытия не должны иметь проемов и отверстий, через которые могут проникать продукты горения при пожаре.
При проектировании зданий необходимо предусмотреть безопасную эвакуацию людей на случай возникновения пожара. При возникновении пожара люди должны покинуть здание в течение минимального времени, которое определяется кратчайшим расстоянием от места их нахождения до выхода наружу.
Число эвакуационных выходов из зданий, помещений и с каждого этажа зданий определяется расчетом, но должно составлять не менее двух. Эвакуационные выходы должны располагаться рассредоточено. При этом лифты и другие механические средства транспортирования людей при расчетах не учитывают. Ширина участков путей эвакуации должна быть не менее 1 м, а дверей на путях эвакуации не менее 0.8м. Ширина наружных дверей лестничных клеток должна быть не менее ширины марша лестницы, высота прохода на путях эвакуации - не менее 2 м. При проектировании зданий и сооружений для эвакуации людей должны предусматриваться следующие виды лестничных клеток и лестниц: незадымляемые лестничные клетки (сообщающиеся с наружной воздушной зоной или оборудованные техническими устройствами для подпора воздуха); закрытые клетки с естественным освещением через окна в наружных стенах; закрытые лестничные клетки без естественного освещения; внутренние открытые лестницы (без ограждающих внутренних стен); наружные открытые лестницы. Для зданий с перепадами высот следует предусматривать пожарные лестницы.
Мероприятия по обеспечению пожарной безопасности.
Организационно-технические мероприятия должны включать: - организацию пожарной охраны, организацию ведомственных служб пожарной безопасности в соответствии с законодательствам Союза ССР, союзных республик и решением местных Советов депутатов трудящихся; - паспортизацию веществ, материалов, изделий, технологических процессов, зданий и сооружений объектов в части обеспечения пожарной безопасности; - привлечение общественности к вопросам обеспечения пожарной безопасности; - организацию обучения работающих правилам пожарной безопасности на производстве, а населения -- в порядке, установленном правилами пожарной безопасности соответствующих объектов пребывания людей; - разработку и реализацию норм и правил пожарной безопасности, инструкций о порядке обращения с пожароопасными веществами и материалами, о соблюдении противопожарного режима и действиях людей при возникновении пожара; - изготовление и применение средств наглядной агитации по обеспечению пожарной безопасности; - порядок хранения веществ и материалов, тушение которых недопустимо одними и теми же средствами, в зависимости от их физико-химических и пожароопасных свойств; - нормирование численности людей на объекте по условиям безопасности их при пожаре; - разработку мероприятий по действиям администрации, рабочих, служащих и населения на случай возникновения пожара и организацию эвакуации людей; - основные виды, количество, размещение и обслуживание пожарной техники по ГОСТ 12.4.009. Применяемая пожарная техника должна обеспечивать эффективное тушение пожара (загорания), быть безопасной для природы и людей.
Способы и средства тушения пожаров.
В практике тушения пожаров наибольшее распространение получили следующие принципы прекращения горения:
1) изоляция очага горения от воздуха или снижение концентрации кислорода путем разбавления воздуха негорючими газами (углеводы CО2 1214).
2) охлаждение очага горения ниже определенных температур;
3) интенсивное торможение (ингибирование) скорости химической реакции в пламени;
4) механический срыв пламени струей газа или воды;
5) создание условий огнепреграждения (условий, когда пламя распространяется через узкие каналы).
Вещества, которые создают условия, при которых прекращается горение, называются огнегасящими. Они должны быть дешевыми и безопасными в эксплуатации не приносить вреда материалам и объектам.
Вода является хорошим огнегасящим средством, обладающим следующими достоинствами: охлаждающее действие, разбавление горючей смеси паром (при испарении воды ее объем увеличивается в 1700 раз), механическое воздействие на пламя, доступность и низкая стоимость, химическая нейтральность.
...Подобные документы
Снижение трудоёмкости изготовления вала редуктора путём разработки технологического процесса. Служебное назначение детали, технологический контроль ее чертежа. Тип производства и форма организации технологического процесса. Метод получения заготовки.
контрольная работа [416,3 K], добавлен 07.04.2013Анализ технологичности конструкции изделия. Определение типа и организационной формы производства. Служебное назначение изделия. Разработка технологического процесса механической обработки гладкого вала. Расчет припусков, режимов резания и норм времени.
курсовая работа [506,0 K], добавлен 12.05.2013Механические свойства стали. Анализ служебного назначения, условия работы детали. Систематизация поверхностей вала. Определение типа производства и выбор стратегии разработки технологического процесса. Выбор метода получения заготовки: отливка; штамповка.
курсовая работа [85,3 K], добавлен 15.04.2011Определение типа производства, выбор вида заготовки. Составление вариантов технологических маршрутов изготовления вала. Выбор металлорежущих станков. Определение межоперационных размеров с допусками на обработку. Нормирование операции шлифования.
курсовая работа [48,5 K], добавлен 04.05.2012Технологический процесс изготовления детали. Соосность оси отверстия в корпусе и оси внешнего кольца подшипника. Шлицевые соединения валов. Определение числа переходов. Расчет режимов резания. Определение норм времени. Длина обрабатываемой поверхности.
курсовая работа [1,3 M], добавлен 15.01.2011Анализ базового технологического процесса и направления проектирования коленчатого вала четырехцилиндрового двигателя. Выбор метода получения заготовки и его техническое обоснование. Расчет межоперационных припусков, допусков и размеров заготовки.
курсовая работа [781,9 K], добавлен 18.06.2021Назначение вала, рабочий чертеж детали, механические свойства и химический состав стали. Анализ технологичности конструкции вала, определение типа производства. Разработка и анализ двух вариантов маршрутных технологических процессов изготовления детали.
курсовая работа [925,1 K], добавлен 28.05.2012Проектирование и особенности технологического процесса изготовления вала. Определение режимов резания, норм времени, оборудования и оснастки. Характеристика специального станочного приспособления, разработка карты наладки на токарную операцию № 30.
курсовая работа [1,1 M], добавлен 16.02.2011Анализ технологичности конструкции ступенчатого вала. Определение типа производства изделия. Выбор способа получения заготовки и схемы ее базирования, технологического оборудования, оснастки и средств автоматизации, расчет припусков и режимов резания.
курсовая работа [3,2 M], добавлен 07.12.2010Анализ служебного назначения детали и физико-механические характеристики материала. Выбор типа производства и метода получения заготовки. Разработка технологического маршрута, плана изготовления и схем базирования детали. Расчет режимов резания.
дипломная работа [467,9 K], добавлен 12.07.2009Анализ технологичности конструкции ступенчатого вала, его служебное назначение. Определение типа производства и его характеристика. Выбор маршрута механической обработки заготовки, подбор инструментов, расчет режимов резания и наладки станков с ЧПУ.
курсовая работа [369,3 K], добавлен 23.09.2011Служебное назначение и технология изготовления первичного вала раздаточной коробки, классификация его поверхностей по функциональному назначению. Особенности расчета операционных припусков, размеров и режимов резания детали расчетно-аналитическим методом.
курсовая работа [654,6 K], добавлен 26.12.2010Ознакомление с процессом производства ведущего вала машины. Выбор способа получения заготовки и определение ее размеров. Расчет технологической себестоимости изготовления детали. Оценка и сравнение эффективности производства с экономической точки зрения.
курсовая работа [1,1 M], добавлен 23.03.2014Назначение и технические условия на изготовление вала. Технологический процесс изготовления заготовки. Установление режима нагрева и охлаждения детали. Предварительная термическая обработка детали. Расчет и проектирование станочного приспособления.
курсовая работа [854,6 K], добавлен 18.01.2012Служебное назначение вала. Анализ конструкции и технических требований. Материал, его состав и свойства, режимы термообработки. Определение типа производства и партии запуска. Выбор метода получения заготовки и его технико-экономическое обоснование.
курсовая работа [536,1 K], добавлен 01.05.2011Выбор стандартного редуктора. Уточненный расчет вала. Проверка долговечности подшипников. Разработка привода конвейера для удаления стружки. Назначение и анализ детали. Выбор способа изготовления заготовки. Расчет и проектирование резца проходного.
дипломная работа [2,9 M], добавлен 22.03.2018Принцип работы ступенчатого вала в редукторе крана для привода лебедки. Проектирование вала, подбор материала и его физико-механические характеристики. Показатели и анализ технологичности конструкции детали, технологический маршрут ее изготовления.
курсовая работа [157,2 K], добавлен 19.07.2009Служебное назначение детали, определение и обоснование типа производства. Выбор общих припусков, расчет размеров заготовки с допусками, коэффициент использования материала. Расчет межоперационных припусков. Описание и принцип работы приспособления.
курсовая работа [930,3 K], добавлен 03.01.2014Технологический процесс изготовления редуктора цилиндрического одноступенчатого вертикального с внутренним зацеплением. Анализ показателей качества изделия. Методы достижения точности при сборке. Организация процесса изготовления вала - шестерня.
курсовая работа [78,3 K], добавлен 22.08.2009Методы обработки поверхностей деталей зубчатых передач. Предварительный выбор типа заготовки, способов получения и формы заготовки. Разделение технологического процесса на этапы. Определение припусков на механическую обработку заготовки детали.
курсовая работа [744,2 K], добавлен 16.01.2013